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Abstract: This paper addresses the problem of controlling Heating Ventilation and Air Conditioning 

(HVAC) systems with the purpose of maintaining a desired thermal comfort level, whilst minimizing the 

electrical energy required.  

Using a pilot installation, in the University of Algarve, Portugal, a Model Based Predictive Control 

(MBPC) strategy is used to control the HVAC equipment. The thermal comfort is assessed using the 

predicted mean vote (PMV) index. The MBPC methodology uses predictive models, implemented by 

radial basis function neural networks, identified by means of a Multi-Objective Genetic Algorithm 

(MOGA). Experimental results show that this approach is feasible and robust, and able to obtain energy 

savings greater than 50%, under normal building occupation.  

Keywords: HVAC Predictive Control, Predicted Mean Vote, Neural Networks, Multi-Objective 

Evolutionary Algorithms, Wireless Sensor Networks 
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1. INTRODUCTION 

According to recent studies, energy consumption of buildings 

(residential and non-residential) represents approximately 

40% of total world energy consumption, mainly attributed to 

HVAC systems (Moroşan, Bourdais, Dumur, & Buisson, 

2010; Pérez-Lombard, Ortiz, & Pout, 2008). It is of 

fundamental importance to control efficiently the existing 

HVAC systems, in order to decrease energy usage and 

increase compliance with the European Directive 

(2010/31/EU) on the energy performance of buildings 

(European Parliament, 2010). 

MBPC is perhaps the most proposed technique for comfort 

control (Donaisky, Oliveira, Freire, & Mendes, 2007; Ma, 

Kelman, Daly, & Borrelli, 2012; Ruano, Crispim, Conceicao, 

& Lucio, 2006), since it offers an enormous potential for 

energy savings. Despite of that, there are only a few reported 

applications of the use of MBPC for existing buildings, under 

normal occupancy conditions, which is the topic of this 

paper. 

Section 2 describes the experimental setup. The PMV index 

is used to quantify thermal comfort and is described in 

Section 3. MBPC uses predictive models. Their design, using 

MOGA, is described in Section 4. The MBPC formulation is 

briefly addressed in Section 5, and results are presented in 

Section 6. Conclusions and directions for future work end 

this paper. 

                                                           

1 This work was supported by FCT through PTDC/ENR/73345/2006, QREN  

SIIDT 38798,  IDMEC, under LAETA, and by the EU grant PERG-GA-
2008-239451 

2. THE EXPERMENTAL SETUP 

The control experiments were conducted in three areas, each 

on a different floor, of the Faculty of Sciences & Technology 

of the University of Algarve, in the South of Portugal (please 

see Fig. 1). Algarve has a temperate climate, with daily 

average temperatures of 23ºC and 13ºC, in August and 

December, respectively. 

16 rooms of that building are equipped with wireless data 

acquisition devices, and internal HVAC units which may be 

independently controlled and monitored. Additionally, a 

weather station, located in the roof of an additional building 

in the campus provides several atmospheric measurements. 

Of importance to this work, the air temperature (
aoT ) and 

relative humidity (
aoH ), as well as the global solar radiation  

(
sgR ). All the elements involved are connected to the TCP/IP 

network, enabling PC stations to monitor the different 

variables and control any of the rooms. Fig. 2 provides an 

illustration of the systems integration. 

2.1 Wireless Sensor Networks 

Each of the three building areas has one Wireless Sensor 

Network (WSN) with sensors in all rooms to monitor the air 

temperature (
aiT ) and humidity (

aiH ), the globe temperature 

(
gT ), the state of windows and doors (open/closed), and 

movement using a passive infra-red activity sensor. Fig. 3 

illustrates, for rooms A, B and C in fig. 1, the layout of the 

sensors. 

The WSNs have a centralized architecture, where each unit is 

collecting information once per minute and sending it to a 
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central node with storage and database capabilities. Each 

node is composed of one Tmote Sky platform connected with 

the required sensors. This platform is an IEEE 802.15.4 

standard compliant device that uses the TinyOs (TinyOs, 

1999) operating system, a component based operating system 

for low power wireless devices. Fig. 4 illustrates one WSN 

node. 

 

Fig. 1. The FCT building. From top to bottom: ground, 1st and 2nd floors. The 
monitored rooms in each floor are marked.  

 

Fig. 2 Overview of the setup used 

2.2 HVAC system 

The HVAC used in the experiments is composed of 3 

independent Mitsubishi Variable Refrigerant Flow (VRF) 

systems, each one with an outdoor air cooled inverter 

compressor unit - PUHY-250YMF-C (denoted in the sequel 

as outdoor unit), located on the building roof, connected to 

ceiling concealed ducted indoor units - PEFY-P63VMM 

(denoted as interior units). 

In each independent room there is at least one internal unit, 

with its own wall controller. The system can be centrally 

managed by a PC management station to which all the units 

are connected via a LonWorks communication bus. This 

station is able to monitor and Control many aspects of all the 

HVAC system, through the Mitsubishi LMAP02 interface ( 

LMAP02, 2001).  

 

Fig. 3. Layout of Rooms A, B and C. Legend: MS-Movement Sensor; N-

Node; CN–Central Node; G –Globe temperature; W–Windows; D–Doors 

 

Fig. 4. One WSN node 

3. PREDICTED MEAN VOTE 

The PMV index predicts the mean response (in a statistical 

sense) of the thermal sensation of a large group of people 

exposed to certain thermal conditions for a long time. The 

value of PMV index is a seven-point thermal sensation, 

between -3 (cold) and +3 (hot), 0 being neutral (ASHRAE, 

2004). 

The PMV index is based on human thermal sensation which 

is strongly related with the energy balance of the body when 

the human body is considered in a heat balance situation, i.e. 

the heat produced by metabolism equals the net loss of heat. 

The classical way in which the PMV index can be estimated 

was presented in (Fanger, 1972) and is dependent on six 

variables: metabolic rate (M), clothing insulation (Icl), aiT , 

aiH , air velocity (Vai), and mean radiant temperature ( rT ). 

The PMV can be computed as: 

  0.0360.303 0.028MPMV e L   (1) 

In (1), L is the thermal load in the human body, defined as the 

difference between the internal heat production and the heat 

loss which occurs when the person is in a thermal situation, 

and can be estimated as: 
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where M and W are the metabolic rate and external work, 

both in W/m
2
, 

aiP  is the partial water vapour pressure in 

Pascal, and both
aiT  and rT  are given in degrees Celsius. 

clT , 

the clothing surface temperature, and 
clh , the convective heat 

transfer coefficient (both in ºC), can be estimated as:  

 
 
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These two equations are solved recursively, until a prescribed 

degree of accuracy is obtained. Finally, in (2) and (3), 
clf , 

which is the ratio of body surface area covered by clothes to 

the naked surface area, is defined by: 

 
1.00 1.29 0.078

1.05 0.645 0.078

cl cl

cl

cl cl

I if I
f

I if I

 
 

 
 (5) 

In practice, in order to obtain the PMV, reference values of M 

and Icl are obtained from tables found in many handbooks 

related to HVAC systems and are also provided in 

(ASHRAE, 2004). 
aiP  is easily related to 

aiH , by means of 

Antoine’s equation: 

 
4030.188

16.6536
235

10 aiT

ai aiP H e



  (6) 

Finally, rT , that can be defined as the uniform temperature of 

an imaginary enclosure in which radiant heat transfer from 

the human body equals the radiant heat transfer in the actual 

nonuniform enclosure (ASHRAE, 2004), can be estimated 

using different methods (ASHRAE, 2004): 

 From the plane radiant temperature in six opposite 

directions, weighted according to the projected area 

factors for a person; 

 Or, using  a black globe thermometer, which is the 

method used here. Denoting the globe temperature 

by gt ,  rT  may be determined as: 

    
1/4

8 0.6
4

0.4

1.1 10
273 273ai

r g g ai

V
T T T T

D

 
     
 

, (7) 

where D and  are the globe diameter in meters and the globe 

emissivity coefficient, respectively. 

As it can be understood from the above, the computation 

effort for calculation of the PMV is high, and due to the 

recursive computations, it is not constant. For these reasons, 

some researchers have proposed the use of neural models 

(Atthajariyakul & Leephakpreeda, 2005; Yao & Xu, 2010) or 

Least-Squares Support Vector Machines (Kumar & Kar, 

2009) for its computation. The authors have proposed the use 

of RBFs, associated with the concept of a Context Vector for 

each room. 

For most HVAC real-time control applications, the 

environment is controlled in closed spaces where all 

occupants are assumed to be dressed similarly regarding the 

type of clothing they wear. Moreover it is likely that within 

each type of closed space they will be performing similar 

activities like attending a lecture, sitting writing a research 

paper, or having breakfast at the cafeteria. 

These two assumptions mean that for a given space it is 

possible to specify the values of the clothing insulation, Icl, 

and the metabolic rate, M, allowing therefore these variables 

to be removed from the PMV model input. If it is further 

assumed that Vai varies little within the space and its value is 

determined by measurements, Vai may be considered constant 

and may also be removed from the PMV model input. 

By defining a context vector  , ,cl aiC I M V , and by using 

(1) to (7), a set of input-output data pairs may be generated in 

order to train an RBF model to approximate the mapping 

  , ,ai ai rPMV T H T , (8) 

which will be used for each room with the context C, as 

shown in Fig. 5. 

This approach was proposed in (Ferreira, Silva, Ruano, 

Negrier, & Conceicao, 2012), where it was shown that, using 

a RBF with just 5 neurons, it was possible to obtain an 

average and maximum absolute error of 0.0025 and 0.011, 

respectively, over wide ranges of the input and the PMV 

variables. Moreover, the computation of this model is 

approximately 55 times faster than the classical PMV 

computation, for the same accuracy proving, additionally, the 

advantage of constant computation time. For more details, 

please see (Ferreira, et al., 2012).  

 

Fig. 5. Using different PMV models in an HVAC control system 

4. PREDICTIVE MODELS 

Using the neural network static mapping (8), and the context 

vector, it is possible to predict the evolution of the PMV over 

a prediction horizon (ph) for each room, provided that the 

prediction of the PMV inputs are obtained. 

This is accomplished using a series of models, as indicated in 

Fig. 6, for the case of 
aiT .  

The inside air temperature is modelled as a Nonlinear Auto-

Regressive model with eXogeneous inputs (NARX), whose 
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inputs are the HVAC reference temperature –Tr (a value of 0 

indicating that the unit is off), 
aiT , 

aoT  and sgR : 

 

Fig. 6. Model arrangement for room temperature 

  , , ,ai r ai ao sgT NARX T H T R  (9) 

In the same way, 
aiH (10), 

aoH (11) and 
aoT  (12) are 

modelled as NARX models: 

  , , , ,ai r ai ao ao sgH NARX T T T R R  (10) 

  ,ao ao sgH NARX T R  (11) 

  ao sgT NARX R  (12) 

Finally, sgR  is modelled as a NAR model. These one-step-

ahead models are iterated to predict the evolution of the 

corresponding variable along the prediction horizon, using, as 

values for the lagged terms, weather measured values (if 

available) or forecasted values, available from the execution 

of the corresponding model. 

All NARX and NAR models are implemented using RBF 

neural networks designed with a MOGA framework. Two 

different models for 
aiH and 

aiT were designed, to be used in 

summer (cooling mode) and in winter (heating mode). In 

order to design these models, the first step was the 

preparation of control input signals for the HVAC internal 

unit. For that, the room was controlled randomly by varying 

the temperature set-point within the range [18, 19, . . ., 27] or 

by switching off the unit for varying time intervals. This task 

was accomplished by means of Pseudo Random Binary 

Signals (PRBS), as described in (Ferreira & Ruano, 2008a).  

The model design employed is exemplified for the inside 

temperature model, to be used in summer conditions. PRBS 

signals with 4416 data patterns were generated, 

corresponding to approximately 15 days of data at 5 min 

sampling interval. Different times-of-day were covered and 

distinct days (concerning the outside weather) were used, all 

during early summer. The next figure shows a sample PRBS 

sequence of set-points and the resulting 
aiT  and 

aiR . 

This data was divided into three sets: training set - 
t

X , used 

to estimate the model parameters, generalization or test set - 
g

X , used to implement an early-stopping and to assess each 

model in fresh data, and a validation set - 
v

X , used to 

compare different designed models on fresh data. The design 

cycle used in the MOGA framework is shown in Fig. 8.  

 

Fig. 7. Sample of PRBS sequence applied to HVAC system and the resulting 

temperatures and humidities. Summer conditions. 

 

Fig. 8. Model design cycle. 

The evolutionary algorithm searches for the best number of 

neurons and the best set of inputs to be used by the models. 

The parameters of each model are estimated using an 

improved version of the Levenberg-Marquardt algorithm.  

In this case, 60 possible inputs, corresponding to current and 

delayed values of  , , , ,ai ai ao sgT AC H T R were considered, and 

models with inputs between 2 (dm) and 30 (Dm) were allowed. 

The number of neurons were allowed to vary between 2 (nm) 

and 20 (nM).  The dimension of the search space is therefore 

30 19

2

60
19 1.2 10

i i

 
   

 
 . 

The objectives were formulated according to Table 1. The 

two first objectives (denoted in Fig. 5 as 
p ) are the Root-

Mean-Square-Errors (RMSE) on the training and 

generalization set, and reflect how good is the mapping 

obtained by the training. The third objective is directly 

related to the models application, the performance over the 

ph considered (which is 48 steps - 4 hours).  
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Table 1: MOGA Objectives 

Objective Setup to Value 

RMSE ( t
X ) restriction 0.5ºC 

RMSE ( g
X ) minimization - 

 ,v ph X  minimization - 

Assume that 
v

X has p data points and that for each point the 

model is used to make predictions up to ph steps ahead. An 

error matrix can be constructed: 

  

     
     

     

1,1 1,2 1,

2,1 2,2 2,
,

,1 ,2 ,

v

e e e ph

e e e ph
E ph

e p ph e p ph e p ph ph

 
 
 
 
 

    

X  (13) 

where  ,e i j  is the model prediction error taken from instant 

i of 
v

X at step j within ph. Denoting the RMS function 

operating over the i
th

 column of its argument matrix by 

 ., i , then the third objective in Table 1 is defined as: 

     
1

, , ,
ph

v v

i

ph E ph i 


X X  (14) 

The next figure shows some results of the MOGA execution.  

 

Fig. 9. MOGA results. Summer Temperature model 

The two top scatter plot show the performance obtained by 

the models in the RMSE (
t

X ) - RMSE (
g

X ) space (left) and in 

the RMSE (
g

X ) -  ,v ph X space (right). The black dots 

represent dominated solutions, the blue non-dominated 

solutions, and the red preferable solutions. The right-bottom 

plot illustrates the evolution of the RMSE of the chosen 

model over ph, which increases from 0.06ºC to 0.65ºC. The 

left-bottom plot shows the one-step-ahead model output (in 

blue), and the measured temperature (in red) over the whole 

data. As it can be seen, there is nearly a perfect matching.   

5. PREDICTIVE CONTROL 

An approach to non-linear MBPC consists in discretising the 

control space into an appropriate finite set of control actions 

and performing a search for the optimal future control 

trajectory within the available set of control options. In that 

case the MBPC problem may be solved by means of discrete 

optimisation methods. Branch-and-Bound (BB) has been 

proposed (Sousa, Babuška, & Verbruggen, 1997) and applied 

in practice to discrete (or discretised) non-linear MBPC 

problems (Ferreira & Ruano, 2008b; Mendonça, Sousa, & Sá 

da Costa, 2004). Since by definition the control space is 

discrete in common HVAC systems, the referred BB 

methodology is used in this work. 

In order to maintain thermal comfort and simultaneously 

minimise the energy spent, the problem may be formulated as 

follows. The cost of selecting one control action, Tr, at instant 

i is defined as 

  
1 , 0

0, 0

r ao

r

r

T T
T

J i

T



 
 

 
 

 (15) 

The   scaling factor is used only to make that term small 

when compared to 1. Using the definition (15) the HVAC 

control problem is simply determining the control sequence 

 ku , over a control horizon ch, such that: 

 
 

 
 

 

1

min

ˆ , 1, ,

k ph

k
i k k

T

J J i

subject to i i k k ph



 

 
  
 

     


u

u  (16) 

where  ˆ i is the estimated PMV index at step i, and 
T  is a 

threshold value for the PMV index which should guarantee 

acceptable thermal comfort for the occupants of the space. 

The ASHRAE standard (ASHRAE, 2004) recommends a 

value of 0.5 which predicts that less than 10% of the 

occupants will be dissatisfied. 

6. RESULTS 

Several experiments were conducted, both in winter and 

summer conditions. Two are shown here. 

Fig. 10 shows the nonlinear MBPC algorithm under 

continuous operation, during 48 hours, in summer conditions. 

Room D in Fig. 1 was used, which is a classroom equipped 

with computers, where students have a number of courses on 

different computer science topics. The mean air velocity was 

found to be, on average, around 0.1 ms
-1

. A value of 0.65 clo 

was used for the clothing insulation and a value of 1.0 Met 

was employed for the metabolic rate. This means that the 

context, for the PMV model used, was C = {0.65, 1.0, 0.1}. 

Regarding the MBPC system parameters, ch was set to 5 

samples (25 min) and ph to 48 samples (4 h). 

In the figure, the shaded areas show the room activity 

monitor signal. In the upper plot the measured (red dash-dot) 

and one-step-ahead predicted (red dot) relative humidity are 

shown. The same (in blue) in the middle plot for the inside air 

temperature, where the additional dash and solid lines show 

the outside air temperature and the AC set-point. The bottom 

plot shows the computed and the one-step-ahead estimated 

PMV, where the upper limit was set to 0.5. As it can be seen, 

the one-step-ahead predictions are very accurate, the system 

maintained good thermal conditions, despite the small 

amount of time of HVAC operation. 
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Fig. 10. MBPC HVAC control, in summer conditions 

Fig. 11 illustrates the system operation, during 11 hours, in 

room B of Fig. 1, in winter conditions. The context vector 

used is   1.0,1.0,0.08C   and values similar to the summer 

case for the MBPC system parameters were employed. 

 

Fig. 11. MBPC HVAC control, in winter conditions 

The one-step-ahead predicted values are shown in dots. As it 

can be seen, again the predictions are very accurate, and the 

room was kept in thermal comfort, requiring for that only a 

15% heating operation during the 11 hours period.  

Power transducers were incorporated in three outdoor units, 

making therefore electric energy values available for these 

units through the LMAP02 interface. A procedure, suggested 

by Mitsubishi, was then followed to give a first, crude 

approximation to the electric energy consumption of each 

indoor unit (LMAP02, 2001). 

With this setup, several experiments were conducted in 

adjacent rooms (for instance rooms A, B and C in Fig. 1), 

where one of the rooms were under MBPC control, and the 

others under normal control, with a temperature set-point 

required for the season. Energy savings, from 41% to 77%, 

were obtained. 

7. CONCLUSIONS AND FUTURE WORK 

A MBPC control methodology using the BB method was 

formulated and applied to control existing HVAC systems, in 

buildings under normal operation. Experimental results show 

that this approach is feasible and robust, and able to obtain 

energy savings typically greater than 50%, under normal 

building occupation. 

Before this scheme can be applied in commercial use, a few 

problems need to be solved: 

Although the predictions required are very accurate, in some 

cases the errors obtained should be decreased. Analysing Fig. 

10, the errors in the PMV are greater when the room is 

occupied. The room models were designed with the room 

empty, and the room thermal load changes significantly with 

people, and the use of computing equipment. The models 

performance can be improved if the activity signal is 

incorporated in the models inputs. 

The PMV methodology needs the estimation of rT . The 

approach followed was the use of a globe thermometer, 

which cannot be used in a commercial application. A 

simplified version of the plane radiant method should be 

investigated. 
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