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Abstract: Recursive approximation of the set of feasible parameters is a key problem in set
membership identification. In this paper a new technique is presented, aimed at recursively
computing an outer orthotopic approximation of polytopic feasible parameter sets. The main
idea is to exploit the concept of binding constraints in linear programs, in order to select a limited
number of constraints providing a good approximation of the exact feasible set. Numerical
tests demonstrate that the proposed technique outperforms existing recursive approximation
algorithms, with a limited increase of the required computational burden.
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1. INTRODUCTION

Set membership identification deals with the estimation
of models in the presence of noise signals which are as-
sumed to be unknown but bounded (UBB) in some norm.
Although the basic idea dates back to the early works of
Bertsekas and Rhodes [1971] and Schweppe [1973], it is
from the 80s that a wide variety of techniques have been
proposed to tackle a number of estimation problems in this
framework (see e.g., Kurzhanski [1989], Walter and Piet-
Lahanier [1990], Milanese and Vicino [1991], Chernousko
and Polyak [2005] and references therein).
When the UBB noise assumption is enforced, a natural
way to represent the uncertainty associated to the estima-
tion problem is given by the so-called Feasible Parame-
ter Set (FPS), which is the set of all parameter vectors
compatible with the available data and the UBB noise
assumption. The shape and complexity of this set depends
both on the norm used to bound the noise and on the
structure of the selected model class. In the literature, the
most popular setting is by far that of linear regression
models with ℓ∞ bounded noise, in which the FPS turns
out to be a convex polytope.
Since the true FPS is usually too complex to be character-
ized exactly, recursive approximations of the FPS through
simply shaped regions have been intensively investigated,
along with the computation of nominal estimates satisfy-
ing some properties related to the FPS (e.g., the Chebishev
center of the approximating set, in some norm). Recursive
FPS approximations are also in order when considering
online estimation problems, which play a key role in a
number of applications, including plant monitoring, fault
detection, adaptive control and many others. A number
of recursive approximation algorithms have been devised
for linear regression models with ℓ∞ bounded noise. Sev-
eral classes of approximating regions have been consid-
ered in the literature, including orthotopes (Pshenichnyi
and Pokotilo [1983]), ellipsoids (Fogel and Huang [1982],
Belforte et al. [1990], Deller Jr. et al. [1993]), parallelotopes

(Vicino and Zappa [1996], Chisci et al. [1998], Kostousova
[1998]) and zonotopes (Bravo et al. [2006], Blesa et al.
[2011]). While orthotopes provide very coarse approxima-
tions of the true feasible set, parallelotopes often return
tighter estimates with respect to ellipsoids, especially when
the number of available data is strongly limited. The
computational complexity of these techniques turns out
to be of the same order of the celebrated Recursive Least
Squares (RLS) algorithm, which is the standard tool in
statistical online estimation (Ljung [1999]). However, all
the recursive approximations are generally much more con-
servative than the batch orthotopic approximation, which
provides the exact uncertainty interval for each parameter
and can be obtained by solving 2n Linear Programs (LPs),
being n the number of parameters to be estimated.

This work is an attempt to bridge the gap between the
recursive and the batch approximations, both in terms
of computational burden and quality of the estimates.
The main idea is to exploit the availability of extremely
efficient techniques for solving LPs, in order to provide an
orthotopic approximation of the FPS as close as possible
to the exact batch estimate, while retaining a computa-
tional burden similar to that of the recursive ellipsoidal
and parallelotopic approximations mentioned above. To
do this, a constraint selection technique based on the
concept of binding constraints is proposed. It turns out
that the proposed technique is able to provide very good
approximations of the batch orthotope, by keeping track
of a very small number of constraints and by solving a
number of LPs which is orders of magnitude smaller than
those required to compute the exact minimum orthotope
at each time sample.

The paper is organized as follows. The problem formula-
tion is presented in Section 2, along with basic material
on linear programs. The constraint selection technique is
illustrated in Section 3, while Section 4 reports several
numerical tests which compare the proposed approach
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with existing recursive identification algorithms. Finally,
concluding remarks are given in Section 5.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Problem formulation

Consider the linear regression model

y(t) = ϕT (t)θ + e(t) (1)

where θ ∈ R
n is the vector of parameters to be estimated,

ϕ(t) is a vector containing past values of the system input
and output signals, and e(t) is an unknown-but-bounded
noise signal such that

|e(t)| ≤ δ, ∀t. (2)

Then, the feasible parameter set at a generic time t is
defined as

Θ(t) = {θ ∈ Θ0 : |y(k)− ϕT (k)θ| ≤ δ, k = 1, . . . , t}

=

t⋂

k=1

S(k)
(3)

where S(k) = {θ : |y(k)− ϕT (k)θ| ≤ δ} is a “strip” in the
parameter space and Θ0 represents the a priori knowledge
on the parameters to be estimated. Being Θ(t) a polytope
in the parameter space, the computation of the minimum
axis-aligned box (orthotope) containing Θ(t) requires to
solve 2n LPs with 2t constraints. Clearly, this is a feasible
approach for a batch parameter estimation in which the
number of available measurements N is fixed and limited.

When dealing with on line parameter estimation, recursive
approaches for the approximation of the feasible set Θ(t)
have to be employed. In the literature, a number of
recursive approximation techniques have been proposed
based on the following scheme

R(t+ 1) ⊇ R(t)
⋂

S(t+ 1) (4)

where R(t) is a set belonging to a predefined class of
approximating regions R, containing the true feasible set
Θ(t) at a generic time t. By applying the above scheme,
starting from a set R(0) ⊇ Θ0, one has that Θ(t) ⊆ R(t),
∀t. The techniques proposed in the literature differ by the
class of approximating regions R (orthotopes, ellispoids,
parallelotopes, zonotopes, etc.) and by the criterion used
to compute R(t + 1) in (4), the most popular one being
the minimization of the volume of R(t+ 1).

2.2 Linear programming facts

In the following, we recall some basic facts about LPs
which will be exploited in the paper. Consider the LP

max cTx
s.t.

Ax ≤ b
. (5)

Let us denote by X = {x| Ax ≤ b} the constraint set,
and by Ξ = {x ∈ X| x = argmax cTx} the solution set of
the LP (5). Let aTi denote the ith row of matrix A. The
constraint aTi x ≤ bi is an active constraint at a feasible
point x ∈ X , if aTi x = bi. The constraint aTi x ≤ bi is a
binding constraint of the LP (5) if there exists x∗ ∈ Ξ
such that aTi x

∗ = bi. Let I be the set of indexes i such
that aTi x ≤ bi is a binding constraint. Then, the set

A : {x| aTi x ≤ bi, i ∈ I} is referred to as the binding
set of the LP (clearly X ⊆ A).
The following properties stem directly from the above
definitions.

Proposition 1. Consider the LP

max cTx
s.t.

x ∈ A
(6)

where A is the binding set of the LP (5). The LPs (5) and
(6) have the same solution and the same solution set Ξ.

Proposition 2. Let H = {x| aTx ≤ b}. Then,

max cTx ≥ max cTx
s.t. s.t.

x ∈ A
⋂

H x ∈ X
⋂

H
. (7)

Proposition 1 implies that no conservatism is introduced if
the constraint set is replaced by the binding set. However,
conservatism may arise if a new constraint H is added, as
stated by Proposition 2.

3. CONSTRAINT SELECTION TECHNIQUE

In this section, the constraint selection technique proposed
for the recursive approximation of the feasible set is
presented. The class of approximating regions R is that
of orthotopes, or axis-aligned boxes, defined as

O(θ, d) = {θ : θ = θ + diag(d)w, ‖w‖∞ ≤ 1},

where θ, d, w ∈ R
n, di ≥ 0, i = 1, . . . , n, and diag(d)

is a diagonal matrix with diagonal equal to d. The sets
Fi = {θ ∈ O : θi = θi+di} and Fi+n = {θ ∈ O : θi = θi−
di}, for i = 1, . . . , n, are the (n − 1)-dimensional faces of
the orthotope.
Let the vectors ei, i = 1, . . . , n denote the columns of
the identity matrix. The minimum orthotope containing
a polytope Θ, denoted by O∗(Θ), can be computed by
solving the 2n LPs

βi = max eTi θ ,
s.t.

θ ∈ Θ

βi+n = min eTi θ
s.t.

θ ∈ Θ
(8)

for i = 1, . . . , n. Then, the minimum orthotope containing

Θ is given by O∗(Θ) = O(θ
∗
, d∗), where

θ
∗

i =
βi + βi+n

2
, d∗i =

βi − βi+n

2
, i = 1, . . . , n.

Let us now consider the feasible parameter set Θ(t),
defined according to (3), and the corresponding minimum
bounding orthotope O∗(Θ(t)), obtained by computing the
solutions βi(t) of the 2n LPs (8). Let Ai(t), i = 1, . . . , 2n,
be the binding sets of the 2n LPs and define

A(t) =
2n⋂

i=1

Ai(t). (9)

Let Ξi(t) i = 1, . . . , 2n, be the solution sets of the 2n LPs
(8) and let v(i)(t) ∈ Ξi(t). The following result holds.

Proposition 3.
i) O∗(Θ(t)) = O∗(A(t)).
ii) O∗(Θ(t)

⋂
S(t+ 1)) ⊆ O∗(A(t)

⋂
S(t + 1)).

iii) If v(i)(t) ∈ S(t+ 1) for some 1 ≤ i ≤ 2n, then

βi(t+ 1) = βi(t).

iv) If v(i)(t) ∈ S(t + 1), for all i = 1, . . . , 2n, then

O∗(Θ(t+ 1)) = O∗(Θ(t)).
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Remark 1. It is worth observing that in general the solu-
tion set Ξi(t) of the ith LP can contain infinite elements.
This occurs whenever the corresponding active set has
a facet orthogonal to the vector ei. The most common
situation is however the one in which Ξi(t) is a singleton,
i.e. Ξi(t) = {v(i)(t)}. In such a case, it can be shown that
condition iii) in Proposition 3 is not only sufficient but also
necessary, i.e. if v(i)(t) 6∈ S(t + 1), then βi(t + 1) < βi(t)
for 1 ≤ i ≤ n, and βi(t+ 1) > βi(t) for n+ 1 ≤ i ≤ 2n .

The results in Proposition 3 suggest a strategy for selecting
a subset of the constraints of the feasible parameter set
Θ(t), and then compute the approximating orthotope
only with respect to the selected constraints. In order to
illustrate the idea, let us first suppose that at a generic
time t the following elements be available:

- the set A(t) defined in (9);
- 2n elements v(i)(t), i = 1, . . . , 2n, such that v(i)(t)
belongs to the solution set of the LP

max (min) eTi θ
s.t.

θ ∈ A(t)
. (10)

According to item i) in Proposition 3, the 2n LPs (10)
provide the optimal bounding orthotope O∗(Θ(t)), i.e.,
no conservatism is introduced by replacing Θ(t) by A(t),
as long as an orthtotopic approximation of the feasible
parameter set is concerned. When a new measurement is
processed at time t + 1, if one computes the minimum
orthotope containing the polytope defined by the intersec-
tion between the sets A(t) and S(t+1), conservatism may
occur (see item ii)). Nevertheless, item iii) states that, if an
element of the solution set of the ith LP belongs to S(t+1),
then the new measurement will not modify the solution
of the ith LP. Therefore, only the LPs corresponding to
indices i such that v(i)(t) 6∈ S(t + 1) have to be solved at
each time step. In particular, if all elements v(i)(t) ∈ S(t+
1), i = 1, . . . , 2n, there is no need to update the bounding
orthotope (item iv)). Hence, a strategy for the recursive
updating of an orthotope containing the feasible set Θ(t)
can be devised as follows.
At a generic time t, assume that the following are avail-
able: (i) a set C(t) ⊇ Θ(t), composed by a subset of the
constraints of Θ(t); (ii) the minimum orthotope O(t) =
O(θ(t), d(t)) such that O(t) ⊇ C(t); (iii) 2n elements
v(i)(t) ∈ C(t)

⋂
Fi(t), where Fi(t) are the faces of O(t),

i.e., such that

v
(i)
i (t) = θi(t) + di(t) , v

(i+n)
i (t) = θi(t)− di(t)

for i = 1, . . . , n. Let us denote by Ci(t) the constraints in
C(t) that are active at any element of C(t)

⋂
Fi(t).

Step 1. For each i = 1, . . . , 2n, if v(i)(t) 6∈ S(t + 1) set

v(i)(t+ 1) = arg max (min) eTi θ
s.t.

θ ∈ C(t)
⋂

S(t+ 1)
(11)

and Ci(t + 1) = Ai(t + 1), where Ai(t + 1) is the binding
set of the LP (11). Otherwise, if v(i)(t) ∈ S(t + 1), set
v(i)(t+ 1) = v(i)(t) and Ci(t+ 1) = Ci(t).

1

1 In (11), the notation max(min) means that max holds for i =
1, . . . , n, while min holds for i = n+ 1, . . . , 2n.

Step 2. For i = 1, . . . , n, setO(t+1) = O(θ(t+1), d(t+1)),
where

θi(t+ 1) =
v
(i)
i (t+ 1) + v

(i+n)
i (t+ 1)

2
,

di(t+ 1) =
v
(i)
i (t+ 1)− v

(i+n)
i (t+ 1)

2
.

Step 3. Set

C(t+ 1) =

2n⋂

i=1

Ci(t+ 1),

t = t+ 1, and go back to Step 1.

Notice that, by construction, C(t + 1), O(t + 1) and the

elements v
(i)
i (t + 1) satisfy the same properties of their

counterparts at time t, and hence the procedure can be
iterated. Moreover, O(t+ 1) ⊆ O(t), ∀t.
The rationale behind the above recursive procedure is that
ideally one would like to propagate the binding set A(t),
because it contains those constraints that are sufficient to
yield the minimum bounding orthotope O∗(Θ(t)). Hence,
each time one face of the approximating orthotope is
tightened, the corresponding LP is solved and the binding
set of that LP is inserted in the constraint set C(t).
Unfortunately, the recursive updating of the constraint
set does not guarantee that C(t) coincides with A(t) at a
generic time t, because a constraint that is not binding
at a certain time, might become binding later due to
intersection with a new constraint. Nevertheless, as it will
be shown by the numerical tests in Section 4, the procedure
is able to provide a much tighter approximation with
respect to standard recursive methods, while the number
of LPs to be solved and of constraints to be kept track
of, turns out to be very small with respect to those of the
batch minimum orthotope O∗(Θ(t)).

In order to initialize the procedure, a possible choice
is to compute the minimum orthotope containing the
true feasible set Θ(t0) at a certain time t0, by solving
the corresponding 2n LPs, and then pick v(i)(t0), i =
1, . . . , 2n, from the solution sets of the 2n LPs and set
C(t0) = A(t0) (by doing this, the first t0 measurements
are used to initialize the procedure). As an alternative,
one can choose as O(0) any orthotope containing the a
priori set Θ0, pick as v(i)(0), i = 1, . . . , 2n, any element
on the ith face of O(0) and as C(0) the set of constraints
defining Θ(0).

4. NUMERICAL TESTS

In this section, the constraint selection procedure is com-
pared to classical recursive approaches, such as the min-
imum volume ellipsoidal approximation, firstly proposed
in Fogel and Huang [1982], and the minimum volume
parallelotopic approximation introduced in Vicino and
Zappa [1996]. Moreover, we report the results relative to
the minimum volume orthotope containing the feasible
parameter set Θ(t), computed by propagating the cor-
responding binding set A(t). The estimates provided by
the standard RLS algorithm are also considered, along
with the corresponding 99% confidence ellipsoids, which
are used for comparison with the estimates of the feasible
parameter set provided by the set membership approaches.
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In order to compare the results provided by the different
techniques, besides the volume of the approximating re-
gions R, other performance indicators are considered:

- the relative error of the central parameter estimates

re2 =
‖θ − θ‖2
‖θ‖2

(12)

where θ is the center of the approximating region R,
and θ is the true parameter vector;

- the relative parametric uncertainty

ru2 = max
ϑ∈R

‖θ − ϑ‖2

‖θ‖2
; (13)

- the maximum relative error

re∞ = max
i=1,...,n

|θi − θi|

|θi|
; (14)

- the maximum relative uncertainty

ru∞ = max
i=1,...,n

max
ϑ∈R

|θi − ϑi|

|θi|
. (15)

4.1 Example 1

The first case study concerns an ARX model, generated by
discretizing a fourth-order transfer function with two pairs
of lightly damped complex conjugate poles. The system
equation is A(q)y(t) = B(q)u(t) + e(t) where

A(q) = 1− 3.193q−1 + 4.360q−2 − 3.107q−3 + 0.954q−4

B(q) = 0.072q−1 + 0.679q−2 + 0.618q−3 + 0.051q−4

and e(t) is unknown-but-bounded as in (2). Hence, the
number of parameters to be estimated is n = 8.
We first consider identification experiments with 20000
data points, an input signal u(t) uniformly distributed
in [−1, 1], and the noise e(t) uniformly distributed in
the interval [−δ, δ], with δ = 0.2. All results presented
hereafter are averaged over 100 input/noise realizations.
Figure 1 compares the volume (in logarithmic scale) of
the orthotope provided by the proposed technique, with
that of the exact minimum volume orthotope and of the
recursive minimum volume ellipsoid and parallelotope. It
can be observed that the new method outperforms classic
recursive approaches, while the difference with the min-
imum bounding orthotope is negligible (in fact, the two
plots are indistinguishable). It is worth noticing that this
occurs, even if the number of constraints in the set C(t) is
much smaller than the number of constraints in the active
set A(t), as depicted in Figure 2.
Table 1 reports the performance indexes (12)-(15), com-
puted at the final time sample of the identification experi-
ment. The results confirm that the proposed methods out-
performs the ellipsoid and parallelotopic recursive approx-
imations, especially in terms of parametric uncertainties
ru2 and ru∞: for example, the ellipsoidal algorithm has
a 19.7% maximum relative uncertainty ru∞, while that of
the proposed method is less than 0.5%. On the other hand,
the differences with respect to the true minimum ortho-
tope O∗(Θ(t)) are always negligible. The performance of
the classic RLS algorithm is similar to that of the recursive
ellipsoidal approximation. As long as the computational
burden is concerned, Table 2 reports the average times
per iteration required by each technique, normalized to
the time required by a single iteration of the ellipsoidal
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Fig. 1. Ex. 1, uniform noise: volumes of approximating
regions: parallelotope (green), ellipsoid (cyan), mini-
mum orthotope O∗(Θ(t)) (black), proposed approxi-
mating orthotope O(t) (red), RLS (blue).
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Fig. 2. Ex. 1, uniform noise: number of constraints in the
sets A(t) (black) and C(t) (red).

re2 ru2 re∞ ru∞

ellipsoid 2.32e-04 1.91e-03 1.38e-02 1.97e-01

parallelotope 2.72e-03 2.16e-02 2.72e-02 4.99e-01

O(t) 1.97e-05 7.87e-05 1.09e-03 4.44e-03

O∗(Θ(t)) 1.96e-05 7.74e-05 1.08e-03 4.36e-03

RLS 4.63e-04 1.13e-03 2.53e-02 1.25e-01

Table 1. Ex. 1, uniform noise: errors.

relative times no. of LPs

ellipsoid 1 -

parallelotope 1.12 -

O(t) 1.24 1172

O∗(Θ(t)) 9.47 12294

RLS 0.54 -

Table 2. Ex. 1, uniform noise: times and LPs.

algorithm. It can be observed that the new method only
requires a time 24% higher than the ellipsoidal algorithm,
while a much higher computational burden is required by
the exact algorithm. This is due to the much larger total
number of LPs to be solved, reported in the rightmost
column of Table 2.

Another identification experiment has been performed
with the same type of input, but assuming a Gaussian
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noise signal e(t) of variance σ2, truncated within the in-
terval [−3σ, 3σ]. Results are reported in Figures 3-4 and
Tables 3-4. The main difference with respect to the previ-
ous case is the much larger number of active constraints in
the set A(t), which results in a much higher computational
burden of the procedure computing the exact bounding
orthotope O∗(Θ(t)) . Nevertheless, a similar increase is
not observed in the number of constraints of C(t), and
also the computational times and the number of LPs to
be solved by the proposed technique remains pretty much
the same as in the case of uniformly distributed noise.
This demonstrates that, although the true feasible set
is quite sensitive to the noise distribution, this does not
affect significantly the proposed approximation technique.
As long as the performance indicators are concerned,
the proposed method still outperforms the ellipsoidal and
parallelotope algorithms in terms of both nominal error
and uncertainty. It can be noticed that the performance
of the RLS algorithm is now better in terms of volume
and comparable to that of the proposed technique for the
uncertainty performances ru2 and ru∞ (although slightly
worse in terms of nominal errors re2 and re∞). This is
in accordance with the RLS being the minimum variance
estimator in the case of Gaussian noise.
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Fig. 3. Ex. 1, Gaussian noise: volumes of approximating
regions: parallelotope (green), ellipsoid (cyan), mini-
mum orthotope O∗(Θ(t)) (black), proposed approxi-
mating orthotope O(t) (red), RLS (blue).
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Fig. 4. Ex. 1, Gaussian noise: number of constraints in the
sets A(t) (black) and C(t) (red).

re2 ru2 re∞ ru∞

ellipsoid 2.14e-03 1.59e-02 1.27e-01 1.66e+00

parallelotope 6.00e-03 3.97e-02 4.59e-02 5.00e-01

O(t) 8.47e-05 9.26e-04 4.33e-03 5.34e-02

O∗(Θ(t)) 8.26e-05 9.12e-04 4.11e-03 5.24e-02

RLS 2.69e-04 6.62e-04 1.66e-02 7.43e-02

Table 3. Ex. 1, Gaussian noise: errors.

relative times no. of LPs

ellipsoid 1 -

parallelotope 1.26 -

O(t) 1.39 1243

O∗(Θ(t)) 47.37 35895

RLS 0.5624 -

Table 4. Ex. 1, Gaussian noise: times and LPs.

4.2 Example 2

In order to analyze how the proposed method scales with
the dimension of the parameter vector, identification of
the impulse response of FIR models of different lengths
has been addressed. Consider the FIR model class

y(t) =

n∑

i=1

θiu(t− i) + e(t) (16)

where the impulse response samples θi are the parameters
to be identified and e(t) satisfies (2). For different values of
n, parameter vectors θ have been randomly selected, and
for each one of them an identification experiment has been
performed in which the input u(t) is uniformly distributed
in [−1, 1], e(t) is uniformly distributed in [−δ, δ] and δ has
been chosen so that the signal-to-noise ratio (SNR) in the
ℓ∞ norm is equal to 0.1. For each value of n, average results
over 100 FIR models and identification experiments, each
one consisting of 20000 data points, are evaluated.
In Table 5, numerical values of the nth root of the final
volume, re2 and ru2 for different values of n, are reported
and compared with those obtained by the recursive set
membership ellipsoid and by the 99% confidence ellipsoid
of the RLS. It is apparent that the proposed technique
provides a much better approximation of the feasible
parameter set, not only with respect to the guaranteed
set membership ellipsoid, but also to the probabilistic
approximation given by the RLS confidence region. A
similar behavior has been observed for re∞ and ru∞.

Uniform noise Gaussian noise

n Algor. vol(1/n) re2 ru2 vol(1/n) re2 ru2

O(t) 9.9e-4 6.9e-5 2.0e-4 1.8e-2 1.9e-4 4.0e-3
4 ellips. 1.1e-2 4.0e-4 2.1e-3 8.6e-2 2.9e-3 1.7e-2

RLS 3.0e-2 2.3e-3 4.5e-3 1.7e-2 1.3e-3 2.6e-3

O(t) 3.6e-3 1.7e-4 6.2e-4 3.7e-2 5.1e-4 7.4e-3
8 ellips. 8.3e-2 1.8e-3 1.3e-2 6.4e-1 1.6e-2 9.7e-2

RLS 5.5e-2 4.0e-3 6.6e-3 3.1e-2 2.1e-3 3.7e-3

O(t) 6.5e-3 2.5e-4 1.2e-3 5.7e-2 1.2e-3 1.1e-2
12 ellips. 2.2e-1 3.9e-3 3.1e-2 1.1e0 2.3e-2 1.7e-1

RLS 6.6e-2 5.2e-3 7.9e-3 3.9e-2 3.0e-3 4.6e-3

O(t) 1.0e-2 3.7e-4 1.9e-3 8.1e-2 1.9e-3 1.5e-2
16 ellips. 4.1e-1 6.1e-3 5.5e-2 1.4e0 2.3e-2 2.0e-1

RLS 7.8e-2 6.0e-3 9.0e-3 4.6e-2 3.4e-3 5.2e-3

O(t) 1.5e-2 4.7e-4 2.7e-3 1.1e-1 3.2e-3 2.1e-2
20 ellips. 6.1e-1 8.1e-3 8.0e-2 1.5e0 2.4e-2 2.3e-1

RLS 8.7e-2 6.8e-3 9.9e-3 5.0e-2 3.9e-3 5.7e-3

Table 5. Ex.2, uniform e Gaussian noise: errors.
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Fig. 5. Ex. 2, uniform noise: normalized average times per
iteration: proposed technique (solid red), proposed
technique after t = 10000 (dashed red), RLS (blue).

Figure 5 shows the average times per iteration, normalized
to the average iteration time of the ellipsoidal algorithm.
As expected, the time required by the proposed technique
grows exponentially with the number of parameters to be
estimated, up to approximately 4 times the average itera-
tion time of the ellipsoidal algorithm for n = 20. However,
the average iteration time of the proposed technique in
the last 10000 time samples (dashed curve) turns out to
be smaller than that of the ellipsoidal algorithm up to
n = 18, and even smaller than that of the RLS for n ≤ 12.
This is due to the fact that when the estimation procedure
reaches its “steady state”, only few measurements con-
tribute to reduce the approximating orthotope, and hence
the number of LPs to be solved is quite small. In fact, a
new measurement y(t+1) is able to tighten the jth face of
the current orthotope O(t) only if v(j) 6∈ S(t+1), for some
j = 1, . . . , 2n (see Proposition 3, item iii)), and this can
be checked by computing only a single scalar product in
R

n. Hence, 2n scalar products are the only computations
performed at the time samples in which the orthotope is
not updated.

The same campaign of identification experiments has been
repeated for a Gaussian noise of variance σ2, truncated
within the interval [−3σ, 3σ], and σ chosen so that the ℓ∞
SNR is equal to 0.1. Similar trends with respect to the
tests with uniformly distributed noise have been observed
(see Table 5), the main difference lying in that the volume
of the RLS confidence ellipsoid is now slightly smaller than
that of the orthotope, while both are orders of magnitude
smaller than the volume of the set membership ellipsoid.
The same occurs for the relative ℓ2 uncertainty ru2, while
the orthotope provides a slightly more precise nominal
estimate re2 with respect to the RLS.

5. CONCLUSIONS

A new technique for computing a recursive approximation
of a polytopic feasible parameter set has been presented.
The proposed approach combines the efficiency of linear
programming solvers with an appropriate selection of the
constraints to be propagated. Numerical tests have shown
that the computed approximation is almost indistinguish-
able from the exact minimum orthotope containing the
feasible set, while it outperforms set membership algo-
rithms based on the recursive optimization of approximat-
ing regions such as ellipsoids and parallelotopes. Moreover,
the proposed method provides a valuable competitor to

the statistical confidence regions provided by the cele-
brated RLS algorithm. Although the computational bur-
den grows exponentially with the number of parameters
to be estimated, it turns out to be of the same order
of classic recursive approaches for systems of moderate
size. The extension of the proposed technique to recursive
identification of slowly time-varying systems and to set
membership state estimation problems is the subject of
ongoing research.
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