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Abstract: We study the modelling and flutter suppression of a suspended-span bridge section
using aerodynamic control means. The aerodynamic actuators are controllable leading- and
trailing-edge flaps fitted to both edges of the bridge deck. The modelling is based on thin aerofoil
theory which describes the bridge deck - air stream interactions. The model also consider the
mass and inertia effects of the flaps. Passive mechanical controllers are proposed that sense the
vertical velocity of the leading- and trailing-edge flap pivots and use these signals to produce
control torques and adjust the flap angles accordingly. The control system is insensitive to the
wind direction in the case of identical leading- and trailing-edge mechanical controllers. The
Akashi-Kaikyo bridge is used as a working example for the numerical simulation evaluation of
the control system performance.

1. INTRODUCTION

Long-span bridges can be susceptible to wind excitation
due to their low structural damping and inherent flexibility
in combination with aerodynamically inappropriate bridge
deck profiles. The Tacoma Narrows bridge disaster was
caused by wind induced oscillations called flutter Billah
and Scanlan [1991]. In order to satisfy the requirement for
increasingly long bridge spans a combination of cautionary
steps are taken against possible flutter instabilities includ-
ing: modifications to the deck’s aerodynamic design, mod-
ifications to the suspension system to adjust beneficially
the bridge’s critical structural mode shapes and modal fre-
quencies and the introduction of controllable aerodynamic
surfaces e.g. flaps Astiz [1998]. In the case of very long-span
bridges, purely structural solutions lead to impractically
deep deck sections with high associated weights and/or
costs. In this paper we describe research into the suppres-
sion of wind-induced oscillations in long-span suspension
bridges using aerodynamic (feedback) control that exploits
flaps fitted to both the trailing and leading edges of the
bridge deck; see Fig. 1. The control purpose is to increase
the critical flutter speed. If successful, this technology will
help permit the construction of bridges with significantly
longer spans.

The literature in this area can be classified to be four
broad categories. Active controllers, such as those based
on linear optimal control and H∞ Hansen and Thoft-
Christensen [2001], face severe reliability questions, be-
cause they are relatively complicated and will require a
power supply and probably also a computer system. Bad
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Fig. 1. Cross section of a long-span suspension bridge fitted
with controllable leading- and trailing-flaps. U is the
wind speeds; β and γ are the leading- and trailing-
edge flap angles respectively.

weather situations may well result simultaneously in high
winds and power supply failures. Adaptive controllers,
such as variable gain output feedback controllers Wilde
and Fujino [1996], face the same set of difficulties. Fixed-
phase controllers, such as those described in del Arco and
Aparicio [1999], are not physically realizable. Realizable
systems that introduce frequency-dependent phase com-
pensation may operate satisfactorily, but this has not thus
far been established. Passive pure-gain controllers Omen-
zetter et al. [2000a,b] are in principle easy to implement,
but these systems forego the advantages that might accrue
from phase compensation such as robustness.

We have spent a lot of efforts to solve the above short-
comings using the mechanical controller concept, which
has been successfully used in motorcycle steering Evan-
gelou et al. [2007]. In Graham et al. [2011a] and Graham
et al. [2011b] we developed a simple sectional model with
controllable leading- and trailing-edge flaps, which rep-
resents both the structural and aerodynamic properties
of a long-span suspension bridge. This model ignores the
mass and moments of inertia of the flaps, and uses the
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flap angles as control inputs. The key finding is that the
critical wind speeds for flutter and torsional divergence of
the sectional model can be greatly increased, with good
stability robustness, through passive feedback control. We
used the Akashi-Kaikyo Bridge as our working example
and show that the critical wind speed can be increased to
80 m/s (from 52 m/s) with good robust stability margins.
The use of static winglets has already been suggested in
the literature del Arco and Aparicio [1999]. The results
presented in del Arco and Aparicio [1999] are based on the
unrealistic assumption that the winglets and main deck are
aerodynamically independent. Our results in Graham et al.
[2011a] and Graham et al. [2011b], which take account of
this aerodynamic interaction, show that static winglets are
ineffective in increasing the critical wind speed relating to
torsional divergence instability. For that reason alternative
approaches to this problem are still required.

In Limebeer et al. [2011] we used a sectional model with
a controllable trailing-edge flap to demonstrate the use
of feedback for buffet suppression. In this study we use
the von Kármán turbulence spectrum to generate vertical
wind gust turbulence that acts on the bridge deck causing
buffet response. The system used in Limebeer et al. [2011]
controls the torque acting on the trailing-edge flap and
is responsive to deck movements. We show that a control
system realized by a mechanical network can substantially
improve the critical flutter speed, while simultaneously
suppressing the buffeting response of the bridge structure.

All the results obtained so far depend on the wind direc-
tion. In the present paper we develop an extended model
that includes leading- and trailing-edge flaps with their
inertial effects. On the basis of this model we conduct con-
troller design studies for flutter suppression that include
identical mechanical controllers for each flap. We show
that this symmetrization of the control system makes it
insensitive to wind direction.

The structural and aerodynamic components of the model
used in the paper are presented in Section 2. A mechanical
network for flaps feedback control is described in Section 3.
The main results are given in Section 4, where the prop-
erties of the Akashi-Kaikyo bridge and flutter controller
optimization problems are described.

2. DYNAMIC MODEL

In this section we derive the structural model and aerody-
namic model of the suspended-span bridge section to be
used in the paper.

2.1 Structural Model

We will now derive the structural model for the suspended-
span bridge section with controllable flaps, whose kinemat-
ics are illustrated in Fig. 2. The deck’s pitch angle α, heave
h and the leading- and trailing-edge flap angles β and γ are
the generalized coordinates. By using the standard laws of
classical mechanics, one obtains the following equations of
motion:

U

α

b
O Mclb ctb

β

γ

−b

h, L

Fig. 2. Kinematic model of the bridge deck. O is the
origin of the inertial axis system. The wind velocity
U is positive to the right, the lift force L and heave
h are positive downwards. The pitch angle α, the
trailing-edge flap angles γ and the moment M are
positive clockwise, while the leading-edge flap angle
β is positive anti-clockwise. The deck (including the
flaps) has a width of 2b while the leading- and trailing-
edge flaps have width of (1 + cl)b and (1 − ct)b
respectively where cl < 0.

mḧ+ Sαα̈+ Sβ β̈ + Sγ γ̈ = L−Khh, (1)

Sαḧ+ Iαα̈− (Iβ − bclSβ) β̈ + (Iγ + bctSγ) γ̈

= M −Kαα, (2)

Sβ ḧ− (Iβ − bclSβ) α̈+ Iβ β̈ = Mβ −Kββ, (3)

Sγḧ+ (Iγ + bctSγ) α̈+ Iγ γ̈ = Mγ −Kγγ, (4)

in which L and M are the aerodynamic lift force and
the aerodynamic moment acting on the bridge deck. The
aerodynamic moments Mβ and Mγ act on the leading-
and trailing-edge flap assemblies. The other parameters in
these equations include the leading- and trailing-edge flap
angles β and γ (as defined in Fig. 2); m is the mass per
unit length of the whole deck assembly; Kh and Kα are
the per unit length heave and torsional stiffnesses of the
whole assembly; Kβ and Kγ are per unit length leading-
and trailing-edge torsional stiffnesses of the flaps around
their pivot points clb (note cl < 0) and ctb; the quantities
Sα, Sβ and Sγ (Iα, Iβ and Iγ) are the per unit length static
moments (moments of inertia) of the whole assembly about
the points O, clb and ctb respectively; Jd, Jβ and Jγ are the
per unit length torsional moments of inertia of the bridge
deck, and the leading- and trailing-edge flaps, about the
points O, clb and ctb respectively. The mass per unit length
of the whole assembly is given by m = md + mβ + mγ ,
where md, mβ and mγ are mass of the bridge deck, and
the leading- and trailing-edge flaps.

We suppose also that Kh = mω2
h, Kα = Iαω

2
α, Kβ = Iβω

2
β

and Kγ = Iγω
2
γ , in which ωh, ωα, ωβ and ωγ are the

undamped natural frequencies of the heave mode, the pitch
mode, and the leading- and trailing-edge flap modes. The
static moments and moments of inertia are given by:

Sα = bmd(ct + cl)/2− bmβ(1 − cl)/2 + bmγ(1 + ct)/2,

Sβ = bmβ(1 + cl)/2,

Sγ = bmγ(1− ct)/2,

Iα = Jd + Jβ + Jγ +md (b(ct + cl)/2)
2

+mβ (b(1− cl)/2)
2
+mγ (b(1 + ct)/2)

2
,

Iβ = Jβ +mβ (b(1 + cl)/2)
2 ,

Iγ = Jγ +mγ (b(1− ct)/2)
2 .
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2.2 Aerodynamic Model

The aerodynamic model is based on that given in
Theodorsen and Garrick [1942], which considers a wing-
flap-tab combination. Using the transformation given in
Fig. 3 (see Graham et al. [2011a] for an expanded treat-
ment of these details), and setting a, l, m in (22)-(25)
of Theodorsen and Garrick [1942] to zero, we can find
the aerodynamic force L and moment M acting on the
whole bridge assembly, and the aerodynamic momentsMβ

and Mγ acting on the leading- and trailing-edge flaps
in (1)-(4); see (5)-(9) — the functions Ti(·) and Yi(·, ·)
are defined in Theodorsen and Garrick [1942]. Note that
Mβ is derived using Mβ = Mβc + clbL − M . The heave
and pitch corrections mentioned in the caption of Fig. 3
involve replacing h by h+ clbβ, and replacing α by α− β,
the first and second derivatives of h and α are adjusted
similarly in (22)-(25) of Theodorsen and Garrick [1942].
This procedure has been checked in Graham et al. [2011a]
against a vortex panel numerical method, which makes
the thin aerofoil assumptions, and very close agreement is
demonstrated.

U

α

bO

O

M
clb

clb

ctb

β

β

γ

γ

−b

h, L

(A)

α+ β

(B)

}
clbβ

Fig. 3. Transformation of the Theodorsen-Garrick wing-
aileron-tab configuration Theodorsen and Garrick
[1942] into a bridge deck with controllable leading-
and trailing-edge flaps. In (A) the angles of wing pitch,
aileron and tab are α, β and γ which are positive
clockwise. The wind speed U is positive to the right,
the heave h is positive downwards, as is the lift L.
The moments are positive clockwise. The wing chord
(including flap and tab) is 2b, and the width of the
aileron and tab are specified by cl and ct respectively.
In (B): The wing-aileron-tab configuration is trans-
formed into the bridge deck with controllable flaps
by making cl negative Graham et al. [2011a]. Pitch
and heave corrections must be applied to re-level
the bridge i.e., returning its mass center to correct
position.

The important Theodorsen function C(k) that appears
in (5)-(9) is an irrational function of reduced frequency
k = ωb/U Bisplinghoff et al. [1955]. It is given by

C(k) =
J1(k)− jY1(k)

(J1(k) + Y0(k))− j(J0(k)− Y1(k))
, (10)

in which J0(k), J1(k), Y0(k) and Y1(k) are Bessel functions
of the first and second kind respectively, and j =

√−1.
To use classical control-theoretic means such as root-locus
diagrams, we found an accurate quartic approximation
of C(k) in Graham et al. [2011a], whose numerator and
denominator coefficients are given in Table 1. Here ŝ = sb

U

numerator terms denominator terms

0.99592 1

57.01896 ŝ 62.30441 ŝ

623.78848 ŝ2 807.78489 ŝ2

1895.46328 ŝ3 3060.67868 ŝ3

1523.24700 ŝ4 3033.76379 ŝ4

Table 1. Numerator and denominator coef-
ficients of a quartic approximation to the

Theodorsen function.

is the reduced Laplace transform variable.

3. FEEDBACK SYSTEM

Q(s)

�

P (s)

C(s)

K(s)� �

�

�

Ψ

Fig. 4. Block diagram of the aerodynamic control sys-
tem. The plant P represents the bridge dynamics
and non-circulatory fluid mechanic dynamics, C(s) is
the Theodorsen circulation function approximation.
Q(s) is the lift-producing signal (the relative vertical
velocity of the air stream to the bridge deck). K(s)
is the controller with feedback signal Ψ. In Fig. 5 the
outputs of K(s) (inputs of P (s)) are torques acting
on the flaps while its inputs Ψ (outputs of P (s)) are
the vertical velocity of flap pivots.

Fig. 4 shows the bridge control system, which includes the
structural and fluid dynamics as well as the control system.
P (s) is the uncontrolled open-loop system including the
non-circulatory fluid mechanics and the structural dynam-
ics. C(s) is the Theodorsen function approximation which
contains the circulatory fluid dynamics.

K(s) =

[
Kβ(s) 0

0 Kγ(s)

]
is the controller which operates the leading- and trailing-
edge flaps.

Fig. 5 shows a mechanical feedback control system; h, α,
β and γ are the deck’s heave, pitch angle, leading- and
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L = −ρb2

{
πḧ+ Uπα̇− (UT4(cl) + Uπ)β̇ − (T1(cl)b− πclb)β̈ − UT4(ct)γ̇ − T1(ct)bγ̈

}
− 2πρUbCQ (5)

where

Q = ḣ+ Uα+
1

2
bα̇+

(
1

π
T10(cl)U − U

)
β +

(
1

2π
T11(cl)b+ clb−

1

2
b

)
β̇ +

1

π
T10(ct)Uγ +

1

2π
T11(ct)bγ̇ (6)

M = −ρb2

{
1

2
πUbα̇+

1

8
πb2α̈+ T15(cl)U

2β +

(
T16(cl)Ub− 1

2
πUb

)
β̇ +

(
2T13(cl)b

2 − 1

8
πb2

)
β̈

+T15(ct)U
2γ + T16(ct)Ubγ̇ + 2T13(ct)b

2γ̈

}
+ πρUb2CQ (7)

Mβ = ρb2

{
(T1(cl)b− clbπ)ḧ+

(
1

2
πUb− T17(cl)Ub− clbUπ

)
α̇+

(
1

8
πb2 − 2T13(cl)b

2
)
α̈

+

(
T15(cl)U

2 − 1

π
T18(cl)U

2
)
β +

(
T16(cl)Ub− 1

2
πUb− 1

π
T19(cl)Ub+ T17(cl)Ub+ clb(UT4(cl) + Uπ)

)
β̇

+

(
4T13(cl)b

2 − 1

8
πb2 +

1

π
T3(cl)b

2 + T1(cl)clb
2 + clb(T1(cl)b − πclb)

)
β̈ +

(
T15(ct)U

2 − 1

π
Y9(cl, ct)U

2
)
γ

+

(
T16(ct)Ub− 1

π
Y10(cl, ct)Ub+ clbUT4(ct)

)
γ̇ +

(
2T13(ct)b

2 +
1

π
Y6(cl, ct)b

2 + clT1(ct)b
2
)
γ̈

}
−(π + T12(cl) + 2πcl)ρUb2CQ, (8)

Mγ = −ρb2

{
− T1(ct)bḧ+ T17(ct)Ubα̇ + 2T13(ct)b

2α̈+
1

π
Y17(cl, ct)U

2β

+

(
1

π
Y18(cl, ct)Ub− T17(ct)Ub

)
β̇ −

(
1

π
Y6(cl, ct)b

2 + T1(ct)clb
2 + 2T13(ct)b

2
)
β̈ +

1

π
T18(ct)U

2γ

+
1

π
T19(ct)Ubγ̇ − 1

π
T3(ct)b

2 γ̈

}
− T12(ct)ρUb2CQ (9)

trailing-edge flap angles respectively. Mβ and Mγ the
aerodynamic moments acting on the leading- and trailing-
edge flaps respectively. The control system has two pinions
that are mounted on the bridge deck and attached to the
flaps. There are also two racks with one ends attached to
flaps and the other ends linked to the passive mechanical
controllers which are attached to the inertial reference
frame and have admittances Yl(s) and Yt(s). The inputs
and outputs of Yl(s), Yt(s) and K(s) of Fig. 4 are the
vertical velocity of the flap pivots and torques acting on
the flaps respectively. As the deck moves, Yl(s) and Yt(s)
drive the leading- and trailing-edge flaps through rack-
and-pinion connection. A similar controller is suggested in
Limebeer et al. [2011] to actuate a trailing-edge flap.

The network through-variable associated withKγ(s) is the

force Ft(s), while its across-variable is ḣ+ ctbα̇− rγ̇. Thus

Ft(s) = sYt(s)(h+ ctbα− rγ)(s)

and so

Mγ(s) = srYt(s)(h+ ctbα− rγ)(s)

giving

Kγ(s) = rYt(s).

Similarly we derive that

Mβ(s) = srYl(s)(h+ clbα− rβ)(s)

and

Kβ(s) = rYl(s).

The control system in Fig. 5 is insensitive of the wind
direction if we let Yl(s) = Yt(s). We omit the proof here
because of page limit, but it will be given in the journal
version of this paper.

h

r

r

r

(A)

(B)

ḣ+ ctbα̇

α

Ft

Ft

Yt(s)

γ

xt Mγ

Ft

Yt(s)

γ

xt
MγFl

Yl(s)

β

xlMβ

U

Fig. 5. A prototypical mechanical feedback control system.
Figure (A) is a conceptual passive control system.
Figure (B) is a free body diagram of the trailing-edge
flap system which is used to derive the equations of
motion.

4. APPLICATION ON AKASHI KAIKYO BRIDGE

We will use the Akashi-Kaikyo bridge as a working exam-
ple. This bridge links the city of Kobe (which is on the
mainland of Honshu) to Iwaya (which is on Awaji Island)
over the Akashi Strait. Akashi Strait often has severe
storms— a storm sank two ferries in 1955, which killed 168
people. In 1998 the bridge was open for traffic and has the
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longest central span in the world. The parameter values
for the bridge Omenzetter et al. [2000b] and example
flaps are given in Table 2 in which dβ (dγ) and ρβ (ργ)
are the average thickness and density respectively of the
flap. These parameters will be used in the structure model
(1)-(4) and aerodynamic model (5)-(9). The trailing-edge

Parameters Values

b 15m

md 33600 kg

Jd 4.97× 106 kgm2

ωα 0.917 rad/s

ωh 0.427 rad/s

ρ 1.23 kg/m3

ωβ , ωγ 30 rad/s

ρβ , ργ 7850 kg/m3

dβ , dγ 0.01m

Table 2. Physical parametrs of the Akashi
Kaikyo bridge section with controllable flaps

flap’s mass per unit span and its moment of inertia around
the hinge line are given by

mγ = b(1− ct)ργdγ and Jγ = ργdγ(b(1− ct))
3/3

respectively, similarly for mβ and Jβ of the leading-edge
flap. The flaps and bridge deck are treated as aerodynam-
ically ‘thin’. The flap resonant frequencies ωβ and ωγ are
chosen such that they will not decrease the critical wind
speeds for flutter and torsional divergence in the absence
of the controllers.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−1

−0.8

−0.6
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0.4

0.6

0.8

1

heave mode

pitch mode

torsional divergence mode

Real

Im
a
g
in
a
ry

52m/s

70m/s

Fig. 6. Root-loci of the uncontrolled bridge section. The
wind speed is swept from 30m/s to 80m/s, with the
low-speed end of the root loci marked with (blue)
diamonds and the high-speed ends marked with (red)
hexagons. The critical flutter speed is 52m/s, while
the critical torsional divergence speed is approxi-
mately 70m/s. Besides the flutter modes (involving
the heave mode and pitch mode) and the torsional
divergence mode, there are loci associated with the
quartic approximation of the Theodorsen function.

From Fig. 6, the bridge’s critical flutter speed and critical
torsional divergence speed are approximately 52m/s and
70m/s respectively. The design aim is to increase the

critical flutter speed to a value just below the divergence
speed of 70m/s by using the mechanical control system
in Fig. 5. This control system should have robustness
against modelling errors and uncertainty. For this, we seek
a mechanical control systems that stabilizes the nominal
closed loop and will achieves the following closed-loop
mini-max objective:

min
p

{
max

Gi(s,p)
‖ (I +Gi(s, p))

−1 ‖∞
}

i = 1, . . . n, (11)

where Gi(s, p) are open-loop multi-variable transfer func-
tions corresponding to wind speeds Ui i = 1, . . . , n, which
can be obtained by opening the feedback loop at Ψ in
Fig. 4. ‖ · ‖∞ is the infinity norm Green and Limebeer
[1995]; s is the Laplace transform variable while p is a
parameter set including the parameters of the compen-
sators, the flap chords as well as the pinion radius r. The
index (11) corresponds to the closed-loop stability robust-
ness to multiplicative perturbations Green and Limebeer
[1995], which is optimized using the MATLAB’s sequential
quadratic programming algorithm FMINCON The Math-
works Inc. [2000].

We set three constraints for (11) to ensure that the opti-
mization problem is properly posed. The first constraint is
system stability for which we constrain the real parts of all
the closed-loop eigenvalues to be negative. The second con-
straint is the passivity of the compensators Yl(s) and Yt(s),
by imposing a positive-real constraint on the coefficients
of the compensators Anderson and Vongpanitlerd [1973].
This constraint allows compensators to be synthesized
using passive mechanical components (dampers, springs
and inerters) Smith [2002]. The third constraint is the
width of flap chord which is set to be positive and less
than 2 meters here.

We first assume the compensators were be a first-order
passive network of the form:

Y (s) = k
s+ z0
s+ p0

, (12)

in which k, z0 and p0 are constrained to be non-negative to
ensure passivity. In the optimization process, we consider
the wind speeds to be from 4m/s to 69m/s in steps of
5m/s. By the optimization calculation, we get

k = 20936.0141, z0 = 1.2639, p0 = 0.2687, r = 0.4868,

with optimal flap chords of 1.5579m. In this case the index
given in (11) equals to 1.4937. Apparently this is a lag
compensator. A physical realization of Y (s) is given in
Fig. 7. It is easy to check that

D1 = k, K1 = k(z0 − p0), D2 = k(
z0
p0

− 1).

Fig. 8 shows the associated closed-loop root loci, where it
is also clear that the closed-loop system is stable with the
critical flutter speed increased to approximately 70m/s.

We also conducted a further design study using second-
order passive compensators, but the improvement of ro-
bust performance over the first-order compensator above
was marginal.

5. CONCLUSIONS

In this paper we greatly improved the critical flutter speed
of a suspended-span bridge section using controlled flaps
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D2

D1 K1

Fig. 7. Realization of the first-order mechanical lag com-
pensators shown in Fig. 5 as Yl(s) and Yt(s) and given
in equation (12).

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05
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ag

in
ar

y

Fig. 8. Closed-loop root-locus for the symmetrically con-
trolled bridge deck; the wind speed is swept from
5m/s to 70m/s, with the low wind speed ends of
each locus marked with blue diamonds and high wind
speed ends marked with the red hexagons. In addition
to the dynamics given Fig. 6, the root loci given here
include the dynamics of the flaps and the control
system.

operated by a mechanical control system with good robust-
ness. The control system is independent to wind speed.
The buffeting suppression problem will be treated in the
journal version of this paper. This paper makes the as-
sumption that the grounded sides of the compensation net-
works Yl(s) and Yt(s) are connected to stationary points
in an inertial reference frame. However, in some cases, it
might be necessary to make use of compensation network
anchor points that are attached to a large, but compliant
structure. The effect of flexible mounting arrangements for
a trailing-edge mechanical controller have been considered
in Limebeer et al. [2011] and these adjustments may be
applied here too.
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