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Abstract: This paper presents how common PID controllers have been generalized to fractional order 
PID controllers and how the additional tuning parameters can be used to meet more requirements. It is 
shown that the first generation CRONE control-system design methodology is able to provide robust 
fractional order PID for uncertain gain perturbed plants. 
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1. INTRODUCTION 

The first definitions of differentiation (or integration) with 
fractional or non-integer orders (Oldham 1974, Samko 1993, 
Miller 1993) were given by Leibniz and Euler at the end of 
the 17th and during the 18th century. In the 19th century 
many mathematicians generalized these definitions: Laplace, 
Lacroix, Fourier, Liouville, Abel, Hargreave, Riemann etc. In 
1869 Sonin extended the Cauchy integral to fractional 
integration orders and came up with the Riemann-Liouville 
definition which can be found using operational calculus. 
Let y(t) be the order n derivative of the causal signal x(t): 

 ( ) ( )( ) ( )txDtxty nn == , (1) 

with n ∈ C and where D is the differentiation operator. If the 
real part of n is negative, then y(t) is the order n integral of 
x(t). From (1), neglecting the initial conditions of x(t), the 
transfer function of the operator Dn is: 

 ( ) ( ){ }
( ){ }

nn stxL
tyLsD == , (2) 

where s is the Laplace variable. Many authors proposed 
applications of the fractional order operator and more 
precisely to automatic control. First ones are Tustin (1958), 
Manabe (1960, 1961) and Oustaloup (1981). Even Bode 
(1945) proposed to design controllers that behave as 
fractional order controllers. While the CRONE methodology 
(Oustaloup 1991a, 1995, 1999, Lanusse 1994) has been 
developed for the robustness purpose, many authors 
(Podlubny 1999a-b, Chen 2004, Petras 1999, Nataraj 2007, 
Monje 2010, etc.) proposed the design of fractional order PID 
controllers. This paper deals with this class of controller. It 
presents fractional order PID controllers and compares them 
with the first generation CRONE controller. 

2. GENERALISATION OF THE ACADEMIC PID 
CONTROLLER 

2.1 Parallel PIλDµ controller 

Within the common unity-feedback configuration (Fig. 1), 
the well-known academic PID controller is defined by: 

 ( ) sC
s

C
CsC D

I
P ++= , (3) 

 

Fig. 1. Unity-feedback configuration. 

Replacing s by fractional powers of s generalizes this 
academic PID controller. Thus, the parallel PID (3) becomes 
a PIλDµ defined by: 

 ( ) µ
λ sC

s

C
CsC D

I
P ++= , (4) 

With two more parameters λ and µ, this controller permits a 
more flexible design of the control-system. Some works 
(Monje 2004, Cervera 2006, Valerio 2012) dedicated to this 
class of controllers explain how to use this flexibility to solve 
control problems even if often, only the integral or derivative 
part is used and thus only a PIλ or PDµ is designed. As for the 
integer order PID controller, to avoid that the CS control 
sensitivity function tends towards infinity, the fractional 
order PID controller needs to be modified: 
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Depending on the value of γ, C(s) is biproper for γ = µ and 
strictly proper for γ > µ. Fig. 2 shows a Bode diagram of C(s) 
for γ = µ. The corner frequencies in Fig. 2 are defined by: 
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As five design parameters can be tuned, five (or more) 
different requirements can be taken into account. They can be 
chosen among: 
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• a given phase margin 
• a given gain margin 
• a given open-loop gain crossover frequency ωcg 
• a flat open-loop phase around ωcg (for plants with gain 

perturbation) 
• a given controller high-frequency gain 
• no steady-state error 
• given gains at given frequencies of the four closed loop 

sensitivity functions. 

 
Fig. 2. Frequency response of a biproper PIλDµ controller (γ = 
µ). 

2.2 Academic parallel PIλDµ controller drawbacks 

If the fractional PID controller (5) is used to solve a control 
problem, three major drawbacks can arise. 

1. Although it is interesting to use a fractional differentiation 
transfer function for a lead effect and to shape the open-
loop phase, the fractional integrator transfer function has 
a weak interest. Indeed, for an input disturbance of the 
form 1/sk, a fractional integrator of order k+λ (with k ∈ N 
and 0 < λ < 1) is no more efficient (even less) for steady-
state error cancellation than a simpler integer integrator of 
order k+1. 

2. It would require a really resource consuming discrete-
time implementation of the fractional order λ integrator to 
avoid its band-limitation at low-frequencies. Moreover, 
this mandatory band-limitation for the implementation 
leads to controller that behaves like an integer integrator. 

3. If γ differs from µ, it would also require a really resource 
consuming discrete-time approximation or an infinite 
order equivalent continuous-time model to implement the 
high-frequency behavior of the order µ derivative part. 

Let note that as their gains tend towards 0, even if the 
fractional order integrator and derivative operators are band-
limited for the controller implementation, respectively at high 
and low frequencies, it could be achieved without modifying 
the global controller behavior. To avoid the third drawback, it 
could be useful to choose γ such that γ - µ = N (N ∈ N) with 
N = 0 for a biproper controller or N > 0 for a strictly proper 
controller. The first and second drawbacks can be avoided by 

replacing the fractional order integrator by a fractionally 
band-limited integer order (Maamri 2010) that can be 
approximated with a low order rational transfer function. 
Thus, for 0 < λ < 1, the fractional PIλDµ becomes 
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where C’I equals ω’I
λ-1CI to ensure the same ωI corner 

frequency as in (6). Fig. 3 shows how the Bode diagram of 
this modified parallel fractional controller looks like. It is 
quite similar to the Bode diagram in fig. 2. 

 
Fig. 3. Frequency response of a strictly proper PIλDµ 
controller with N = 1 

3. SERIES FRACTIONAL ORDER PID CONTROLLER 

3.1 Definition 

An easy to tune series PID is often used rather than the 
parallel one defined by (1). It is defined by: 
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Each term being band-limited and ensuring one of the 
controller behaviors: proportional, integral, derivative and 
filtering. The integer power ND is used to permit both a large 
derivative action and the reduction of the high-frequency gain 
of the controller. The low-pass filter has been added to make 
the controller strictly proper and thus to ensure a decreasing 
gain of the control sensitivity function. 

In the same way, in order to simplify its design and 
implementation, without loss of performance, it is possible to 
choose a fractional order PID controller defined by: 
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with F21I ωωωω ≤≤≤  and N∈In , R∈µ , N∈Fn . Fig. 4 

presents a Bode diagram of this PIDµ(F) controller. One more 
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time, the Bode diagram in fig. 4 looks like the Bode diagram 
in fig. 2 and 3, thus permits to conclude that controllers (9), 
(7) and (5) will have a similar contribution in the important 
frequency range [ωI, ωF]. Concerning the controller tuning, 
the following algorithm can be used. 

• Let us consider the control diagram of Fig. 1 in which, at 
low frequencies (ω < ωI), the reference input signal 
spectrum is defined by Yref(s) ≈ yref0/s

M and the plant input 
disturbance spectrum is defined by Du(s) ≈ du0/s

N. If npl 
represents the integral order of the asymptotic behavior of 
the plant at low frequencies, order nI of the proportional 
integrator is defined by nI ≥ max (M - npl, N) to ensure no 
steady state error. 

• The low-pass filter order nF is simply nF ≥ 0, given that 
(with increasing frequency and for ω > ωF) nF = 0 ensures 
the constancy of the gain of the control sensitivity function 
CS(jω), and nF ≥ 1 ensures its decrease. 

• Choose the open loop gain crossover frequency ωcg to 
reach the bandwidth specification (the closed-loop cut-off 
frequency will be close to ωcg). 

• Set ωI = ωcg/αI with αI ∈ [1, 10] according to settling time 
specifications. 

• Set ωF = αF ωcg with αF ∈ [1, 10] according to noise 
immunity requirements. 

• Determine ω1, ω2 and µ to obtain the required phase 
margin MΦ and C0 to obtain the desired open-loop gain 
crossover frequency ωcg. 

 
Fig. 4. Frequency response of a series fractional order PID 
controller for: nI = 2, nF = 1 and µ = 0.75 

As four parameters (ω1, ω2, µ and C0) are used to define two 
requirements (ωcg and MΦ) only, up to two additional 
requirements can be taken into account. 

3.2 Design example of a fractional order controller 

Let a plant (a DC motor) be defined by: 

 ( ) ( )
( ) ( )( )fsJsT

K

sU

s
sG

++
=Ω=

me

u

1
 (10) 

with Ku = 2.34Nm/V, Te = 0.043s, Jm = 0.108kg.m2 and f = 
0.002Nm.s.rad-1. 

The PID requirements are: 

• ωcg = 100 rad/s 
• MΦ = 50° 
• a low-pass filtering with nF = 1 and ωF/ωcg = 5 
• an integration with nI = 1 and ωcg/ωI = 5. 

To make easier the tuning of the controller, we choose

21cg   ωωω = . For µ = 2, the design problem is that of the 

integer order PID defined by (8) and no more requirement 
can be taken into account. Thus, with ND = 2, the phase 
margin and open-loop gain crossover frequency are ensured 
by 742.1    cg21cg == ωωωω  and C0 = 6.858. The resulting 

PID controller is: 
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It provides a 15.2dB gain margin. 
Using the fractional order PID defined by (9) with

21cg   ωωω = , one more requirement can be taken into 

account. For instance, a 20dB gain margin can be achieved 
with µ = 0.815, 65.6    cg21cg == ωωωω and C0 = 4.338. 

The controller is: 

 ( )
5001

1
   

6651

04.151
   

20
1   338.4

0.815

ss

s

s
sC

+








+
+
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Fig. 5 shows how the fractional order controller can take the 
open-loop frequency response away from the critical point. 
Even if both controllers ensure the same open-loop gain 
crossover frequency and phase margin, Fig. 6 shows that this 
fractional order controller provides, on one hand, a lead phase 
over a greatest frequency range which could be useful in a 
robustness framework. But on the other hand, the fractional 
controller provides a lower gain at low frequencies and a 
greater gain at high frequencies which could respectively 
increase the magnitude of the SG input sensitivity function 
and of the CS control sensitivity function. 
In order to implement the fractional order controller, the 
Oustaloup’s approximation method (Oustaloup 2000a) is 
used to replace its order 0.815 part by a rational one. As there 
is less than two decade between ω2 and ω1, Fig. 6 shows that 
only three zero/pole pairs are needed to ensure a good 
approximation. Then, the controller defined by (9) can be 
implemented using: 
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Fig. 7 compares the magnitude of the four closed-loop 
sensitivity functions obtained with the integer order PID and 
with the fractional order one. They are very close even if 
lightly larger magnitudes of SG and CS can be detected for 
the fractional order controller. A lower rejection of input 
disturbance and a higher sensitivity of the control input is the 
price to pay for a wider phase lead. Fig. 8 confirms that even 
if the step responses to yref(t) are close, the rejection of the 
input disturbance is slower for this fractional order controller 
than for this integer one. 
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Fig. 5. Comparison of the Nichols plot of the open-loop 
frequency responses obtained with the integer order (dashed 
line) and fractional order (solid line) controllers. 

 
Fig. 6. Comparison of the Bode diagram of the integer order 
controller (dashed line) and of the fractional order controller 
before (solid line) and after (dotted line) its approximation. 

4. FIRST GENERATION CRONE CONTROL-SYSTEM 
DESIGN 

4.1 Introduction to the CRONE Control-System Design 
(CSD) methodology 

The CRONE (a french acronym which means fractional order 
robust control) CSD methodology is a frequency-domain 
approach developed since the eighties (Oustaloup 1983, 
1991a, 1995; Lanusse, 1994). It is based on the common 
unity-feedback configuration presented by Fig. 1. Three 
CRONE CSD methods have been developed, successively 
extending the application field. In these three methods the 
controller or open-loop transfer function is defined using 
fractional order integro-differentiation. In the frequency 
domain, they enable to design, simply and methodologically, 
LTI robust control-systems. Using frequency uncertainty 
domains, as in the Quantitative Feedback Theory (QFT) 
approach where they are called templates, the uncertainties 
(or perturbation) are taken into account in a fully-structured 
form without overestimation, thus leading to control-systems 
that are as less conservative and thus as high performance as 
possible. This is the major advantage over an H∞ approach. 

 
Fig. 7. Closed loop sensitivity functions for the integer order 
(dashed line) and fractional order (solid line) controllers. 

 
Fig. 8. Closed-loop step response for the integer order 
(dashed line) and fractional order (solid line) controllers. 

The fractional order, which is either real or complex 
depending on the generation of the control design, permits 
parameterization of the open-loop transfer function with a 
small number of high-level parameters. The optimization of 
the control is thus reduced to only the search for the optimal 
values of these parameters. Unlike QFT, CRONE CSD 
avoids iterative nonlinear optimization of each low-level 
parameter of the controller's rational transfer function.  
 
4.2 Definition of the first generation CRONE methodology 
 

The variations of the phase margin MΦ come both from the 
parametric variations of the plant (which leads to an uncertain 
frequency response) and from the controller phase variations 
over the frequency range where the frequency ωcg varies. The 
first generation CRONE control proposes to use a controller 
without phase variation around frequency ωcg. This strategy 
has to be used when frequency ωcg is within a frequency 
range where the plant phase is constant. In this range where 
the plant frequency response is asymptotic (this frequency 
band is called a plant asymptotic-behavior band) the plant 
perturbation is only gain like. 
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The CRONE controller is defined within a frequency range 
[ωA, ωB] around the desired frequency ωcg from the fractional 
transfer function of an order n integro-differentiator: 

 ( ) nsCsC 0F =   with n and C0 ∈ R.  (14) 

The constant phase nπ/2 characterizes this controller around 
frequency ωcg. When the plant gain or plant corner 
frequencies which are greatly different from frequency ωcg 
vary, the constant phase controller CF does not therefore 
modify the phase margin (Fig. 9). Thus, the frequency range 
[ωA, ωB] must equal the range where frequency ωcg varies. 
If the plant asymptotic behavior is an order p behavior, the 
phase margin MΦ is: 

 ( )
2

π
2++=Φ pnM .  (15) 

In order to make the controller biproper, the fractional order 
derivative of (14) has to be replaced by a band-limited 
derivative using corner frequencies ωl and ωh: 
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with ωl <ωA and ωh >ωB. 

 
Fig. 9. Robustness of the phase margin MΦ provided by a first 
generation CRONE controller 

Then, to manage the steady state error and the control 
sensitivity level, CF has to be complexified to include an 
order nI band-limited integrator and an order nF low-pass 
filter: 
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This first generation CRONE controller is obviously very 
close to the fractional order PID controller defined by (9) and 
nI and nF are defined by the same way. The main difference is 
that ωI, ωl, ωh and ωF have to be such that a constant phase is 
achieved on a frequency range [ωA, ωB] which covers the 
frequency range where ωcg could vary. Then, the fractional 

order n and gain C0 have to ensure the required nominal 
phase margin MΦ and open-loop gain crossover frequency ωcg 
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Finally, the first generation CRONE controller can be 
implemented using a rational transfer function obtained by 
using the Oustaloup’s approximation: 
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where 

i1ii1il1l1  and'',',' αηωωαηωωαωωωηω ==== ++ ,(21) 

with ( ) Nn
lh ωωα =     and   ( )( ) Nn−= 1

lh ωωη . (22) 

4.3 Design example of a first generation CRONE controller 
 
Let a perturbed plant G be defined by: 

 ( ) ( )ss

k
sG

τ+
=

1
 with k = 10 and 1000/3 ≤ τ ≤ 3*1000. (23) 

The requirements are an open-loop gain crossover frequency 
ωcg about 5 rad/s, a phase margin MΦ of 50°, an integrator 
and a low-pass effect in the controller. 
Around 5 rad/s, the plant phase is constant whereas its 
magnitude is uncertain. As it leads to the mean magnitude 
value, the time constant τ = τnom = 1000s is chosen to defined 
the nominal plant Gnom. At ω = 5rad/s, the uncertainty of the 
plant frequency response is 19.1dB for the magnitude and 
0.03° for the phase. Taken into account the required phase 
margin (and thus the desired rate of decrease of the open-loop 
magnitude), the open-loop gain crossover frequency could 
varies from about 2.3 to 11 rad/s (explained later). Within 
this frequency range, the nominal plant phase varies of 0.06° 
at least. Thus the 1st generation CRONE CSD method could 
be used to obtain a robust controller. 
From (15) it comes that: 

 44.12
90

50 −=−=+ pn . (24) 

From the rate of decrease of the open-loop magnitude gain 
and from the plant magnitude uncertainty, in order to ensure 
the robustness of the phase margin, the frequency range [ωA, 
ωB] needs to cover 0.66 decade: 

( ) 62.410    then66.0
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As the nominal plant leads to the mean magnitude of the 
open-loop frequency response around 5rad/s:

rad/s 2.33  62.4/nom cgA == ωω , rad/s 10.7  62.4nom cgB ==ωω . 

In order to achieve a constant phase, the corner frequencies 
ωl and ωh are set to rad/s 0.233  10/Al == ωω  and 

rad/s 107  10 Bh == ωω . As nI and nF are set to 1, in order not 

to reduce the constant phase, the corner frequencies ωI and 
ωF are set to rad/s 0.125  40/nom cgI == ωω and 

rad/s 200  40 nom cgF == ωω . As |G(j5)| = 4.10-4 and argG(j5) = -

180°, using (18) and (19), the nominal phase margin and 
open-loop gain crossover frequency are ensured with 

624.0=n  and 3680 =C . Thus the fractional order CRONE 

controller is: 
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Even if τ is perturbed, the open-loop frequency response 
shows that the phase and gain margins could be no less than 
48° and 30dB. As predicted, the gain crossover frequency 
varies from 2.26 to 11.1 rad/s. Furthermore the Nichols chart 
magnitude contours indicate that the resonance peak of T (the 
complementary sensitivity function) does not vary a lot (Fig. 
10.a). Its greatest value never exceeds 2.87dB. The open-loop 
Nyquist diagram (Fig. 10.b) shows that the CRONE 
controller maintains constant the phase margin. 

 
Fig. 10. Open-loop frequency responses for the 3 values of τ: 

τ = τnom/3 (---), τ = τnom (__) and τ = τnom*3(_ _). 

The phase margin and resonance peak of T could be 
absolutely constant if the band-limitation achieved by ωl and 
ωh would have been lightened. Nevertheless, it could have 
led to greatest values of the magnitude of the CS and SG 
sensitivity functions. Our choice permits a well management 
of the performance/robustness trade-off. 

As the frequency range [ωl, ωh] covers 3 decades, N = 4 is 
enough to well approximate the fractional order part that 
appears in (17). The recursive ratios are defined by 61.2=α
and 78.1=η .  

Finally, the first generation CRONE controller to be 
implemented is: 

( )
200

1

1
  

6.80
1

9.30
1

  

4.17
1

67.6
1

  

75.3
1

44.1
1

  

808.0
1

310.0
1
 

125.0
1 368R ss

s

s

s

s

s

s

s

s
sC

++

+

+

+

+

+

+

+







 +=

  (27) 

To reduce the numerical problems, such a controller can be 
implemented using a parallel form obtained from a partial-
fraction expansion. Fig 11 presents the step responses of the 
closed loop system. 

 
Fig. 11. Closed-loop step responses with the CRONE 

controller for the 3 values of τ: τ = τnom/3 (---), τ = τnom (__) 

and τ = τnom*3(_ _) 

It shows that: 

• for long time, the tracking of yref and the rejection of du are 
efficient; 

• at the opposite of a PID controller (defined by (8) and 
which ensures the same nominal ωcg), the CRONE 
controller provides a percentage overshoot for the 
response of y to yref that remains almost constant and a 
greatest settling time (2.5s) 4 times lower; 

• the response of u to yref quickly reaches 10000, 2 times the 
level obtained with the PID controller; 

• the response of y to du remains well damped when τ is not 
nominal even if it requires 30s to reject the disturbance (8s 
for the PID). 

To sum up, this CRONE controller is robust even if it 
requires a greater control level and more time to reject an 
input disturbance. It illustrates perfectly the 
robustness/performance trade-off. 
 

5. CONCLUSION 

Using the frequency-domain approach, this paper focuses on 
the design of PID, fractional order PID and then on first 
generation CRONE controller. Fractional order controllers 
provide more tuning parameters that are used for the 
robustness purpose by the CRONE methodology. First 
generation CRONE controllers can be used for plants with 
magnitude uncertainty and constant phase. When the plant 
phase varies with respect to the frequency, the second 
CRONE generation design can be used. It proposes a 

(a) 

(b) 
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required nominal open-loop transfer function defined from 
that of a fractional order integrator. Complex fractional 
orders have been used to develop the CRONE approach 
(Oustaloup 1991b, 1995, Lanusse 1994) and other approaches 
(Banos 2011). The third CRONE generation design has been 
developed for plants with both gain and phase uncertainties. 
Today, the CRONE CSD methodology permits to tackle non-
minimum phase, time delay, unstable or undamped plants 
(Lanusse 1994, 2008, Oustaloup 1995) and linear time 
varying plants (Sabatier 2002). It has been extended for the 
control of MIMO plants (Lanusse 2000, Nelson-Gruel 2009). 
The CRONE toolbox for Matlab-Simulink that is being 
developed (Oustaloup 2000b, Lanusse 2013) is freely 
available for the international scientific community for 
research and pedagogical purposes and can be downloaded at 
http://cronetoolbox.ims-bordeaux.fr. 
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