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Abstract: A classical mixed sensitivity minimization approach and a model matching for-
mulation are compared with the goal to design a linear parameter-varying augmented state
feedback control law for a laboratory-scale control moment gyroscope. Dynamic weighting filters
are used to impose integral action and roll-off on the controller. Consequently, measurement
noise is effectively suppressed and steady state accuracy is guaranteed even in the presence
of input disturbances. Both designs are validated in real-time experiments and compared to a
previous design that uses static weights. With the new designs, control effort is reduced while
transient performance is maintained and tracking accuracy, as well as disturbance attenuation,
is improved.
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1. INTRODUCTION

Control moment gyroscopes are inherently coupled nonlin-
ear plants and therefore difficult to control by standard lin-
ear design methods. They are used, e. g., in attitude control
of spacecraft and stability augmentation of ships. In this
paper, a laboratory-scale control moment gyroscope, the
ECP model 750 1 , is used as a testbed for linear parameter-
varying (LPV) gain scheduled controller design.

Recently, first successful experimental validation of an
LPV control strategy for the ECP 750 has been reported
in Abbas et al. (2013, 2014), demonstrating that the
plant can be stabilized in a wide operating range. Still,
some specifications with practical relevance, such as input
disturbance attenuation, were not considered and steady
state accuracy relied on a static prefilter.

To address these issues, an LPV state feedback controller
augmented with dynamic weighting filters is designed in
this paper. The dynamic weights allow to guarantee steady
state accuracy through integral control, which also results
in effective rejection of input disturbances. Further, a roll-
off is included in the controller to reduce sensitivity to
measurement noise. Two different design approaches are
pursued: a classical S/KS mixed sensitivity minimization
and a model matching formulation. The new designs are
experimentally validated and the results are compared to
the ones reported by Abbas et al. (2014).

The paper is structured as follows: Section 2 describes
the plant and the LPV model used in synthesis, detail-
ing the predominant dynamic effects. Section 3 briefly
reviews LPV synthesis machinery and the different design
approaches are discussed in Section 4. Section 5 presents
an experimental comparison of the different controllers and
draws conclusions.
1 See www.ecpsystems.com/controls ctrlgyro.htm for details.

2. PLANT DESCRIPTION

The control moment gyroscope is a flywheel suspended
in a gimbal mounting and is modeled with Neweul-M2

(Kurz et al. (2010)) as a four-degree-of-freedom multibody
system. The system is in chain structure, i. e., without
kinematic loops. Each body is linked to the previous body
by a rotational joint perpendicular to the last joint axis.
A kinematic model is depicted in Fig. 1.
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Fig. 1. Kinematics of the control moment gyroscope

The nonlinear equations of motion in minimal form are

M(q) q̈ + k(q, q̇) = f(q̇) +

[
I
0

] [
T1
T2

]
, (1)

where q = [q1 q2 q3 q4]T , M is the mass matrix, k the
vector of generalized nondissipative forces including gyro-
scopic terms, and f is the vector of generalized dissipative
forces. The inputs T1 and T2 represent torques applied by
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electric motors at axis 1 and 2, respectively. The controlled
outputs considered in this paper are the unactuated angles
y = [ q3 q4 ]T .

2.1 Linear Parameter-Varying Model

For synthesis purposes, a simplified model with state x =
[q3 q4 q̇2 q̇3 q̇4]T is used. It was introduced and validated
in Abbas et al. (2014) and is based on linearization about
a moving operating point ρ(t) = [q̇1(t) q2(t) q3(t)]T . Note
that this is not an equivalent formulation of the nonlinear
system (1), but rather represents a continuous family of
Jacobian linearizations.

The parametrization of a nonlinear system in terms of a
varying operating point is a classical approach for gain
scheduling control, see e. g. Rugh and Shamma (2000).
Formally, the operating point is defined by the time-
varying parameter vector ρ : R → P with a compact
set P ⊂ Rnρ of admissible parameter trajectories. A
parameter-dependent state space representation is then

ẋ = A(ρ(t)) x+B(ρ(t)) u (2a)

y = C(ρ(t)) x+D(ρ(t)) u (2b)

with the continuous matrix functions A : P → Rnx×nx ,
B : P → Rnx×nu , C : P → Rny×nx , D : P → Rny×nu and
the state x : R → Rnx , input u : R → Rnu and output
y : R→ Rny and with the scheduling signal ρ.

Since the operating point, and thus the parameter vector,
cannot change arbitrarily fast, rates of change ρ̇ : R → V
in the parameters are defined to lie within the polyhedron
V = {v ∈ Rnρ | |vi| ≤ νi , i = 1, . . . , nρ}. Further, as the
trajectories are not known a priori, the parameter space
P × V is represented by auxiliary variables p ∈ P and
v ∈ V. For brevity, the explicit dependence on time and
parameters is dropped from this point on.

2.2 Predominant Dynamic Variations

The distribution of control inputs to the controlled outputs
varies strongly and depends mainly on the angle q2. For
q2 = 0, the system is decoupled. Applying torque to axis 1
then produces a reactive torque resulting in a negative
motion around axis 3. Torque applied to axis 2, on the
other hand, results in precession and rotates the device
around axis 4. This however also changes q2, which in-
evitably introduces cross couplings. The effect is illustrated
in Fig. 2, where it is shown that the directions of the cross
couplings depend on the sign of q2. For q2 = ±90◦, the
allocation of inputs and outputs completely swaps. The
system is thus only diagonal dominant in the vicinity of
q2 = 0.

The angle q3 also strongly influences the dynamics. Fig. 3
depicts the input-output pole zero map from the second
input to q4 for q2 = 0 and different frozen values of q3.
It shows that for positive q3, there is non-minimum phase
behavior which becomes more dominant, i. e., slower, with
more inclination and for q3 = ±90◦ results in a zero at
the origin. For q3 = 0◦, the zero is located at infinity,
leading to a change in the relative degree of the system.
The dominant pole pair further approaches the origin
for q3 → ±90◦, indicating that the system bandwidth
decreases while damping increases.
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Fig. 2. Normalized impulse response gain for different
values of q2 ∈ [−90◦, 90◦]: T1 → q3 ( ) and
T1 → q4 ( ); T2 → q3 ( ) and T2 → q4 ( )
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Fig. 3. Input-output pole-zero map T2 → q4 for different
values of q3 ∈ [−90◦, 90◦]

The angular velocity q̇1 of the flywheel also changes
the location of the dominant pole pair: larger velocities
increase the resonant frequency, lower velocities decrease
it. Damping is only marginally affected by variations in q̇1.

3. LPV GAIN SCHEDULING

The controller synthesis procedure employed in this paper
was developed in Wu (1995); Wu et al. (1996). It specifies
performance in terms of the induced L2-norm of a gener-
alized plant.

A generalized LPV plant P is said to have an induced
L2-norm ‖P‖ if there exists a constant γ > 0 such that for
all z = P w, w ∈ L2, and (p, v) ∈ P × V

‖z‖2 ≤ γ‖w‖2 , ‖z‖2 =

√∫ ∞
0

zT (τ) z(τ) dτ . (3)

A guaranteed induced L2-norm and stability of a closed-
loop system can be achieved by state feedback control with
the following theorem.

Theorem 1. (Wu (1995)). Let a compact set P × V, a
performance specification γ > 0 and a generalized LPV
plant of the form ẋ

z1
z2

 =

 A B1 B2

C11 0 0
C12 0 I

  xw
u

 (4)
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be given. Further, let R : P → Rnx×nx be a continuously
differentiable symmetric matrix function such that for all
(p, v) ∈ P × V

R � 0 , (5a) Ψ RCT11 γ
−1B1

C11R −I 0
γ−1BT1 0 −I

 ≺ 0 , (5b)

with Ψ = R (A−B2 C12)
T

+ (A−B2 C12) R

−B2B
T
2 −

nρ∑
i=1

∂R

∂pi
vi .

The state feedback control law

u = −
(
BT2 R

−1 + C12

)
x (6)

renders the closed-loop system asymptotically stable with
an induced L2-norm less than γ.

Since the linear matrix inequality (LMI) constraints (5)
are infinite dimensional due to the functional dependence
on the scheduling parameter p, it is proposed in Wu
(1995) to grid the parameter space. The constraints are
then only enforced on a finite dimensional set {pk} ∈ P.
Consequently, sufficiency of the conditions in between grid
points is lost but due to continuity, the solution remains
valid for a sufficiently dense grid.

Further, the arbitrary dependence of the Lyapunov matrix
R on p needs to be restricted to arrive at a tractable
formulation. Selecting basis functions gi for the Lyapunov
matrix

R(p) =

nR∑
i=1

Ri gi(p) (7)

then leads to the semidefinite program

min
γ,{Ri}

nR
1

γ such that

LMI (5) holds ∀(p, v) ∈ {pk} × vert (V)
(8)

where vert(V) denotes the vertices of the polyhedron V.

4. MIXED SENSITIVITY DESIGN

Mixed sensitivity minimization is a very versatile tool for
control design, see e. g. Zhou et al. (1995); Skogestad and
Postlethwaite (2005). Its general two-block representation
is

min
K

∥∥∥∥[ W1 S
W2K S

]
W3

∥∥∥∥ , (9)

where S = (I +GK)
−1

is the sensitivity function, K
denotes the controller and G the plant model. The basic
idea of mixed sensitivity design is to minimize the induced
L2-norm of weighted closed-loop transfer functions by
stacking them together.

There is a variety of weighting schemes in use, each with
certain properties. It is however important to recognize
that all mixed sensitivity approaches rely on the same
principle: to shape the sensitivity function while achieving
closed-loop stability. Every weighting scheme is thus in
principle capable of achieving the same performance. This
is due to the fact that the only degree of freedom in
the minimization is the feedback controller K, on which
all closed-loop transfer functions depend. This fact is
sometimes mistaken in the mixed sensitivity approach and

is easier to recognize in an open loop shaping procedure,
cf. Skogestad and Postlethwaite (2005).

Remark: For LPV systems, the notion of a transfer func-
tion does not exist. Still a “frozen parameter” interpreta-
tion is useful, especially in conjunction with the gridding
approach that treats the LPV system as a family of LTI
systems.

4.1 S/KS Design

Arguably, the most common weighting scheme is the
S/KS scheme, i. e., W3 = I. It seeks to directly shape the
sensitivity function while limiting the control sensitivity.
This makes it a very transparent weighting scheme: the
sensitivity function is the primary indicator for perfor-
mance and the control sensitivity restricts control author-
ity and indicates robustness to unstructured additive (high
frequency) perturbations such as unmodeled actuator dy-
namics.

The weighting filters for the design in this paper are
selected to be diagonal, with W1 consisting of one inte-
grator per channel, whose crossover frequency determines
the closed-loop bandwidth. The filter W2 is also chosen
diagonal, but with first order high-pass characteristics to
enforce a roll-off in the controller. The S/KS scheme thus
results in 4 filter states. Magnitude plots of the filters are
given in Fig. 4.

4.2 Model Matching Design

Another frequently encountered approach is model match-
ing, where W3 = Tref is selected according to the desired
closed-loop transfer function. The idea of imposing the dy-
namic properties of an ideal reference system on a closed-
loop system has a long history in control engineering,
see e. g. Limebeer et al. (1993). It seemingly provides an
intuitive method to address transients, which is generally
difficult in frequency-domain-based controller synthesis.
With W3 = Tref, it follows from (9) that the minimization
objective becomes

min
K

∥∥∥∥[ W1 S Tref
W2K S Tref

]∥∥∥∥ = min
K

∥∥∥∥[W1 (T Tref − Tref)
W2 (K S Tref)

]∥∥∥∥, (10)

where T = I−S is the complementary sensitivity function.

It is important at this point to note that the design
inherently leads to a two-degree-of-freedom controller, i. e.,
while all closed-loop transfer functions maintain their in-
terpretation, reference following is not anymore governed
by the complementary sensitivity T alone. Instead, the
transfer function for reference tracking becomes T Tref.
The minimization (10) thus seeks to minimize the differ-
ence between this reference transmission and the desired
transfer function Tref.

The natural choice of weighting filters resulting from this
interpretation is to select Tref with low-pass characteristics
and unit steady state gain, W1 as an integral weight to
ensure model matching in steady state and a high-pass
filter W2 to limit control action due to changes in the
reference signal. A problem with this choice is that the
control sensitivity KS is also weighted with the low-pass
filter Tref, which contradicts classical design guidelines.
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Fig. 4. Weighting filters for S/KS scheme: W1 ( ) and
W2 ( )
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Fig. 5. Weighting filters for model matching scheme:
W1 ( ), W2 ( ) and W3 ( )

This may lead to undesirably large control action in
response to output disturbances and may significantly
reduce robustness. In exchange, tuning is very simple with
this scheme.

In accordance with the relative degree of the plant, a
second order system with critical damping is selected as
the reference model for each channel, i. e., Tref is diagonal.
A diagonal integral weight W1 with a crossover frequency
half a decade above the bandwidth of the reference model
is used to assure model matching in a sufficiently large
frequency range. Again, W2 is selected as a diagonal first
order high-pass filter. This eventually leads to a total
number of 8 filter states for the model matching design.
The corresponding magnitude plots are shown in Fig. 5.

5. EXPERIMENTAL RESULTS

In order to sufficiently cover the dynamic effects de-
scribed in Section 2.2, it is necessary to include both
negative and positive values for the angles q2 and q3 in
the grid. Mirroring a positive grid still produced a sta-
bilizing controller but with significant performance dete-
rioration. An equally spaced grid of 3 × 3 × 7 points is
thus used to cover the operating range q̇1 ∈ [30 rad

s , 60 rad
s ],

q2 ∈ [−25◦, 25◦], q3 ∈ [−75◦, 75◦]. The rate bounds are se-
lected as |q̈1| < 10 rad

s2 , |q̇2| < 2 rad
s and |q̇3| < 2 rad

s based
on experimental observations.

An affine parameter-dependent Lyapunov matrix is se-
lected for simplicity and the scheduling signals are nor-
malized with respect to their maximum values, i. e.,

R(p) = R0 +R1

q̇1 − 30 rad
s2

30 rad
s2

+R2
q2

25◦
+R3

q3
75◦

. (11)

It is verified by using a lower bound on the achievable
performance (see Saupe (2013)), that higher order basis
functions do not significantly improve the result.

W1

Tref

F

W2

y e

r

xT ref

r̃
−

xW2

u
x

xW1

Fig. 6. Augmented state feedback controller with dashed
lines indicating parts only applicable to the model
matching design; otherwise r = r̃.

SDPT3 (Toh et al. (1999)) is employed to solve the
minimization problem (8) with YALMIP (Löfberg (2004))
used as a parser. A suboptimal algorithm, developed in
Saupe (2013), is used to ensure that the Lyapunov matrix
R is well conditioned since it is inverted in the controller
reconstruction step (6).

The experimental setup allows direct measurement of
all angles q by means of encoders. In order to obtain
the angular velocities q̇, first order differentiation filters
D(s) = 60π s

s+60π are used. The controllers are implemented
in Simulink and deployed on a real time target. The gain
calculation

F (p) = −
(
BT2 (p) R−1(p) + C12

)
(12)

is performed online at a sampling rate of 1100 kHz with the
inversion of R efficiently carried out by LDLT factoriza-
tion, exploiting positive definiteness of R. The structure
of the augmented state feedback controllers is shown in
Fig. 6. The controllers inherit the dynamic order of the
weighting filters, i. e., 4 for the S/KS and 8 for the model
matching design.

Prior to each experiment, the flywheel is brought to its
initial velocity using a PI regulator. Authority is then
switched at t = 15 s to the LPV controller.

5.1 Trajectory Tracking

Both controllers were manually tuned until satisfactory
performance was achieved. For comparison, the responses
reported in Abbas et al. (2014) are used. Their LPV
state feedback design employs the S/KS scheme with
constant weights and uses an additional first order prefilter
with a bandwidth of 10 rad

s on the reference signal and a
second static prefilter to reduce the steady state error. It
is therefore also a two-degree-of-freedom design.

All three evaluated controllers achieve a similar level of
performance in terms of the speed-of-response (Fig. 7).
Both S/KS and model matching controller yield responses
that are almost identical. Compared to the design of Abbas
et al. (2014), cross couplings are significantly reduced and
almost nonexistent with the dynamic controllers. Tracking
accuracy is also clearly improved due to integral control.

It is also observed that the dynamic controllers deliver con-
sistent results regardless of the direction of the reference
steps. The controller by Abbas et al. (2014) is faster for
steps towards the origin, while it is slightly slower in the
opposite direction.
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Fig. 7. Tracking of gimbal inclination q3: reference ( ), controller by Abbas et al. (2014) ( ), S/KS ( ) and
model matching ( ) controller
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Fig. 8. Control input signal u saturated at ±10V: controller by Abbas et al. (2014) ( ), S/KS ( ) and model
matching ( ) controller
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Fig. 9. Scheduling signals q̇1 and q2 with S/KS ( ) and model matching ( ) controller

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6133



−40

−20

0

q 3
(◦

)

20 25 30 35 40
−20

−10

0

time (s)

q 4
(◦

)

Fig. 10. Input disturbance rejection: reference ( ), con-
troller by Abbas et al. (2014) ( ), S/KS ( ) and
model matching ( ) controller

A close examination further shows that the model match-
ing controller produces responses with higher order char-
acteristics, i. e., fast rise time with visible phase lag com-
pared to the S/KS controller. This is expected from the
additional prefiltering of the reference signal through Tref.

The corresponding input signals are shown in Fig. 8. Input
u1 is very similar for all three controllers, with the model
matching controller resulting in smaller peaks for changes
in q3 due to the prefiltered reference signal. Input u2 is also
very similar for S/KS and model matching controller but
differs greatly from the controller by Abbas et al. (2014)
that lacks a roll-off and thus amplifies measurement noise.

Fig. 9 shows the scheduling signal trajectories for S/KS
and model matching controller. They can be verified to re-
main within the predefined bounds. The great resemblance
of both trajectories further suggests good repeatability of
the experiment since not only the controlled outputs but
also the internal variables evolve similarly.

5.2 Input Disturbance Rejection

As a second experiment, an input disturbance is consid-
ered. A zero reference is provided and at t = 25 s, a
step disturbance of 10 V is applied to each of the two
input channels. The insufficiency of a static design for this
scenario becomes readily apparent from Fig 10: while the
static controller maintains a steady state offset of approxi-
mately 45◦ for q3 and 16◦ for q4, both dynamic controllers
completely reject the disturbance. The S/KS controller
results in a peak of 6◦ for both q3 and q4, and after 3 s, the
input disturbance is compensated. The model matching
controller achieves even slightly better results, with a peak
of 4◦ for q3, 6◦ for q4 and 2 s until complete compensa-
tion. This is a consequence of the selected two-degree-of-
freedom structure, in which the closed-loop bandwidth for
disturbance rejection is larger than for reference tracking.

5.3 Conclusions

The experiments demonstrate the advantages to be gained
by using augmented over static state feedback: the control
effort is reduced through the use of a dynamic weight W2

and steady state accuracy is guaranteed through integral
control via W1. This holds true even with input distur-
bances acting on the plant. Both, the S/KS and model
matching approach achieve almost identical performance,
where it should be recalled that the model matching
controller is a two-degree-of-freedom design with twice
as many dynamic states as the single-degree-of-freedom
S/KS controller.
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