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Abstract: Motivated by applications in minerals processing, a novel model predictive control
scheme is presented with non-constant prediction step size. In the proposed scheme, the sampling
rate of the prediction and control horizons changes, with nearer steps having a shorter sampling
period than ones in the more distant future. This approach allows for fine tuning of the control
trajectory over the near horizon, whilst still allowing for long prediction and control horizons to
account for slow dynamics. This may find application in many chemical and minerals processing
plants where process units have multiple time-scale dynamics. Extensions to decentralized
control of process networks are presented. The approach is illustrated using an industrial case
study.
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1. INTRODUCTION

Model predictive control (MPC), is one of the most suc-
cessful advanced control methods applied in the process
industries. Key drivers of this success are MPCs ability to
handle multi-variable control problems, operational con-
straints and to generate an optimal control sequence Qin
and Badgwell [2003]. As such, there is a large body of
research studying the stability and optimality of MPC, a
seminal paper on which is Mayne et al. [2000].

A common feature of chemical and minerals processing
systems is dynamics operating on multiple time-scales,
these are due to chemical and physical phenomena oc-
curring at different rates. Examples of such systems may
include thickeners (Bürger et al. [2005]), bioreactors and
reactor networks (Christofides and Daoutidis [1996], Ku-
mar et al. [1998]) and reactive distillation columns Taylor
and Krishna [2000]. A näıve approach of applying standard
MPC algorithms to such systems would require a short
sampling time and a long prediction horizon to capture all
time scales. Due to the high computational cost associated
with this approach, different methods have been developed
to reduce the computational complexity.

The use of singular perturbations is a classical approach
to control design for such systems, Kokotović et al. [1999];
and has been used in MPC design e.g. Wogrin and Glielmo
[2010], Chen et al. [2011, 2012], and Baldea and Touretzky
[2013]. In this approach separate controllers are designed
to control the fast and slow dynamics. This allows for a
simplification of the control algorithms and prevents ill-
conditioning of the controllers. In addition, it naturally
lends itself to both linear and nonlinear design approaches.
A disadvantage, however, is that its stability can only be

1 This work is partially supported by ARC Discovery Project
DP130103330, and Australian Coal Association Research Program
(ACARP) Project C21055.

ensured if the time-scale separation is sufficiently large,
a condition which may be difficult to test for nonlinear
systems.

As the computational complexity of MPC depends heavily
on the number of decision variables (essentially the number
of control actions in the generated trajectory), an approach
known as ‘move blocking’ has also been applied. In this
approach constraints of the form u(t+ i) = u(t), for some
values of the t and i are implemented, thus decreasing the
number of independent inputs. A survey of this approach
is presented in Cagienard et al. [2007]. A potential disad-
vantage of this approach is that the feasible set may be
decreased in size, least restrictive approaches have been
developed to address this, e.g. Gondhalekar and Imura
[2010].

In the current paper we propose an MPC algorithm for
systems exhibiting multiple time-scale dynamics based
on a non-constant sampling period of the prediction and
control horizons. Whereby, fine tuning the control in the
near future is obtained with relatively coarse predictions
of the distant future. This approach is similar to that
of move-blocking, however, in addition to blocking the
inputs, the prediction of the state is also ‘blocked’. The
proposed approach has the advantage of decreasing the
number of decision variables (thus decreasing computa-
tional complexity), and is shown by simulation studies
to exhibit high levels of performance. Stability of the
approach is demonstrated by applying Lyapunov argu-
ments and, alternatively, dissipative systems theory. This
latter approach has the advantage of being applicable to
the large-scale systems and decentralized and distributed
control. As dissipativity offers a scalable approach to en-
suring stability and performance bounds on such systems.
It should be noted that the proposed approach is not
‘multi-rate’ MPC whereby different measurements and/or
actuators are available with different sampling rates i.e.
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Fig. 1. A continuous operating paste thickener

Heidarinejad et al. [2011], in the proposed approach, all
measurements/actuations have the same sampling rate, it
is only the predictions which has multiple sampling rates.

Some notation used in the remainder of this paper is briefly
introduced; ‖v‖2e refers to the extended L2 norm of the
vector signal v(t). For a symmetric matrix A, A > 0 means
A is positive definite. The eigenvalues of the matrix A are
denoted by λ(A), and the singular values by σ(A). The
2-norm of a matrix A is denoted ‖A‖.

2. MOTIVATING EXAMPLE

Thickening is a method used to separate water from solids
in a slurry. It is commonly applied in minerals and coal
preparation processes as well as in wastewater treatment
operations. Figure 1 shows a continuous paste thickener
fed with a slurry of flow rate QF , with product thickened
slurry removed at a rate of QD from the bottom of the
thickener. The overflow from the thickener QF − QD is
to be recycled back to the plant, assumed to contain
water only. The height above the base of the thickener
is denoted by x, with φ(x) the concentration of solids as
volume fraction. The critical concentration, φc, divides the
process into hindered settling and compression zones. At
this point, also known as the gel point, particles start
to coalesce due to close proximity between each other,
forming a bed layer.

In modelling the process, Bürger et al. [2004] proposed
the nonlinear sedimentation-consolidation model which
accounts for the continuous process as well as the varying
cross sectional area of the paste thickener:

∂φ(x, t)

∂t
+

1

S(x)

∂

∂x
(QD(t)φ + S(x)fbk(φ)) =

1

S(x)

∂

∂x
(S(x)

∂A(φ)

∂x
), (1)

The solids concentration is assumed to be a function of
the local concentration only Coe and Clevenger [1916].
The cross sectional area is S(x), QD(t) is the underflow
volumetric flow rate at the bottom of the thickener, fbk(φ)
is the Kynch batch flux density function and A(φ) is
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Fig. 2. Poles of the linearized system

the consolidation function. For fbk(φ), the sedimentation
function proposed by Michaels and Bolger [1962] is used:

fbk(φ) =

{

v∞φ(1 − φ
φmax

)N for 0 ≤ φ ≤ φmax,

0 otherwise,
(2)

where v∞ is the terminal settling velocity of a single parti-
cle in a liquid. The parameter N is related to the shape of
particle Moreland [1963]. The consolidation function A(φ)
is described as:

A(φ) =

∫ φ

0

a(s) ds, a(φ) =
fbk(φ)σ

′
e(φ)

∆ρgφ
, (3)

where ∆ρ is the difference in solid-liquid density and g is
the gravity acceleration constant, taken to be 9.81ms−2.
The solid stress function σe(φ), which accounts for the
interactive effect between particles in the compression
zone, can be represented as Tiller and Leu [1980].

σe(φ) =

{

0 for φ ≤ φc,

σo[(
φ
φc
)k − 1] for φ > φc,

(4)

where k and σ0 are particle properties, in this case, the
coal properties. Note that the effective stress function does
not exist when φ < φc due to the relatively dilute solids
concentration. The convergence and stability condition of
the discretization approach appears in Bürger et al. [2004].

Eq. (1) shows that the dynamic of the system is dependent
on three mechanisms:

(1) Convection. This is the transport of bulk flow of
the suspension in the thickeners due to momentum
transfer.

(2) Sedimentation, which is the settling of particles by the
force of gravity, and its dynamic can be represented
in (2).

(3) Consolidation which only occurs in the compression
zone in which the particles interact, exerting a net
pressure on each other and at the same time enhanc-
ing the dewatering ability.

These mechanisms respond at different time-scales due to
different transport phenomena, leading to the different
time-scales of the thickener. The fastest mechanism is
convection, followed by sedimentation and consolidation at
a comparable rate. Importantly, the consolidation mecha-
nism is not present in conventional thickeners, yielding the
need for a different control strategy. This can be seen in
Figure 2, which plots the poles of the linearized system.

From Figure 2, it can be observed that there is a large
range of dynamic response of the process, with one pole
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located quite far apart from the others. From an analytical
perspective, the fast dynamics is found to have a time
constant of about 0.5 min while the slow dynamics with
time constant of 265 hr. This shows the multiple time-
scale nature of the process. As such, in order to implement
a MPC, the prediction horizon of the controller must be
long enough to cover the slowest time constant, which is
rather impractical as the computational requirement will
be extensive.

Hence, one way to tackle this issue is to have a prediction
horizon in which the prediction in the nearer steps having
more frequent and small sampling periods and larger sam-
pling time for prediction horizon in the distant future. This
will allow the prediction horizon to cover the dynamic of
slow component in the process. This approach is outlined
in the following section.

3. VARYING PREDICTION STEP SIZE MPC

The problem under consideration is to design a model
predictive controller for the system

ẋ(t) = Ax(t) +Bu(t) + d(t) (5)

y(t) = Cx(t), (6)

where u(t) ∈ R
p, x(t) ∈ R

n, y(t) ∈ R
q and d(t) ∈ R

n

are the manipulated variable, state, measured output and
unmeasured disturbance/noise, respectively. In addition,
the poles of the system are assumed to have different mag-

nitudes. That is,
∣

∣

∣

maxRe(λ(A))
minRe(λ(A))

∣

∣

∣
>> 1. It is assumed that

the continuous time system is controllable and observable.
Using ZOH and exact discretization, it is well known that
the discretized model is described by A(∆t), B(∆t) and C
under these conditions, where

A(∆t) = eA∆t (7)

B(∆t) =

(

∫ ∆t

0

eAt dt

)

B. (8)

The essential idea of the proposed approach is that the
sampling rate used in the prediction and control horizons is
non-constant, in particular, the sampling rate further into
the future is longer than that at nearer steps. Ordering
the sampling rates from the present into the future, the
ith sampling rate is denoted ∆ti, as such ∆ti ≤ ∆tj for
i < j. Due to the changing sampling rate in the prediction
horizon, at any point in time the process may be seen as a
linear parameter varying system from the controllers point
of view, that is

x(t+ 1) = A(p(t))x(t) +B(p(t))u(t) + d(t) (9)

y(t) = Cx(t), (10)

where the parameter p(t) is the sampling rate, with the
state space matrices parameterized as in (7)-(8).

We present two MPC algorithms for this problem, the key
difference being the way in which stability is ensured. In
the first algorithm stability is ensured by showing the cost
function acts as a Lyapunov function. This is applicable
to the control of single system. Whereas in the second
algorithm the controller is shown to yield the closed-
loop system dissipative with finite L2-gain from external
disturbance to the controlled output. This approach may
be applied to plant-wide control as the interaction effects

may be captured by the dissipativity properties of the
closed-loop systems.

To improve readability, the first MPC algorithm is stated
in the following section, for the case that the sampling
period of the prediction changes only once from ∆t1 to
∆t2 > ∆t1.

3.1 MPC for Single Systems

Algorithm 1.

min
u(t)

M−1
∑

k=0

xT (t+k∆ti)Qx(t+k∆ti)+uT (t+k∆ti)Ru(t+k∆ti)

+

N−1
∑

k=M

xT (t+k∆ti)Qx(t+k∆ti)+uT (t+k∆ti)Ru(t+k∆ti)

+ xT (t+M∆t1+(N−M∆t2)Px(t+M∆t1+(N−M)∆t2)+ǫx+ǫu

subject to:

x(t + 1) = A(∆ti)x(t) +B(∆ti)u(t) (11)

y(t) = Cx(t) (12)

xT (t)Pxx(t) ≤ 1 + ǫx, ǫx ≥ 0 (13)

uT (t)Puu(t) ≤ 1 + ǫu, ǫu ≥ 0 (14)

where the sampling period of the prediction changes at
t = M∆t1, Q, R ≥ 0 are symmetric matrices and N is the
prediction horizon.

Closed-loop stability may be ensured using the well known
method of enforcing a terminal weight P . This is made
precise below.

Theorem 1. The closed-loop system of system (5) with
Algorithm 1 is asymptotically stable for vanishing distur-
bance if the terminal cost, P > 0, satisfies P − ÃTPÃ = Q̃

and (A(∆t1), B(∆t1)) is stabilizable, where Ã = A(∆t1)+

B(∆t1)K, Q̃ = Q +KTRK, and (A(∆t1) + B(∆t1)K) is
stable.

Proof. The proof follows using the same arguments as in
Mayne et al. [2000] by showing that the conditions on the
terminal cost, P , implies that the terminal cost acts as a
Lyapunov function. 2

Remark 1. The conditions in Theorem 1 are based upon
the first sampling rate in the cost function, ∆t1. However,
similar conditions can be developed for any of the sampling
rates in the cost function. If ∆i is used in the analysis, then
it can be shown that the cost to go is decreasing every ∆ti
time units. As such, it is recommended that the smallest
∆ti is used, so as to prevent poor transient response.

Remark 2. The above algorithm may be extended to the
case where the sampling period of the prediction changes
multiple times without significantly affecting the imple-
mentation or stability analysis.

3.2 MPC for Process Networks

The second, dissipativity based, MPC algorithm may be
summarized as follows.

Algorithm 2.

min
K(t)

N−1
∑

k=0

xT (t+k∆ti)Qx(t+k∆ti)+uT (t+k∆ti)Ru(t+k∆ti)+ǫx+ǫu

subject to:
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x(t + 1) = A(∆t)x(t) +B(∆t)u(t) + d(t) (15)

y(t) = Cx(t) (16)

u(t) = −K(t)x(t) (17)

xT (t)Pxx(t) ≤ 1 + ǫx, ǫx ≥ 0 (18)

uT (t)Puu(t) ≤ 1 + ǫu, ǫu ≥ 0 (19)
(

P−1 (A−BK) 0

(A−BK)T P (I−β2P ) −(A−BK)TP

0 −P (A−BK) P (α2P−I)

)

≥ 0, (20)

where P,Q, Px, Pu > 0 and R ≥ 0 are symmetric matrices,
and α > 0, β = max(σ(C)).

This algorithm is a convex quadratic program, and may
be solved, for example, by converting it to a LMI problem
and using an appropriate solver. The satisfaction of (20)
ensures that the closed-loop system is dissipative, and in
fact, stable with an upper bound of the closed-loop L2-

gain from d(t) to y(t) of γ = αβ
max(λ(P ))
min(λ(P )) . This is proved

in the following.

Theorem 2. Consider the online optimisation algorithm 2
as applied to the system (5). The closed-loop system is
dissipative, with supply rate (−PTP, 0, α2PTP ), asymp-
totically stable and satisfies

‖y(t)‖22e ≤ γ2‖u(t)‖22e + xT (0)Px(0), (21)

if (20) is satisfied at every step.

Proof. Taking a Schur complement in the top left block,
it is easily seen that (20) is equivalent to
(

P−β2PTP−(A−BK)TP (A−BK) −(A−BK)TP

−P (A−BK) α2PTP−P

)

≥ 0, (22)

Which is equivalent to
(

x(k)
d(k)

)T(

P−β2PTP−(A−BK)TP (A−BK) −(A−BK)TP

−P (A−BK) α2PTP−P

)

×

(

x(k)
d(k)

)

≥0,

for any x(k), d(k) ∈ R
n. Upon rearranging this yields

−β2xT (k)PT Px(k)+α2dT (k)PT Pd(k)≥V (x(k+1))−V (x(k)),

for any k ≥ 0 with V (x(k)) = xT (k)Px(k), acting as a
Lyapunov function for vanishing d(k), and thus imply-
ing asymptotic stability. This is a dissipation inequality
(Willems [1972]) implying the dissipativity of the system
from d → x, using Cx(k) ≤ βx(k), we obtain

−yT (k)PT Py(k)+α2dT (k)PT Pd(k)≥V (x(k+1))−V (x(k)), (23)

which is the stated dissipativity condition. Summing (23)
to any T > 0 yields (21). 2

In Theorem 2 is it assumed that P is known, indeed (20)
is bilinear in the case that it is not. If the controller gain is
parameterized as K(t) = Y (t)P ∗∗ , then pre- and post-
multiplying (22) by diag(P−1) and performing a Schur
complement in the top left block yields
(

P−1 (AP−1−BY ) 0

(AP−1−BY )T P−1−β2P−1 −(AP−1−BY )T

0 −(AP−1−BY ) α2I−P−1

)

≥ 0, (24)

which is an LMI in P−1, Y and α2. Note that due to the
parameterization of K(t) this condition will yield a non-
convex condition if applied online. Thus, it is suggested
that (24) be solved offline to minimise the closed-loop

∗∗This is unrestrictive, as setting Y (t) = Ỹ (t)P−1 yields K(t) =

Ỹ (t) for any Ỹ (t).

+
+

1

k

e e

Fig. 3. Feedback view of process network

gain, γ, and to find a suitable P . Then, Algorithm 2
applied online. Note that, as an allowable K = Y P is
determined in the offline step, and as soft constraints are
used, Algorithm 2 is ensured to be globally feasible, and
thus, the closed-loop system is globally asymptotically
stable.

An advantage of Algorithm 2 over Algorithm 1 is that it
provides an upper bound on the L2-gain of the closed-loop
system, thus providing worst case performance bounds.
Additionally, the dissipativation of the closed-loop allows
for an easy extension to decentralized control of large-
scale systems, as dissipativity may be easily be used to
show stability of such systems, see Moylan and Hill [1978]
for a classical result in this area. A more recent appli-
cation in the context of dissipativity-based decentralised
and distributed MPC is Tippett and Bao [2013]. The
application to decentralised control is developed further
in the following.

If a process network has n process units, the ith closed-loop
subsystem is denoted pi, and they are connected as ui(t) =
yej (t) + uei(t), where uei(t) is an external disturbance,
then the interconnection relations may be represented as
u(t) = Hye(t) + ue(t), where uT (t) = ( uT

1 (t), ..., uT
n (t) ),

with ye(t), ue(t) similarly defined. Then, the closed-loop
process network may be represented as in Figure 3.

It is easy to see that if each closed-loop is dissipative with
supply rate (Qi, Si, Ri), then the system P is dissipative
with supply rate (Q,S,R) with Q = diag(Q1, . . . , Qk),
S = diag(S1, . . . , Sk) and R = diag(R1, . . . , Rk). It is
then well known that the overall system is dissipative with
supply rate (Q + SH + HTST + HTRH,S + HTR,R).
Using the results in Moylan and Hill [1978], the overall
system is asymptotically stable if Q + SH + HTST +
HTRH < 0. This is made precise below for this special
case in Algorithm 2 that S = 0.

Proposition 1. A process network with n process units,
with n decentralized model predictive controllers using
Algorithm 2 is asymptotically stable if

Q+HTRH < 0, (25)

where Q = diag(−PT
1 P1, . . . ,−PT

k Pk) and
R = diag(α2

1P
T
1 P1, . . . , α

2
kP

T
k Pk).

Proof. Omitted due to space constraints.
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4. SIMULATION STUDIES

4.1 Academic Example

The following system is considered as an example

ẋ(t) =

(

0 1
100 −100

)

x(t) +

(

0
100

)

u(t), (26)

where the state is the output, and the time base is seconds.
Note that λ(A) = 0.99,−100.99 implying a system with a

fast stable, and slow unstable mode. Also,
∣

∣

∣

maxRe(λ(A))
minRe(λ(A))

∣

∣

∣
≈

100, showing the different time-scales inherent in the
system. Three different prediction horizons are considered:

(1) 7 steps of ∆t = 0.027 by using a constant prediction
horizon,

(2) 7 steps of non-constant prediction horizon where
∆ti = 0.0137 exp(0.6933i), i = 1, . . . , 7,

(3) 127 steps of ∆t = 0.027 using a constant prediction
horizon.

Note that the total number of prediction steps is equal
in cases (1) and (2), and the total prediction length in
seconds is equal in cases (2) and (3). In case (2), the
sampling time follows an exponential function, similar to
a study presented in Gondhalekar and Imura [2006]. In all
cases, the weighting matrices are chosen to be Q = I2 and
R = 0.1. Simulation results are summarized in Table 1 and
Figure 4 for initial state conditions of (x1, x2) = (3, 2).

Table 1. Simulation Results for Academic Ex-
ample

Case Average computation time/step (s) IAE
1 3.69× 10−3 25.99
2 3.22× 10−3 3.51
3 5.31× 10−3 3.16
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Fig. 4. System output for academic example (blue(—) =
case (1) , red(- -) = case (2), black (..) = case (3)))

Case (2) offers a significant performance improvements
over case (1), with comparable computation time. The
slight decrease in average computation time for case (2)
as compared to case (1) is due to the fact that in case
(2) the system is driven to equilibrium much quicker, after
which point the calculation of the optimal control is trivial.
This is because, although the same number of steps used in
both cases, due to the non-constant prediction step size,
the total prediction length (in time domain) in case (2)
is sufficient to cover the time-scales of all the dynamics
of (26). Hence, for case (2), the controlled system is able
to predict the more distant future, optimizing the control

action in advance, yielding improved performance. This
result is promising, as the change in prediction step size
enables the controller to predict a longer horizon with-
out deteriorating the computational effort. On comparing
cases (2) and (3), a significant, 65%, increase in compu-
tation time is observed for case (3) with similar perfor-
mance levels. Thus showing that the proposed approach
can yield considerable computational savings with minimal
performance degradation. This is in contrast with the short
horizon controller, case (1), where computational savings
are achieved, but at the cost of significant performance
degradation. Even with the simple system under study,
these simulations demonstrate the computational savings
that the proposed approach can achieve, in the following
it is demonstrated that more pronounced savings can be
made for complicated systems.

4.2 Industrial Paste Thickener

In this section, a simulation of the industrial paste thick-
ener with 12 states modelled in Section 2 using both con-
stant and non-constant prediction step MPC is presented.
The cases considered are:

(1) 60 steps of ∆t1 = 1 min and 7 steps of ∆t2 = 1 hour,
(2) 480 steps of ∆t = 1 min.

These cases both have a prediction horizon of 8 hours,
with a different number of decision steps. Figure 6 shows
the disturbances in the process, one being the inlet feed
conditions and the other is the coal parameter which
is estimated using actual measured plant data from an
industrial paste thickener in NSW, Australia.

Figure 5 and Table 2 show that the performance of the
controllers remains comparable (4% difference in IAE).
This difference may be due to case (2) weighting the
more distant future more heavily as the cost function
has more steps in the distant future. Notably, however,
there is a significant improvement in the computational
time for the proposed approach. The computational time
required to solve the optimization problem online for case
(1) is approximately 40 times quicker as compared to
case (2). This is as there are fewer decision variables,
thus decreasing the computational effort required. The
simulation shows that the non-constant prediction step
can perform as well as a longer prediction horizon with
a significant improvement in computational effort.

Table 2. Simulation Results for Thickener

Case Average computation time/step (s) IAE
1 0.14 330.74
2 5.79 346.44

5. DISCUSSION AND CONCLUSIONS

Motivated by applications in the minerals processing in-
dustry, an MPC scheme for systems exhibiting dynamics
on multiple time-scales has been developed. The approach
utilizes a shorter sampling period to predict the response
of the system in the near future, and a longer period
in the more distant future. This allows for the effects
of both the fast and slow dynamics to be captured. The
proposed approach provides similar levels of performance
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Fig. 5. Controlled variable using constant/non-constant
prediction step (black(—) = set point, blue(- -) =
case (1), red(—) = case (2))
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Fig. 6. Process disturbances (blue(—) = inlet feed solids,
red(- -) = coal parameter)

as compared to classical MPC schemes, whilst decreasing
the computational overhead. Further work may include
the extension to nonlinear systems and an extension to
distributed MPC for plant-wide control, potentially in a
similar manner to Tippett and Bao [2013].
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