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Abstract: This paper deals with an event-based PI control strategy for event occurrences
reduction. The methodology is based on the send-on-delta technique where the measured value
of the error signal is sent to the controller when it crosses predefined quantization levels. We
propose to increase exponentially the distance between the thresholds in such a way that the
number of events decreases by keeping a satisfactory transient performance and by fixing the
maximum steady-state error independently. Simulation results show the effectiveness of the
methodology and clarify the physical meaning of the design parameters of the controller.
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1. INTRODUCTION

Event-based control has been the subject of a lot of
research effort in the last few years (see, for example,
(Åström, 2008; Heemels et al., 2008; Heemels and Donkers,
2013)) because it allows the reduction of the information
exchanged between the agents that take part in the control
loop (sensors, controllers, actuators). Actually, this is a
key issue when there are constraints on the communication
rate, for instance when data are exchanged in a distributed
control system by wired or wireless networks (Otanez
et al., 2002; Miskowicz, 2006; Pawlowskyy et al., 2008;
Chacón et al., 2013). In these situations, cutting down
the traffic load reduces the possibility of lost data and
stochastic time delays. Further, the occurrence of large
latencies and delay jitter is decresed and the CPU utiliza-
tion is also reduced. Most of all, when wireless sensors and
actuators are employed in process control, reducing the
communication rate implies the reduction of the power
consumption, which yields an increment of the battery life
(Blevins, 2012).

Among the different event-based sampling strategies, one
of the most employed is the so called send-on-delta (SOD)
sampling (also known as deadband sampling or level cross-
ing sampling (Kofman and Braslavsky, 2006)) where the
measured value of the process variable is sent to the
controller when the control error (or some function of
it) crosses predefined quantization levels (Sánchez et al.,
2009). This approach has been also employed in the
context of (event-based) Proportional-Integral-Derivative
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(PID) controllers (Sanchez et al., 2011, 2012). In partic-
ular, in (Tiberi et al., 2012), the stability of a first order
system without delay is addressed.

A modification of the SOD technique, called symmetric
send-on-delta (SSOD) sampling has then been proposed
in (Beschi et al., 2012, 2014), where the sampled signal
is quantized by a quantity multiple of ∆ so that the
relationship between the input and the output of the event-
generator block is symmetric with respect to the origin and
a zero-error threshold surely exists. In this way, the value
of the sampled signal has the important property of being
independent of the initial conditions and an equilibrium
point value can exist (Beschi et al., 2011). Associated with
a PI controller, sufficient conditions on system stability
and necessary and sufficient conditions on the controller
parameters for the existence of equilibrium points without
limit cycles have been found for first-order-plus-dead-time
(FOPDT) processes.

In any case, a drawback of these techniques is that the
reduction of communications is generally obtained at the
expense of a decrement of performance. In particular, a
steady-state error occurs and there is a trade-off (given by
the value of ∆) between the steady-state precision and the
number of events (see (Beschi et al., 2014)). Indeed, if a
steady-state maximum error is required, the value of ∆ has
to be fixed at that level and therefore it is not possible to
decrease the number of events, especially in the transient
response. For this reason, in this paper we propose to
modify the event-triggering algorithm where the distance
between the thresholds increases exponentially, using an
approach similar to the ones presented in (De Persis and
Mazenc, 2010; Hayakawa et al., 2009; Liu and Elia, 2004).
In this way, a new design parameter, different from ∆, is
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introduced to decrease significantly the number of events
while keeping a similar performance. As this parameter
(which is the argument of the exponential term) has a clear
physical meaning, which will be discussed in the paper by
means of an illustrative example, it represents a nice design
feature for the user. The presented control algorithm has
to be applied when the sensor unit is located in a different
entity with respect to the controller and the actuator.

2. CONTROL SCHEME

The architecture of an event-based controller can be di-
vided into three main parts: the sensor unit, which samples
the process variable, calculates the error and conveys its
value to the control unit, which elaborates the new value
of the control action. Finally, the new value of the control
action is conveyed from the control unit to the actuator
unit, which changes appropriately the process input.

In an event-based control strategy these three tasks can
run separately, and in some cases the three parts can be
implemented by hardware located in different places of the
plant. In order to reduce the communications between the
different units, in the event-based controllers the signal
values are not sent at constant intervals (note that this
operation requires time synchronization of the hardware)
but only when the signal changes significantly with respect
to the last sent value and without the necessity of synchro-
nization.

It is important to note that the different units can also
be implemented in the same hardware, and clearly in this
case the communications between these parts can be done
at each interval. In this work, we consider the control
and the actuator units located in the same place. For
this reason, there are only two signals which require an
event-triggered communication: the set-point signal and
the error signal. The first one is sent when the operator or a
higher hierarchical level changes its value. The error signal
is sent by an event-based sampling block, called send-
on-exponential-thresholds (for short, SOET) sampling. It
receives as input the error signal e(t), and it sends as
output signal a signal e∗(t), which represents the event-
based sampled error in the presented case.

The event-based sampling block can be described as an
automaton, made by an infinite number of states and an
internal state variable i(t) ∈ Z, which identifies the active
automaton state.

For each automaton state i(t), the output of the block is
set equal to Si (which could be multiplied by a scaling
factor β ∈ R) and two triggering thresholds (respectively
Si and Si) are defined. When the input signal e(t) crosses
the Si threshold i is decremented of a unit, while when e(t)
reaches the value Si the state variable i(t) is increases of a
unit. In order to avoid the Zeno effect, the presented event-
based sampling presents hysteresis, that is Si = Si+1 =

Si−1.

As already mentioned, the distance between two adjacent
thresholds exponentially increases with the distance of
the origin in order to reduce the number of events. In
particular, the thresholds are defined as:
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Fig. 1. SOET-PI control system scheme.
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Fig. 2. Relationship between the input e(t) and output
e∗(t) of the SOET block.

Si =

{

sgn(i(t))
∑|i(t)|−1

k=0 a|k|∆ if i(t) 6= 0

0 if i(t) = 0
(1)

where ∆ > 0 is the amplitude of the thresholds located
around the null one and a ≥ 1 is the exponential increasing
factor between two thresholds. The initial condition i(0)
is arbitrarily chosen equal to the threshold closest to the
initial value of e(t) in order to well-define the system.

The dynamical evolution of the automaton is described as
the following discrete system:

i(t+) =







i(t)− 1 if e(t) < Si−1

i(t) if e(t) ∈ [Si−1, Si+1]

i(t) + 1 if e(t) > Si+1

e∗(t) = βS(i(t))

(2)

Figure 2 shows the graphical representation of the thresh-
olds.

Remark 1. The parameter β can be seen as a cascaded
gain which can be included in the controller term. Thus,
without loss of generality, we assume β = 1.

Remark 2. In order to highlight the role of parameter a
in the methodology, it can be stated that the minimum
number of events which are necessary to perform a step
reference transition with amplitude A when there is no
overshoot can be calculated by finding the last i which
satisfies the relation:

|i|−1
∑

k=0

a|k|∆ =
a|i| − 1

a− 1
∆ ≤ A

or equally:

i =

⌊

loga

(

1 + (a− 1)
A

∆

)⌋

when a 6= 1 and
⌊

A
∆

⌋

when a = 1 (namely, the SSOD
sampling case). For this reason, the parameter a allows
the designer to reduce the number of events necessary
to perform a step. Obviously, it is necessary to take into
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account that the presence of overshoot can increase the
required number of events.

Remark 3. The SSOD sampling (Beschi et al., 2012) can
be considered as a particular case of the SOET sampling
when a = 1.

Similarly to the SSOD-PI controller (Beschi et al., 2012),
in the control and actuator unit, the control task is
implemented by using a standard (discretized version of)
continuous-time PI controller, namely:

C(s) = Kp +
Ki

s
(3)

where Kp ≥ 0 is the proportional gain and Ki ≥ 0 is the
integral gain.

Remark 4. Because the integral action of the PI control
is updated each control step there are not equilibrium
points outside the error band ±∆, therefore the sticking
phenomenon is avoided.

The considered process is a (stable) first-order-plus-dead-
time (FOPDT) system, which is well-known to model
adequately a vast majority of industrial processes and can
be described by the following transfer function:

P (s) =
K

τs+ 1
e−Ls (4)

where K is the process gain (which is assumed to be
positive without loss of generality), τ > 0 is the time
constant and L ≥ 0 is the apparent dead time. Then, we
can write

Y (s) =
K

τs+ 1
e−Ls

(

U(s) +
D

s

)

(5)

where Y (s) is the Laplace transform of the process output
y(t), U(s) is the Laplace transform of the control action
u(t), andD is the amplitude of a constant load disturbance
d.

3. STABILITY AND LIMIT CYCLES

In this section, the stability and limit cycles properties of
the proposed scheme are analyzed. It is important to note
that the event-based systems, as all the nonlinear systems,
can be unstable, reach an equilibrium point, or admit a
limit cycle. The knowledge of system properties are clearly
a powerful tool to adequately tuning the controller.

The SOET-PI controlled system (namely, the feedback
loop made by the series between the SOET block (which
is applied to the error signal e(t)), the controller and the
process, as shown in Figure 1 can be described by the
following hybrid dynamic equation (Goebel et al., 2009)



























































e(t) = r − y(t)

i(t+) =







i(t) if e(t) ∈ [Si−1, Si+1]

i(t) + 1 if e(t) > Si+1

i(t)− 1 if e(t) < Si−1

e∗(t) = βS(i(t))

u(t) = Kpv
∗(t) +Ki

(

IE(0) +

∫ t

0

e∗(ξ)dξ

)

ẏ(t) =
K

τ
u(t− L)− 1

τ
y(t)

(6)

System (6) can be unstable, can admit limit cycles or can
converge to an equilibrium point. Note that, because (2)
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Fig. 3. Equivalent linear scheme.

is symmetrical, it is possible to limit the study only to
symmetrical limit cycles.

The stability properties of this system can be studied
more easily by considering the equivalent scheme, shown
in Figure 3, described by (7), where the SOET block
is substituted by an additive disturbance q(t) equal to
q(t) = e∗(t)− e(t):































e(t) = r − y(t)

w∗(t) = e(t) + q(t)

u(t) = Kpe
∗(t) +Ki

(

IE(0) +

∫ t

0

e∗(ξ)dξ

)

ẏ(t) =
K

τ
u(t− L)− 1

τ
y(t)

(7)

The key-points of the following propositions are based on
the following consideration: for each possible evolution of
system (6) starting with arbitrary initial conditions and
load disturbance, it is possible to obtain the same output
considering the system (7) with the same initial conditions
of C and P and the signal q(t) equal to the difference
e∗(t)−e(t). Thus, if system (7) is stable and q(t) is bounded
also the system (6) is bounded.

Remark 5. Note that the amplitude of the signal q(t)
is less than ai(t)∆ when the SOET system is at the state
i(t). This consideration plays a key role in determining the
following proposition, which states a sufficient condition on
the absence of limit cycles which involves the automaton
states {−N,−N +1, . . . , 0, . . . , N − 1, N}, also denoted as
2N + 1 limit cycles.

Proposition 1. The system (6) does not admit 2N+1 limit
cycles, if

m ≤ aN − 1

(a− 1)aN
, where m =

∫ ∞

0

|h(t)|dt

where h(t) is the response of the system (7) when q(t) is
an impulse signal.

Proof. By contradiction, suppose that a 2N+1 limit cycle
exists. Thus, the disturbance q(t) is bounded by aN∆ (see
Remark 4). By using the convolution integral, it is possible
to state:

|y(t)| =
∣

∣

∣

∣

∫ ∞

−∞

h(ξ)q(t− ξ)dξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0

h(ξ)q(t − ξ)dξ

∣

∣

∣

∣

< aN∆

∫ ∞

0

|h(ξ)|dξ = maN∆.

In order for the 2N+1 limit cycle to exist y(t) has to cross
the SN threshold, namely it has to satisfy the following
condition:

|y(t)| > SN ,

therefore if maN∆ ≤ S(N) then a 2N + 1 limit cycle
cannot exist. This condition can be rewritten as:
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m ≤ aN − 1

(a− 1)aN
. (8)

Note that, if the inequality is satisfied for a certain N , it
is satisfied also for N + 1 (for all a ≥ 1). ✷

Proposition 2. If the equivalent system (7) is asymptoti-
cally stable (then m < ∞) then system (6) is stable.

Proof. In fact, for any generic initial condition it is not
possible for the output to diverge to infinity because the
system satisfy (8) for any N sufficiently great. ✷

The Proposition 2 provide sufficient condition on the
system stability (and therefore necessary condition on the
instability).

If Proposition 1 holds for N = 2, then it is possible to
limit the study to the three-state limit cycles, which are
equal to the SSOD-case limit cycles analysed in (Beschi
et al., 2012), where two propositions to avoid limit cycles
are presented and proven. They are reviewed hereafter for
the readers convenience. Proposition 3 gives the portion
of PI parameters plane (namely, the plane Kp–Ki) where
there are no limit cycles when a PI controller is applied,
while Proposition 4 gives the set of proportional gains of
a P controller which avoids the presence of limit cycles.
In order to simplify the propositions, the normalized gains
K1 = KKp and K2 = KKiτ and the normalized time
delay l = L/τ are used instead of the unnormalized ones.

Proposition 3. In a system described by (6), with K1 ≥ 0
and K2 > 0, three states limit cycles cannot occur if the
normalized gains K1 and K2 are inside the region of the
first quadrant delimited by the following parametric curve:

K1(t̃1) =






t̃1−2 l+2 el−el+t̃1 (2 l−t̃1+2)+4 el sinh(l)

2 l el−2 l el+t̃1+2 t̃1 el sinh(l)
if l ≤ t̃1 < 2l

2
t̃1

− 2 l−t̃1

t̃1 (el−t̃1−1)
if 2l ≤ t̃1 ≤ t̄1

K2(t̃1) =

{

2−2 e2 l+2 el+t̃1−2 el

t̃1−t̃1 e2 l+2 l el+t̃1−2 l el
if l ≤ t̃1 < 2l

2
t̃1

if 2l ≤ t̃1 ≤ t̄1
(9)

where t̃1 ∈ [l, t̄1] with K1(t̄1) = 0 is the time interval when
the state 1 (and the state -1, for symmetry) is assumed.

Proposition 4. In a system described by (6) with Ki = 0,

if K1 <
(

1− e−l
)−1

then three states limit cycles cannot
occur.

In order to verify the applicability of the presented results
to the standard PI tuning procedure, the relationship
between m and the normalized time delay l (which ranges
from 0.1 to 3), when the ST tuning rules (Beschi et al.,
2014), the AMIGO rules (Åström and Hägglund, 2002)
and the SIMC rules (Skogestad, 2003) are calculated, as
shown in Figure 4. It is possible to note that m ≤ 1.8 for
any l ∈ [0.1, 3], therefore Proposition 1 holds with N ≥ 2
if a ≤ (1 +

√
1 + 4m)(2m)−1 = 1.4371.

It is also possible to note that all the considered tuning
rules satisfy Propositions 1 and 3, therefore we can exclude
the presence of limit cycles. In Section 4, an example
shows the reduction of the number of the events during the
transient due to the presence of the exponential thresholds.

0.1 0.825 1.55 2.275 3
0.95

1

1.05

1.1

1.15

1.2

Normalized delay l

m
=

∫
∞ 0

|h
(t

)|
d
t

Fig. 4. Relationship between the integral of the absolute
value of the impulse response m and the normalized
gain l using the ST tuning rule (dashed line), the
SIMC tuning rule (solid line) and the AMIGO tuning
rule (dash-dot line).
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K
2

No Limit Cycles Zone

Limit Cycles

Instability

Fig. 5. Plane K1 − K2 with the sufficient condition on
stability (dashed line), and condition on absence of
limit cycles (solid line). ♦ AMIGO tuning rule, ◦ ST
tuning rule, ⋆ SIMC tuning rule

Table 1. Values of the parameters Kp and Ki

obtained using ST, SIMC, and AMIGO rules.

Kp Ki

ST 0.3770 0.0615

SIMC 0.3750 0.0625

AMIGO 0.1575 0.0277

4. SIMULATION RESULTS

In this section, simulation results are provided. In partic-
ular, a FOPDT system with K = 2, τ = 6, and L = 4
is considered. The controller is tuned with the ST, SIMC,
and AMIGO tuning rules. The obtained sets of parameters
satisfy Proposition 3, as shown in Figure 5 where the
no limit cycle area and the instability area, calculated
with Proposition 2 and Proposition 3, are plotted. The
numerical values of the parameters Kp and Ki for each
tuning rule are shown in Table 1.

We consider four values for ∆, equal to 0.1, 0.01, 0.001,
and 0, and five values for the parameter a, equal to 1,
1.01, 1.1, 1.2, and 2. Note that the first values of a satisfy
Proposition 1, as written in Section 3 (see Figure 4), while
using a = 2 limit cycles can arise (Proposition 1 is only
sufficient condition on the absence of limit cycles).

Remark 6. The notation ∆ = 0 corresponds to the
standard PI controller (therefore no event-based triggering
is used), while the case with a = 1 corresponds to the
SSOD-PI controller.
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The controlled system has to follow a unit step set-point
change applied at the time instant t = 0, while a unit step
load disturbance is applied at the time instant t = 100.

It is possible to note that it is sufficient to use a value
of a close to 1 to obtain a strong reduction of events
without excessively deteriorating the other performance,
especially when the value of ∆ is small if compared with
the set-point variation. On the contrary, a large value of
the a parameter can affect the behaviour of the system
during the transient, as can be seen in the illustrative
examples of Figure 6 (which refers to the ST tuning rule)
and 7 (which refers to the SIMC tuning rule), where a
remarkable increment of the overshoot causes an increment
of the number of events and of the steady-state times
(for both the set-point and load disturbance responses),
while when the paramenter a is set equal to 1.1 there are
no appreciable differences with respect to the standard
PI controller and the SSOD-PI controller (note that the
different lines are hardly distinguishable). Figure 8 shows
the response related to the AMIGO tuning rules. It is
possible to see that, in this case, the increment of the
overshoot is limited because this rule provides a smooth
control. Thus, the number of events when a = 2 is strongly
reduced.

5. CONCLUSIONS

In this paper we have proposed a new event-based PI
controller based on send-on-delta sampling with exponen-
tially increasing thresholds. This allows the reduction of
the number of events without decreasing the transient
response performance significantly, both for the set-point
following and load disturbance rejection tasks. In par-
ticular, the steady-state maximum error is not affected
by the choice of the new controller parameter a, which
is the argument of the exponential term. The physical
meaning of this design parameter has been clarified by
means of simulation examples. It turns out that a value of
a slightly greater than 1 is sufficient to reduce the number
of events significantly without impairing the performance,
while a too big value of a causes a larger overshoot in
the response and eventually an increment of the number
of events because the transient response is longer. A sta-
bility analysis has been also performed and it has been
shown that the tuning of the PI controller can be done by
applying standard tuning rules.
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Åström, K. and Hägglund, T. (2002). Revisiting the
Ziegler-Nichols tuning rules for PI control. Asian Jour-
nal of Control, 4(4), 364–380.

Beschi, M., Dormido, S., J., Sánchez, and Visioli, A.
(2014). Tuning of symmetric send-on-delta PI con-
trollers. IET Control Theory and Applicationsl, 8(4),
248–259.

Beschi, M., Dormido, S., Sánchez, J., and Visioli, A.
(2012). Characterization of symmetric send-on-delta PI
controllers. Journal of Process Control, 22(10), 1930–
1945.

0 50 100 150 200
0

1

2

3

Time

P
r
o
c
e
s
s

v
a
r
ia

b
le

0 50 100 150 200
−1

−0.5

0

0.5

1

Time

C
o
n
t
r
o
l
v
a
r
ia

b
le

0 50 100 150 200
0

1

Time

E
v
e
n
t
s

0 50 100 150 200
0

1

Time

E
v
e
n
t
s

0 50 100 150 200
0

1

Time

E
v
e
n
t
s

Fig. 6. Response of the SOET-PI controlled system tuned
with ST tuning rule with ∆ = 0.01 and different
values of a. a = 1 (SSOD sampling): solid black line;
a = 1.1: dashed black line; a = 2: dash-dot black line;
standard PI controller (namely, ∆ = 0): red solid line.
First plot (from the top): process variable. Second
plot: control variable. Third plot: events with a = 1.
Fourth plot: events with a = 1.1. Fifth plot: events
with a = 2.

Beschi, M., Visioli, A., Dormido, S., and Sanchez, J.
(2011). On the presence of equilibrium points in PI
control systems with send-on-delta sampling. In Proc.
IEEE Int. Conference on Decision and Control and Eu-
ropean Control Conference, 7843–7848. Orlando (USA).

Blevins, T. (2012). PID advances in industrial control. In
Proceedings IFAC Conf. on Advances in PID Control.
Brescia (I).

Chacón, J., Sánchez, J., Visioli, A., Yebra, L., and
Dormido, S. (2013). Characterization of limit cycles
for self-regulating and integral processes with PI control
and send-on-delta sampling. Journal of Process Control,
23(6), 826 – 838.

De Persis, C. and Mazenc, F. (2010). Stability of quantized
time-delay nonlinear systems: a Lyapunov-Krasowskii-
functional approach. Math. Control Signals.

Goebel, R., Sanfelice, R.G., and Teel, A.R. (2009). Hybrid
dynamical systems. IEEE Control Systems Magazine,
29(2), 28–93.

Hayakawa, T., Ishii, H., and Tsumura, K. (2009). Adap-
tive quantized control for nonlinear uncertain systems.
Systems & Control Letters, 58(9), 625 – 632.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5770



0 50 100 150 200
0

1

2

3

Time

P
r
o
c
e
s
s

v
a
r
ia

b
le

0 50 100 150 200
−1

−0.5

0

0.5

1

Time

C
o
n
t
r
o
l
v
a
r
ia

b
le

0 50 100 150 200
0

1

Time

E
v
e
n
t
s

0 50 100 150 200
0

1

Time

E
v
e
n
t
s

0 50 100 150 200
0

1

Time

E
v
e
n
t
s

Fig. 7. Response of the SOET-PI controlled system tuned
with SIMC tuning rule with ∆ = 0.01 and different
values of a. a = 1 (SSOD sampling): solid black line;
a = 1.1: dashed black line; a = 2: dash-dot black line;
standard PI controller (namely, ∆ = 0): red solid line.
First plot (from the top): process variable. Second
plot: control variable. Third plot: events with a = 1.
Fourth plot: events with a = 1.1. Fifth plot: events
with a = 2.

Heemels, W.P.M.H. and Donkers, M.C.F. (2013). Model-
based periodic event-triggered control for linear systems.
Automatica, 49(3), 698–711.

Heemels, W., Sandee, J., and Van Den Bosch, P. (2008).
Analysis of event-driven controllers for linear systems.
International Journal of Control, 81(4), 571–590.

Kofman, E. and Braslavsky, J. (2006). Level crossing
sampling in feedback stabilization under data rate con-
straints. In Proceedings 45th IEEE International Con-
ference on Decision and Control.

Liu, J. and Elia, N. (2004). Quantized feedback stabiliza-
tion of non-linear affine systems. International Journal
of Control, 77(3), 239–249.

Miskowicz, M. (2006). Send-on-delta: An event-based data
reporting strategy. Sensors, 6, 49–63.

Otanez, P., Moyne, J., and Tilbury, D. (2002). Using dead-
bands to reduce communication in networked control
systems. In Proceedings American Control Conference.
Anchorage (USA).

Pawlowskyy, V., Guzmán, J.L., Rodŕıguez, F., Berenguel,
M., Sanchez, J., and Dormido, S. (2008). Event-based
control and wireless sensor network for greenhouse diur-

0 50 100 150 200
0

1

2

3

Time

P
r
o
c
e
s
s

v
a
r
ia

b
le

0 50 100 150 200
−1

−0.5

0

0.5

1

Time

C
o
n
t
r
o
l
v
a
r
ia

b
le

0 50 100 150 200
0

1

Time

E
v
e
n
t
s

0 50 100 150 200
0

1

Time

E
v
e
n
t
s

0 50 100 150 200
0

1

Time

E
v
e
n
t
s

Fig. 8. Response of the SOET-PI controlled system tuned
with Amigo tuning rule with ∆ = 0.01 and different
values of a. a = 1 (SSOD sampling): solid black line;
a = 1.1: dashed black line; a = 2: dash-dot black line;
standard PI controller (namely, ∆ = 0): red solid line.
First plot (from the top): process variable. Second
plot: control variable. Third plot: events with a = 1.
Fourth plot: events with a = 1.1. Fifth plot: events
with a = 2.

nal temperature control: A simulated case study. In Pro-
ceedings 13th IEEE International Conference on Emerg-
ing Technologies and Factory Automation.

Sánchez, J., Guarnes, M.A., Dormido, S., and Visioli,
A. (2009). Comparative study of event-based control
strategies: An experimental approach on a simple tank.
In Proceedings European Control Conference.

Sanchez, J., Visioli, A., and Dormido, S. (2011). A two-
degree-of-freedom PI controller based on events. Journal
of Process Control, 21, 639–651.

Sanchez, J., Visioli, A., and Dormido, S. (2012). PID
Control in the Third Millennium (R. Vilanova and A.
Visioli (eds.)), chapter Event-based PID control, 495–
526. Springer.

Skogestad, S. (2003). Simple analytic rules for model
reduction and PID controller tuning. Journal of Process
Control, 13(4), 291 – 309.

Tiberi, U., Araujo, J., and Johansson, K. (2012). On event-
based PI control of first-order processes. In Proceedings
IFAC Conf. on Advances in PID Control. Brescia (I).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5771


