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Abstract: Intelligent machine vision has been widely used in plant factory for many purposes. There are 
two aims in this study i.e. the first is improving the performance of intelligent machine vision for 
precision irrigation system using optimized feature selection technique and the second is developing 
intelligent machine vision for precision artificial lighting system using Light Emitting Diode (LED). The 
proposed feature selection technique used in the first aim is Neural-Discrete Hungry Roach Infestation 
Optimization (N-DHRIO) algorithm. The intelligent machine vision for precision irrigation system and 
the precision LED lighting system have successfully been developed, and it shows effective to control 
moisture content and light intensity of the plant precisely. In large scale plant factory, those systems can 
optimize plant growth and reduce the water consumption and energy costs. 
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1. INTRODUCTION 

A plant factory is defined as a plant production system in 
under continuous production control throughout the growth 
period until harvest. A narrow definition is a year-round plant 
cultivation system in a completely artificial environment 
(Murase, 2002). There are many commercially operated plant 
factories, which are heavily equipped with sophisticated 
environment control systems, machines, instrumentation, and 
computers. Plant factories can be the best solution for future 
agriculture (Ioslovich and Gutman, 2000).  

Intelligent machine vision has been widely used in plant 
factory for many purposes. Murase et al. (1997) have 
implemented intelligent machine vision technique for 
environmental monitoring in a closed bioproduction system. 
Bio-response feedback control strategies has been used to 
develop an intelligent water management system by utilizing 
intelligent machine vision as non-invasive technique. 
Intelligent machine vision has also been developed to predict 
the moisture content of a plant in plant factory. Hendrawan 
and Murase (2009) used the combination of image features 
such as: colour, texture, and morphology to predict the 
moisture content of a plant by using Artificial Neural 
Network (ANN).  Back-propagation Neural Network (BPNN) 
was used to describe the relationship between moisture 
content of the plant and image features which were generated 
from the machine vision. Another applications of intelligent 
machine vision was precision irrigation system for moss mat 
production in plant factory as shown in Fig. 1 (Hendrawan 
and Murase, 2011a; Hendrawan and Murase, 2011b). In those 
researches, optimization methods such as Neural-Intelligent 
Water Drops (N-IWD), Neural-Discrete Particle Swarm 
Optimization (N-DPSO), Neural-Genetic Algorithms (N-
GAs), Neural-Simulated Annealing (N-SA), and Neural-Ant 
Colony Optimization (N-ACO) were used for optimizing the 

image feature selection for minimizing the prediction error of 
moisture content in the plant.  When the error to predict the 
moisture content is low, the irrigation device can give well 
enough water to the plant as precisely as possible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Intelligent machine vision for precision irrigation 
system in plant factory. 
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The recent development of intelligent machine vision is 
precision artificial lighting system as shown in Fig. 2 
(Hendrawan et al., 2012). It is enable us to control the light 
condition depend on the needs of the plant. The machine 
vision first identifies how much light is needed in certain 
areas of the moss mat as precisely as possible, and then to 
fulfil the light needs as precisely as possible. In the study, a 
scanning type Laser Diode (LD) was used as light source. LD 
as light source for plant cultivation has been rapidly 
developed (Mori et al., 2002). Furthermore, a combination of 
LD lighting system and machine vision was used to irradiate 
the specific part of moss mat related to photosynthesis to 
suppress the energy consumption and optimize the growth of 
moss in plant factory. 

 

Fig. 2. Precision artificial lighting system for moss mat 
production using scanning type Laser Diode (LD) lighting 
system. 

There are two aims in this study i.e. the first is improving the 
performance of intelligent machine vision for precision 
irrigation system using optimized feature selection technique 
and the second is developing intelligent machine vision for 
precision artificial lighting system using Light Emitting 
Diode (LED). The proposed feature selection technique used 
in the first aim is Neural-Discrete Hungry Roach Infestation 
Optimization (N-DHRIO) algorithm. 

 

2. MATERIALS AND METHODS 

2.1  Intelligent Machine Vision for Precision Irrigation 

2.1.1 Materials and Equipments 

Sunagoke moss mat Rhacomitrium japonicum (VARORE 
Co., Japan) was used in this study. Water content was 
determined as: 

idw
idwtmwContentWater −

=                  (1) 

where: tmw is the total moss weight (g) and idw is initial dry 
weight (g) of Sunagoke moss. Dry weight of moss was 
obtained by drying process in the growth chamber (Biotron 
NK 350, Japan) until there is no decrement in the weight of 
moss. 

 

2.1.2  Colour Features (CFs) 

Colour Features (CFs) include colour mean value and excess 
RGB index. The equation of colour mean value as follows 
(Hendrawan and Murase, 2009): 

∑
=

=
M

i

valuecolour
M

valuemeancolour
1

1               (2) 

where: colour value can be defined as the range of each 
colour space in the pixel i.e. red, green, blue, grey, hue, 
saturation(HSL), saturation(HSV), lightness(HSL), value(HSV), 
X(XYZ), Y(XYZ), Z(XYZ), L*, a*, b*, C(LCH), H(LCH), u(Luv) and 
v(Luv). M is the total number of pixels in the image.  

Excess RGB index was calculated by: 
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where ERn, EGn and EBn are the normalized excess Red (R) 
index, excess Green (G) index and excess Blue (B) index, 
respectively. The total numbers of CFs are 22 features. 

2.1.3  Textural Features (TFs) 

One of the most useful parameter in image features is 
Textural Features (TFs) (Haralick et al., 1973). Some textural 
features extracted in this study were developed using Colour 
Co-occurrence Matrix (CCM). The steps to extract TFS are 
as follows: (1) Transforming RGB colour image to the other 
colour spaces such as HSL, HSV, XYZ, Lab, LCH, and Luv 
(Palm, 2004; Leon et al., 2006; Roterman and Porat, 2006; 
Angulo and Serra, 2007; Kim, 2008); (2) generating CCM 
from each colour spaces; and (3) extracting TFs using ten 
Haralick textural equation as follows:  
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where: P(i, j) is the (i, j)th element of a normalized co-
occurrence matrix, and μ and σ are the mean and standard 
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deviation of the pixel element given by the following 
relationships: 
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where: N(i, j) is the number counts in the image with pixel 
intensity i followed by pixel intensity j at one pixel 
displacement to the left, and M is the total number of pixels. 

The total number of TFs is 190 features. Based on the 
preliminary research, TFs performed better using the 
combination of angle (θ = 0) and distance (d = 2). Therefore, 
in this study, TFs were extracted at those values of θ and d. 

2.1.4  Back-Propagation Neural Network (BPNN)  

A three layers BPNN performed better than the other type of 
ANN to describe the relationship between moisture content 
of the moss and the image features. The performance 
criterion which has been used in this study to test the training, 
validation, and testing data was Root Mean Squared Error.  
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where Nn is number of input (maximum number of input = 
112 fetaures), Si is the estimated value by BPNN model, and 
Sti is the real data of moisture content which can be 
determine by Eqs. (1). The data which has been used in this 
study was divided into three components as follows: 325 data 
as training-set, 162 data as validation-set and 162 data as 
testing-set.  

2.1.5  Multi-Objective Optimization (MOO) 

Multi-Objective Optimization (MOO) concerns optimization 
problems with multiple objectives (Handl et al., 2007). The 
fitness is calculated as follows: 

)(11 * xRMSEweightfunction =             (18) 
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where RMSE(x) is the validation-set RMSE of ANN using 
only the expression values of the selected image features in a 
subset x, where IF(x) is the number of image features-subset 
in x. ft is the total image features equal to 112 features, 
weight1 and weight2 are two priority weights corresponding to 
the importance of the accuracy and the number of selected 
image features, respectively, where weight1 ∈  [0.1, 0.9] and 
weight2 = 1- weight1. In this study, the accuracy is more 
important than the number of selected image features. 

2.1.6 Feature Selection  

Selecting features-subset has become the most crucial factor 
to get optimum result (minimizing the prediction error and 

minimizing the number of features-subset). In this study, we 
introduce the solution to optimize the MOO by using Neural-
Discrete Hungry Roach Infestation Optimization (N-DHRIO) 
algorithm. 

There are three simple behaviours of cockroach agents which 
can be defined as (Havens et al., 2008): 

1. Find_Darkness: cockroaches always seek the darkest 
location. The darkness intensity is directly proportional 
to the value of the fitness function F(x).  

2. Find_Friends: cockroaches enjoy being with friends and 
socialize with the closest cockroaches with the 
probability per unit time (1/τstop,N) of stopping when 
encountering N friends: 0.49/s for N = 1, 0.63/s for N = 2 
and 0.65/s for N = 3. If a cockroach comes within a 
detection radius of another cockroach, then there is a 
probability of 1/τstop,N that these cockroaches will 
socialize (or group). This socializing phenomenon is 
imitated in the algorithm as a sharing of information 
component, where this information is the darkest known 
location of each individual cockroach which can be 
defined as personal best solution (p). Essentially, when 
two cockroaches meet, there is a possibility that they will 
share their knowledge about the darkest location with 
their neighbours (N) and set the darkest local location of 
the group which can be defined as local best solution (l).  

3. Find_Food: when a cockroach hungry (hungeri), it will 
look for food. The food locations are initialized 
randomly in the search space. The Find_Food behaviour 
is possibly minimizing the converging to local optima.  

The main steps of proposed N-DHRIO for feature selection 
are as follows: 
1. Initialisation of parameters. The maximum iteration (tmax) 

is set as the global iteration (tmax = 500). The number of 
cockroach (Na) is = 70. For neighbours updating, the 
parameters are A1 = 0.49, A2 = 0.63 and A3 = 0.65. For 
hunger updating, thunger = 100. The probability of 
mutation is set w = 0.5. The probability of crossover is 
set Co = 0.1; 0.2; 0.3; and 0.4.  

2. Generate roach location (xi) randomly and hungeri = 
rand{0, thunger-1}. Each roach consist of feature-subset 
(e.g. xi: 1,0,0,0,1,1,0,0,1,1,0,1,…..m), where m is the 
total features equals to 112 features. Each xi in the 
population expresses a solution to the feature selection 
problem. A value of 0 indicates that the feature is not 
selected, while a value of 1 means that the feature is 
selected. 

3. Evaluate each feature-subset (xi) using BPNN.  
4. Update the individual solution F(xi). Individual solution 

F(xi) is calculated following the prediction rate 
(validation-set RMSE) of the evolved subset of features 
(xi). The input variables of the BPNN are selected image 
features. One output of BPNN is the moisture content of 
moss. 

5. Calculate neighbours threshold value (dg): 
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6. Repeat steps 6.1 to 6.4 for those xi with partial solutions. 
Steps 6.1 to 6.7 are as follows: 
6.1 Updating personal best solution (pi) for the 

individual cockroach agent: 

⎩
⎨
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p
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i
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6.2 Compute the neighbours (Ni) of cockroach i. 
For k = 1 to Na 
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6.3 Update the darkest local location or group best 
solution (li) according to: 
For r = 1 to Ni 
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where {i, j} are the indices of the two socializing 
cockroaches and pk is the darkest known location 
for the individual cockroach personal best.   

6.4 Update roach location (xi): 
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The update xi consists of three components: The 
first component is )( ii xMTwa ⊕= , which 
represents the velocity of the cockroach. MT 
represents the mutation operator with the mutation 
probability of w. In other words, a uniform 
random number rnd[0, 1] is generated. If rnd[0, 1] 
is less than w then single insert move mutation 
operator is applied. The second component is 

),( iioi paCRCb ⊕= , which is the cognition 
part of the cockroach agent representing the 
private thinking of the cockroach agent itself. CR 
represents the crossover operator between ai and 
pi with the probability of Co. Two points crossover 
(point1 and point2) are selected randomly, where 
point1<point2, point1>1 and point2<m. The third 
component is )l,b(CRCx iioi ⊕= , which is 
the social part of the cockroach agent representing 
the collaboration among the group. CR represents 
the crossover operator between bi and li with the 
probability of Co. 

6.5 Evaluate each feature-subset (xi) using BPNN. 
6.6 Update the individual solution F(xi) using 

validation-set RMSE. 
6.7 Update hungeri: 

hungerii trandhungerhunger ∗+= ]1,0[          (27) 
6.8 Update iteration-best solution TIB. 

TIB = arg max q(F(xi))        (28) 
where function q(.) gives the quality of the solution. 

7. Update the total best solution TTB by the current 
iteration-best solution TIB using: 

⎩
⎨
⎧ ≥
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)q(T)q(TifT

T
IB

IBTBTB
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8. Update best feature-subset. 

9. Stopping criterion: the algorithm stops with the total-best 
solution TTB and best feature-subset. The search will 
terminate if the global iteration has been reached. 

2.2  Intelligent Machine Vision for Precision Lighting System 

Figure 3 shows the design of intelligent machine vision for 
precision LED lighting system. The system consists of a set 
of machine vision which is connected to the image analysis 
software (built in Visual Basic 6.0), a set of USB controller, 
and a set of 32 x 32 LED lighting system (combination of 
Red and Blue LED). First step is image acquisition, and then 
dividing image into background and object based on the 
threshold value. ANN was used to determine the intensity 
level of LED depend on the plant needs. The data is sent 
using USB controller to the LED panels. The next step is to 
put the plant under the LED panels and it will provide light 
intensity to the plant properly. The LED will be OFF if there 
is no object below it, otherwise it will be ON if there is an 
object underneath.   
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Fig. 3. Design of intelligent machine vision for LED lighting 
system. 

 

Fig. 4. Image analysis: (a) thresholding process; (b) 
configuration of LED light intensity. 
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Figure 4 shows that the object is close to the light source will 
get a lower light intensity than the object located far from the 
light source. The ANN’s inputs are RGB colour and textural 
features, while the output is the LED intensity (0% ~ 100%). 
Lettuce was used as the study samples. Total of 500 samples 
data were generated for ANN’s training-set, validation-set, 
and testing-set data. 

3. RESULTS AND DISCUSSION 

3.1  Performance of Intelligent Machine Vision for Precision 
Irrigation 

Figure 5 shows the performance of N-DHRIO algorithms 
using different values of weight1 (w1) and weight2 (w2) in 5 
runs. The data was trained using various crossover rate (Co = 
0.1; 0.2; 0.3; and 0.4). Overall, the performance of N-DHRIO 
as feature selection technique fluctuated because of the 
diversity of the solutions based on adjusted weights. 
Moreover, MOO searches simultaneously the solution which 
is superior in one objective, but poor at others. When the 
prediction accuracy shows better result, the number of 
selected image features is larger, and vice versa. The value of 
w1 = 0.1 and w2 = 0.9 means that the interest rate of the first 
objective (minimizing the prediction error) is approximately 
10%, while the interest rate of the second objective 
(minimizing the number of features-subset) is approximately 
90%. Figure 5(a) shows that the lowest prediction error is at 
w1 = 0.9 and w2 = 0.1. In contrast, Fig. 5(b) shows that the 
smallest number of features-subset is at w1 = 0.1and w2 = 
0.9. Based on the objective of the MOO, the results show that 
the best performance of N-DHRIO is using when Co = 0.4 
with the average testing-set RMSE of 6.37x10-3 and the 
average feature subset of 19.3. The plots of best fitness 
values of MOO using N-DHRIO algorithm are displayed in 
Fig. 6 to highlight the search process. The best fitness 
function converged with the lowest testing-set RMSE of 
6.49x10-3 when using 17 features. From Fig. 6, the fitness 
value changed and it is getting better until the last iterations 
(500 iterations). It indicates that feature selection process 
using N-DHRIO algorithm is effective. Based on this 
optimum result, we can implement the 17 features which 
have been selected as the inputs of the ANN to detect the 
moisture content in the moss. Figure 7 shows the results of 
BPNN training. The performance results obtained by BPNN 
in order to make a correlation between the image features as 
the input and the moisture content as the output is very good. 
The image features-subset which was used as the input of 
BPNN was obtained from the result of N-DHRIO as feature 
selection. The best performance of training-set RMSE of all 
BPNN models (Co = 0.1; RMSE = 6.08x10-4); (Co = 0.2; 
RMSE = 6.05x10-4); (Co = 0.3; RMSE = 6.01x10-4); (Co = 
0.4; RMSE = 5.08x10-4) are less than 10%. This shows that 
the performance of BPNN as learning algorithms is effective 
(Patterson, 1996). 

3.2  Performance of Intelligent Machine Vision for Precision 
Lighting System 

Figure 8 shows the performance of BPNN to predict the LED 
light intensity. It indicates that the performance of BPNN 
model is satisfactory. The smallest value for training-set 

RMSE of the BPNN model is 6.88x10-4 and it shows the 
effectiveness of the learning algorithm. The combination of 
machine vision and LED lighting system has successfully 
irradiated the specific areas of the lettuce plant which related 
to photosynthesis as shown in Fig. 9. It is also applicable to 
select LED light intensity which is appropriate to the certain 
part of the lettuce so that all parts of the lettuce can get 
enough light with proper intensity. In large scale plant factory, 
this system can reduce the cost of energy. 
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Fig. 5. Performance of N-DHRIO using different values of 
weights: (a) prediction accuracy; (b) number of selected 
features. 
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Fig. 6. Plot of best fitness values of MOO. 

4. CONCLUSIONS 

The intelligent machine vision for precision irrigation system 
using optimized feature selection has been developed. There 
is an improvement in optimizing feature selection using N-
DHRIO compare to the previous study (Hendrawan and 
Murase, 2011c) using N-GAs, N-ACO, N-SA, N-HBMO, N-
IWD, N-FSI. The intelligent machine vision for precision 
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LED lighting system has also been developed, and it shows 
effective to select LED light intensity which is appropriate to 
the certain part of the plant so that all parts of the plant can 
get enough light and proper intensity. In large scale plant 
factory, those systems can optimize the plant growth and 
reduce the water consumption and energy costs. 
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Fig. 7. Learning performance of BPNN using N-DHRIO. 
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Fig. 8. Learning performance of BPNN for predicting light 
intensity. 

 

Fig. 9. The result of  precision lighting system. 
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