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Abstract: Scalability is a fundamental requirement in control design for large-scale systems.
Typically, it needs to be considered explicitly at the expense of performance degradation
and more complicated design procedures. In this paper, we present a class of large scale
systems where scalability is an inherent property of the optimal centralized solution. More
specifically, we study a coordination problem where a group of identical subsystems are required
to satisfy an equality constraint on the sum of their inputs. We show that the problem can be
completely decomposed in terms of the unconstrained problems associated with each subsystem.
In particular, the computational effort required to obtain the optimal solution is independent
of the number of subsystems and the only global information processing required to execute the
optimal control law is a simple summation, which scales well when the number of subsystems
grows large.
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1. INTRODUCTION

In control design for large-scale systems, scalability is of
prime importance. Within the control community, consid-
erable effort has been devoted to reducing the complexity
of the control design procedure and execution of the re-
sulting control law.

Perhaps the most common approach to control design
for large scale systems is to impose a sparsity structure
on the controller. However, while a sparse structure can
ensure scalability of the control law by limiting the amount
of information processing in the controller, it typically
complicates the design procedure. This was pointed out
by Witsenhausen (1968) when he showed that some useful
properties in classical linear-quadratic control do not ex-
tend to problems with structural constraints. Rotkowitz
and Lall (2006) identified a tractable subclass of prob-
lems by showing that convexity in the Youla-parameter
is preserved under a certain condition, but even then,
well-understood solutions are currently only available for
a handful of instances (Lessard and Lall, 2012; Shah and
Parrilo, 2013). When faced with non-convexity, standard
approaches are to either search for locally optimal solu-
tions, e.g. as in Mårtensson and Rantzer (2012), or intro-
duce additional restrictions to make the problem convex
(see S̆iljak and Stipanović, 2000; Tanaka and Langbort,
2011).

Here, we present a class of large-scale systems where scal-
ability does not need to be addressed explicitly. Instead,
we show that it is an inherent property of the centralized
solution. More specifically, we study group of physically
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independent subsystems with identical dynamics that are
required to coordinate their inputs. We show that when
the objective is to minimize a weighted sum of the indi-
vidual system costs, the coordination problem decomposes
in terms of unconstrained problems where each system
minimizes its own cost. This decomposition has several
useful implications. First, the computational effort needed
to obtain the optimal solution is independent of the num-
ber of subsystems: the solution is obtained by simply
solving the associated unconstrained problem for a single
subsystem. Second, the only global information processing
required to execute the control law is a simple summation,
which scales well when the number of subsystems grows
large. Third, it enables us to derive closed form expressions
for the optimal control law and performance in terms
of the control laws and performances of the associated
unconstrained problems. This provides insight into the
optimal control policy and makes it possible to extend
the results to problems with additional constraints on
subsystem performance.

2. PROBLEM FORMULATION

In this paper we study how well a group of m stable LTI
subsystems with identical dynamics is able to perform
under a joint input constraint. The subsystems are given
by

xi(t+ 1) = Axi(t) +Bui(t) + wi(t), i = 1, . . . ,m (1)

where xi(t) ∈ R
n, ui(t) ∈ R

p, and the wi:s are independent
stationary zero-mean Gaussian white noise processes with
covariance matrix Wi. Associated with each subsystem i
is the cost function

Ji(ui) = E
(

|xi(t)|2 + |ui(t)|2
)

. (2)
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Note that the subscript i in the definition of Ji is needed
because in general Wi 6= Wj .

Let x = [xT
1 · · ·xT

m]T , and u = [uT
1 · · ·uT

m]T be the vector
of stacked states and control signals, respectively. The
objective of the group is to solve the following constrained
state feedback problem:

Problem 1. (Constrained problem). Given γi > 0, i =
1, . . . ,m, such that

∑m
i=1 γi = 1, find a state feedback

law u = −L̄x that minimizes
m
∑

i=1

γiJi(ui)

and satisfies the exchange constraint
m
∑

i=1

ui = 0. (3)

A larger group implies more freedom in choosing a control
signal allocation (u1, . . . , um) that satisfies (3). Thus, it
is intuitively clear that increasing the group size leads to
better performance. In Section 3 we provide closed form
expressions for the performance and the optimal control
signal allocation in Problem 1 in terms of the performance
and solution of the following unconstrained problems:

Problem 2. (Unconstrained problem). Find a state feed-
back law ui = −L∗xi that minimizes (2).

Remark 1. Since the systems in (1) have identical A and
B matrices, the optimal feedback gain in Problem 2 is the
same for i = 1, . . . ,m.

Remark 2. Note that by setting um = −∑m−1
i=1 ui, the

constraint (3) is eliminated and Problem 1 becomes a
standard state feedback problem of order mn. Our aim in
this paper is to show that the problem has several useful
and scalable properties.

Remark 3. If we would allow zero weights in the statement
of Problem 1, say γ1 = 0, the solution would be to solve
Problem 2 for i = 2, . . . ,m and set u1 = −

∑m
j=2 uj . The

requirement γi > 0, 1, . . . ,m excludes such trivialities.

Remark 4. The requirement that the systems are stable is
necessary in order to stabilize the system with a control
law that satisfies (3). This can be seen by introducing
z =

∑m
1 xi. Then

z(t+1) =

m
∑

i

xi(t+1) = A

m
∑

1

xi(t)+B

m
∑

1

ui(t) = Az(t),

which cannot be stabilized unless A is stable.

3. SOLUTION

For notational purposes we define

Pi(ui) = Ji(0)− Ji(ui)

as the performance improvement obtained in system i by
applying the control signal trajectory ui. Henceforth, we
use u∗

i to denote the optimal control trajectory obtained
by running (1) with the optimal state feedback law in
Problem 2. The resulting performance improvements are
denoted p∗i = Pi(u

∗
i ).

We now state the main result of this paper. It states
that performance and optimal control signal trajectories
in the Problem 1 are completely characterized by the
performance and control signal trajectories in Problem 2.

Theorem 1. Let ūi and u∗
i be the optimal control signal

trajectories obtained by running (1) with the optimal state
feedback laws in Problem 1 and Problem 2, respectively.
Set p∗i = Pi(u

∗
i ). Then,

ūi = u∗
i − βi

m
∑

j=1

u∗
j , (4)

and

Pi(ūi) = p∗i − β2
i

m
∑

j=1

p∗j (5)

where

βi =
γ−1
i

∑m
j=1 γ

−1
j

. (6)

Proof. The proof is given in the Appendix.

Corollary 1. If γ1 = . . . = γm = 1/m, then

ūi = u∗
i − avg{u∗

1, . . . , u
∗
m}

Pi(ūi) = p∗i −
1

m
avgj{p∗1, . . . , p∗m}

m
∑

i=1

Pi(ūi) = (1− 1

m
)

m
∑

i=1

p∗i ,

where avg{x1, . . . , xm} = 1
m

∑m
1 xi.

Corollary 1 states that if the objective is to minimize the
aggregated cost of the group, satisfying the constraint (3)
will cost the group 1/m in relative performance improve-
ment. This cost is evenly distributed among the systems.
That is, each system pays a fraction, 1/m, of the avergae
uncoordinated performance improvement for satisfying the
constraint. Note that in general p∗i 6= p∗j because the noise
covariance matrices are allowed to differ (i.e. Wi 6= Wj if
i 6= j). This implies that satisfying the constraint (3) might
lead to a negative performance improvement compared to
zero control effort at some system i (i.e. Pi(ūi) < 0).

Corollary 1 also implies that all systems should spend
an equal amount of control effort in order to satisfy
the constraint. Aside from this effort they should behave
exactly as they would without the constraint.

Note that (4) is a relation between the optimal signal
trajectories in the constrained and unconstrained prob-
lems. It does not offer a solution to Problem 1 because it
requires a priori knowledge of the control signal trajecto-
ries in Problem 2. The next result remedies this issue, by
establishing a relation between the control laws of the two
problems. In fact, the solution to Problem 1 is obtained
simply by solving Problem 2. Since the system have iden-
tical dynamics, this amounts to solving the unconstrained
problem for a single system in the group.

Theorem 2. Let L∗ be the optimal state feedback gain in
Problem 2. Then the solution to Problem 1 is given by

ui(t) = −L∗
(

xi − βi

m
∑

j=1

xj

)

, (7)

where βi =
γ
−1

i
∑

m

j=1
γ
−1

j

.

Proof. The optimal control signals in Problem 2 can
be expressed as u∗

i = Hwi, where H is defined by the
following system:
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H :

{

x(t+ 1) = (A−BL∗)x(t) + w(t)

u(t) = −L∗x(t)

Introduce z = βi

∑m
j=1 xj and zi = xi − z. In the new

coordinates, control law (7) reads ui = −Lzi and it is
easily verified that under this control law we have z(t +
1) = Az(t)+βi

∑m
j=1 wj(t). Using this it is straightforward

to verify that

zi(t+ 1) = (A−BL∗)zi + wi(t)− βi

m
∑

j=1

wj(t).

Hence,

ui = −Lzi = H
(

wi − βi

m
∑

j=1

wj

)

= u∗
i − βi

∑

j

u∗
j ,

which by Theorem 1 is the optimal control trajectory. 2

The control law in (7) simple to implement: At time t each
subsystem computes νi(t) = −L∗xi(t) and submits it to a
central entity. The central entity computes ν̄(t) =

∑

νi(t)
and sends it back to the subsystems who then apply
the control signal ui(t) = νi(t) − βiν̄(t). Note that the
subsystems do not need to know the state of other systems,
only ν̄(t).

4. EXTENSIONS

The results presented so far can be used on more general
problem formulations than the one in Problem 1. Two such
cases are given in Problem 3 and Problem 4 below:

Problem 3. Let u∗
i be the control signal trajectory ob-

tained by running (1) with the optimal feedback gain in
Problem 2 and set p∗i = Pi(u

∗
i ). Given ai ∈ [0, 1), i =

1 . . . ,m, find a state feedback law u = −L̄x that maxi-
mizes

m
∑

i=1

Pi(ui) (8)

subject to
∑m

i=1 ui = 0 and

Pi(ui) ≥ αip
∗
i , i = 1, . . . ,m. (9)

The quantity quantity αi in (9) can be interpreted as a
pay-off required by system i in order to contribute to the
coordination effort.

Theorem 3. Suppose that there is a control law u = −Lx
such that Pi(ui) > αip

∗
i , i = 1, . . . ,m. Then, the optimal

control law and performance improvements in Problem 3
are given by (7) and (5), respectively, where the vector
β = [β1 · · ·βm] is the solution to the quadratic program:

minβTβ

subject to 1Tβ = 1 and

0 < βi ≤
√

p∗i
∑m

j=1 p
∗
j

(1− αi).

Proof. See the Appendix.

Problem 4. Let u∗
i be the control signal trajectory ob-

tained by running (1) with the optimal feedback gain in
Problem 2 and set p∗i = Pi(u

∗
i ). Find a state feedback law

u = −L̄x that maximizes

min
{Pi(u1)

p∗1
, . . . ,

Pm(um)

p∗m

}

(10)

subject to
∑m

i=1 ui = 0.

Table 1. Resulting β for the different cases in
Section 5.

βi 1 2 3 4 5 6

Case 1 1/6 1/6 1/6 1/6 1/6 1/6
Case 2 0.04 0.18 0.20 0.20 0.20 0.20
Case 3 0.06 0.08 0.12 0.17 0.24 0.33

Theorem 4. Suppose that p∗i > 0, i = 1, . . . ,m. Then,
the optimal control law and performance improvements in
Problem 4 are given by (7) and (5), respectively, where the
vector β ∈ R

m is given by

βi =

√

p∗i
∑√

p∗j
.

Moreover,

Pi(ui)

p∗i
=

Pj(uj)

p∗j
, ∀i, j = 1, . . . ,m.

Proof. See the Appendix.

5. NUMERICAL EXAMPLE

Consider m = 6 systems given by (1) with

A = 0.8, B = 1, Wi = (
√
2)i−1, i = 1, . . . , 6.

Each system i wishes to minimize Ji(ui) in (2). However,
together they must satisfy the constraint (3). Consider the
following cases:

Case 1 The systems agree on minimizing the aggregate
cost:

6
∑

i=1

Ji(ui).

Case 2: The systems agree on minimizing the aggregate
cost. However, system i = 2, . . . , 6 only agree to participate
in the coordination effort if they are guaranteed not to be
worse off than if they were not participating. System 1
requires a performance improvement of 0.9p∗1.

Case 3: The systems agree to distribute the relative

benefits of coordination, Pi(ūi)
p∗

i

, evenly.

The solution to Case 1 is given by Corollary 1, the solution
to Case 2 is given by Theorem 3 with α1 = 0.9, and
α2, . . . , α6 = 0, and the solution to Case 3 is given by
Theorem 4. For each case, the corresponding β is presented
in Table 1 and the relative performance improvements,
Pi(ūi)

p∗

i

, are shown in Figure 1. The results show that in

Case 1 systems 2–6 benefit at the expense of system 1. This
is not the situation in Case 2 due to the constraint (9).
In Case 3 all systems obtain a relative improvement
of 0.78. Note that the identical distribution in relative
improvement is a feature of Problem 4.

6. SUMMARY

We considered a stochastic linear quadratic problem for-
mulation, where a group of identical systems coordinate
their actions in order to reduce their costs. The need for
coordination is due to an equality constraint on the sum
of their inputs.
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Fig. 1. Relative performance, Pi(ui)/p
∗
i , for the different

systems. Case 1 (blue squares), Case 2 (red triangles)
and Case 3 (black circles).

In Theorem 1, we showed that when the objective of the
group is to minimize a weighted sum of the individual
system costs, the coordination problem (Problem 1) is
completely characterized by the unconstrained problems
for the individual systems (Problem 2). Both performance
and control trajectories under the optimal coordination
policy are decomposed into two terms. The first term is
the same as in the unconstrained problem and the second
term describes the effects of coordination. In Theorem 2
we showed that this is true also for the optimal control law.
The result is a coordination policy that is transparent and
scalable. Moreover, since the systems in the group have
identical dynamics, the optimal control law is obtained by
solving the unconstrained problem for a single system in
the group.

An insightful special case of Problem 1 is when the costs of
the individual systems are weighted equally (Corollary 1).
Then, satisfying the constraint will cost the group 1/m in
relative performance improvement, where m is the number
of systems in the group. This cost is distributed equally
among the systems.

Theorem 1 and Theorem 2 can also the used as a tool to
solve more general coordination problems with additional
constraints on performance. In Problem 3 we introduced
constraints on minimum performance bounds for the in-
dividual systems. By using Theorem 1 we were able to
restate the problem as quadratic program in standard
form1 (Theorem 3). In Problem 4, we look for a solution
that maximizes the minimum performance improvement
among the systems. In this case, we were able express the
solution in closed form (Theorem 4).

APPENDIX–PROOFS

We first introduce needed notation and state some lem-
mas that will be used in proving Theorem 1. Let v =
{v(t)}∞t=−∞ be a stationary zero-mean Gaussian white
noise process. Introduce the space of processes obtained by
running v through a stable and strictly causal LTI system:

X (v) =
{

x : x(t) =

∞
∑

τ=1

gτv(t− τ),

∞
∑

τ=1

|gτ |2 < ∞
}

.

Lemma 1. The space X (v) is a Hilbert space under the
scalar product 〈x, y〉 = ExT (t)y(t).

Proof. This follows from the fact that X (v) is isometric
to ℓ2(0,∞): the space of sequences {gk}∞0 that satisfy
∑∞

0 |gk|2 < ∞. To see this, let V denote the covariance
matrix of v and define T : X (v) → ℓ2(0,∞) as (Tx)k =

gk+1V
1

2 . Then T is a bijective isometry. 2

Let wi, i = 1, . . . ,m be independent stationary zero-mean

Gaussian white noise processes, and let w =
[

wT
1 . . . wT

m

]T

be the vector of stacked noise processes. Then

X (w) = X (w1)⊕X (w2)⊕ . . .⊕X (wm).

where the X (wi):s are mutually orthogonal subspaces of
X (w). This can also be stated as:

X (w) =
{

x : x =

m
∑

i=1

xi, xi ∈ X (wi)
}

and

〈x, y〉X (w) =

m
∑

i=1

〈xi, yi〉X (wi).

Lemma 2. Let ūi and u∗
i be the optimal control signal

trajectories obtained by running (1) with the optimal state
feedback laws in Problem 1 and Problem 2, respectively.
Then

Ji(u
∗
i ) = min

ui∈X (wi)
Ji(ui), i = 1, . . . ,m, (.1)

and
m
∑

1

Ji(ūi) = min
u∈T

m
∑

1

γiJi(ui), (.2)

where

T = {u ∈ X (w) :

m
∑

i=1

ui = 0}, (.3)

Proof. It is a well known fact that the solution to the min-
imization in (.1) results in a state feedback law (see Åström
and Wittenmark, 1997, Chapter 11). After eliminating the
constraint u ∈ T (e.g. by setting u1 = −∑m

j=2 uj) we note

that the same is true for the minimization in (.2). 2

Define yi ∈ X (wi), and N : X (w) → X (w) as

yi(t) =

∞
∑

τ=1

Aτ−1wi(t− τ)

(Nu)(t) =
∞
∑

τ=1

Aτ−1Bu(t− τ).

With these definitions (1) can be restated as

xi = yi +Nui, i = 1. . . . ,m. (.4)

The adjoint operator to N is denoted N∗ : X (w) → X (w).

Lemma 3. Let u∗
i be the optimal control signal trajectory

obtained by running (1) with the solution to Problem 2.
Then u∗

i and p∗i = Pi(u
∗
i ) can be expressed as

u∗
i = −Φ−1N∗yi and p∗i = 〈yi, NΦ−1N∗yi〉,

where Φ = I +N∗N .

Proof. By (.1) in Lemma 2:

u∗
i = argmin

ui∈X (wi)

Ji(ui)
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Using Lemma 1 and the notation in (.4) we have

Ji(ui) =‖yi +Nui‖2+‖ui‖2= ‖yi‖2+2〈ui, N
∗yi〉

+ 〈ui, (I +N∗N)ui〉 = ‖yi‖2

+ ‖Φ 1

2 (ui − Φ−1N∗yi)‖2−〈yi, NΦ−1N∗yi〉.

Proof of Theorem 1:

Since
∑m

i=1 βi = 1, we have
m
∑

i=1

ū∗
i =

m
∑

i=1

u∗
i −

m
∑

i=1

(βi

m
∑

j=1

u∗
j ) = (

m
∑

i=1

u∗
i )(1−

m
∑

j=1

βj) = 0,

and hence ū∗ ∈ T , where T is defined in (.3) and
denotes the space of feasible control signal trajectories
in Problem 1.

Using the notation in (.4), we introduce the operator
Θi : X (w) →

(

X (w),X (w)
)

and zi ∈ X (wi) as:

zi =
√
γi

[

yi
0

]

, Θiui =
√
γi

[

Nui

ui

]

.

Then by Lemma 2, Problem 1 can be stated as

min
u∈T

‖z +Θu‖2

where

z =







z1
...
zm






, Θu =







Θiu1

...
Θmum






.

Let u ∈ T . Then,

c = 〈z +Θū∗,Θu〉 =
m
∑

i=1

〈zi +Θiū
∗
i ,Θiui〉

=

m
∑

i=1

γi

(

〈yi +Nū∗
i , Nui〉+ 〈ū∗

i , ui〉
)

=

m
∑

i=1

γi〈N∗yi +Φū∗
i , ui〉

=

m
∑

i=1

γi〈N∗yi +Φu∗
i , ui〉 −

m
∑

i=1

γiβi〈
m
∑

j=1

Φu∗
j , ui〉.

Since N∗yi + Φu∗
i = 0 by Lemma 3 and γiβi = γjβj =

const, we have

c = const〈
m
∑

j=1

Φu∗
j ,

m
∑

i=1

ui〉 = const〈
m
∑

j=1

Φu∗
j , 0〉 = 0.

As u is arbitrary the first assertion follows from the
projection theorem. For the second assertion, first note
that for ui ∈ X (w), we have

Ji(ui) = ‖yi‖2+2〈ui, N
∗yi〉+ 〈ui,Φui〉,

which implies Pi(ui) = −2〈ui, N
∗yi〉 − 〈ui,Φui〉. Now,

P (ū∗
i ) = −2〈ū∗

i , N
∗yi〉 − 〈ū∗

i ,Φū
∗
i 〉

= −2(1− βi)〈u∗
i , N

∗yi〉+ 2βi〈
m
∑

j 6=1

u∗
j , N

∗yi〉

− (1− βi)
2〈u∗

i ,Φu
∗
i 〉 − 2(1− βi)βi〈u∗

i ,Φ
∑

j 6=i

u∗
j 〉

− β2
i 〈
∑

j 6=i

u∗
j ,
∑

j 6=i

Φu∗
j 〉.

By (.2) in Lemma 3 and since 〈yi, T yj〉 = 0 for any T on
X (wj) and i 6= j, we have

〈u∗
i ,Φu

∗
j 〉 = −〈u∗

i , N
∗yj〉 = 〈yi, NΦ−1N∗yj〉

=

{

0 if i 6= j
p∗i if i = j

Thus,

P (ū∗
i ) = −2(1− βi)〈u∗

i , N
∗yi〉 − (1− βi)

2〈u∗
i ,Φu

∗
i 〉

− β2
i

m
∑

j 6=i

〈u∗
j ,Φu

∗
j 〉 = (1− βi)(1 + βi)p

∗
i

− β2
i

∑

j 6=i

p∗j = p∗i − β2
i

m
∑

j=1

p∗j

Proof of Theorem 3

We claim that Problem 3 is equivalent to Problem 1 for
some γ ∈ Ω, where

Ω =
{

x ∈ R
m : xi > 0,

m
∑

i=1

xi = 1
}

. (.5)

To see this, we restate Problem 3 as

δ = max
u∈T

Pi(ui)≥αip
∗

i

m
∑

i=1

P (ui) (.6)

where T is defined in (.3). This problem is convex in u and
strictly feasible by assumption. Hence, according to the S-
procedure losslessness criterion for quadratic functionals
in Yakubovich (1992, Theorem 2) there exists τi ≥ 0, i =
1, . . . ,m such that

δ = max
u∈T

(

m
∑

i=1

Pi(ui) +
m
∑

i=1

τi

(

Pi(ui)− αip
∗
i

))

=

(

max
u∈T

m
∑

i=1

(1 + τi)P (ui)

)

−
m
∑

i=1

τiαip
∗
i

Therefore, the maximization in (.6) is equivalent to

max
u∈T

m
∑

i=1

γiP (ui) ⇐⇒ min
u∈T

m
∑

i=1

γiJ(ui) (.7)

for some γ ∈ Ω. The claim then follows from Lemma 2
which states that a solution to (.7) is of the form u = −Lx.
A solution to Problem 3 can thus be found by iteratively
solving Problem 1 for different γ ∈ Ω. However, by
Theorem 1 a solution to Problem 1 results in

m
∑

i=1

Pi(ui) =

m
∑

i=1



p∗i − β2
i

m
∑

j=1

p∗j





=

(

m
∑

i=1

p∗i

)(

1−
m
∑

i=1

β2
i

)

(.8)

for some β ∈ Ω. Since the map defined by (6) is a bijection
on Ω (the map is its own inverse), the iteration over γ can
be replaced by minimizing (.8) subject to β ∈ Ω, and

p∗i − β2
i

m
∑

j=1

p∗j ≥ αip
∗
i .

This is the quadratic program in Theorem 3.
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Proof of Theorem 4

We claim that Problem 4 is equivalent to Problem 1 for
some γ ∈ Ω, where Ω is defined in (.5). To see this, we
restate Problem 4 as:

δ = max
u∈T , α∈R

Pi(ui)≥αp∗

i

α (.9)

where T is defined in (.3). It follows from Theorem 1
that there is a ν ∈ T such that Pi(νi) > 0, ∀i. Indeed,
such a ν can be obtained by solving Problem 1 with
γi = (p∗i )

− 1

2 /
∑

j(p
∗
j )

− 1

2 . This gives

βi =

√
pi

∑m
j=1

√

p∗j
⇒ Pi(νi) =

(

1−
∑m

i=1 p
∗
i

(
∑m

i=1

√

p∗j )
2

)

p∗i > 0.

This implies that (u, α) = (ν, 0) is a strictly feasible point
for (.9). Hence by Yakubovich (1992, Theorem 2) we have

δ = min
τ�0

(

max
u∈T , α∈R

α+
m
∑

i=1

τi

(

P (ui)− αp∗i

))

= min
τ�0

(

max
u∈T ,α∈R

(

(

1−
m
∑

i=1

p∗i τi

)

α+
m
∑

i=1

τiPi(ui)

))

= min
τ�0

∑

p∗

i τi=1

(

max
u∈T

m
∑

i=1

τiPi(ui)

)

(.10)

Now we claim that the minimization in (.10) can be
restricted to a search over τ ≻ 0. If not, then without loss
of generality we can assume that the optimal τ has τ1 = 0.
Then the solution to the inner maximization is to make
P (ui) = p∗i , i = 2 . . . ,m by setting u1 = −∑m

i=2 u
∗
j , which

results in δ = 1. However, by Theorem 1 and Lemma 2,
setting τi =

1
mp∗

i

, i = 1, . . . ,m gives

P (ui) = p∗i

(

1− 1
∑m

j=1 p
∗
j

)

and thus

max
u∈T

m
∑

i=1

τiPi(ui) = 1− 1

m
∑m

1=1 p
∗
i

< 1,

which is a contradiction. Therefore, the maximization
in (.9) is equivalent to

max
u∈T

m
∑

i=1

τiP (ui) ⇐⇒ min
u∈T

m
∑

i=1

τiJ(ui) (.11)

for some τ ∈ Σ, where

Σ =
{

x ∈ R
m : xi > 0,

m
∑

i=1

p∗i xi = 1
}

.

The claim stated in the beginning of the proof follows from
Lemma 2 which states that a solution to (.11) is of the form
u = −Lx. A solution to Problem 3 can thus be found by
iteratively solving Problem 1 for different γ ∈ Σ. However,
by Theorem 1 a solution to Problem 1 results in

min
i

{Pi(ui)

p∗i

}

= min
i

{

1− β2
i

∑

p∗j
p∗i

}

(.12)

for some β ∈ Ω. Since (6) defines a bijection T : Σ → Ω
with

(T−1x)i =
x−1
i

∑m
j=1 p

∗
jx

−1
j

,

the iteration over γ can be replaced by the following linear
program:

max
α,β

α

subject to β ∈ Ω and

1− β2
i

ci
≥ α, i = 1, . . . ,m, (.13)

where ci =
p∗

i
∑

j
p∗

j

. We claim that the inequality in (.13)

can be replaced by an equality. To see this, suppose that
1− β2

i /ci > α and 1− β2
j /cj = α for some i, j. Since it is

always possible to slightly decrease βj by a corresponding
increase in βi we could increase α. This proves the claim
and the second assertion in Theorem 4. It also implies that
the optimal β must satisfy β ∈ Ω and

1− β2
i

ci
= α = 1−

β2
j

cj
, ⇒ βi =

√

p∗i
p∗j

βj , ∀i, j. (.14)

Hence,
m
∑

i=1

βi =

m
∑

i=1

√

p∗i
p∗i

β1 = 1 ⇒ β1 =

√

p∗1
∑m

j=1

√

p∗j
,

which proves the first assertion for i = 1. For i = 2, . . . ,m
set βj = β1 in (.14). 2
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