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Abstract: We prove two more results on controllability of LTI systems with switching delays.
Firstly, we improve our previous results on controllability verification (when arbitrarily large
look-ahead of the switching signal is allowed) by providing an algorithm which is not restricted
to regular matrices. In particular we provide a more detailed analysis for nihilpotent matrices
(i.e. matrices with only zero eigenvalues): we restate this problem as a completely combinatorial
one and provide a polynomial time algorithm, which has much better efficiency than a naive
brute force algorithm.
Secondly, we show that when the switching signal cannot be measured it can be necessary to
use nonlinear controllers for stabilizing a linear plant.

1. INTRODUCTION

Wireless Networked Control Systems are spatially dis-
tributed control systems where the communication be-
tween sensors, actuators, and computational units is sup-
ported by a wireless multi-hop communication network.
The main motivation for studying such systems is the
emerging use of wireless technologies for control sys-
tems (see e.g. Akyildiz and Kasimoglu [2004], Han et al.
[2010] and references therein) and the recent development
of wireless industrial control protocols (such as Wire-
lessHART and ISA-100). Although the use of wireless
networked control systems offers many advantages with re-
spect to wired architectures (e.g. flexible architectures, re-
duced installation/debugging/diagnostic/maintenance costs),
their use is a challenge when one has to take into account
the joint dynamics of the plant and of the communica-
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Fig. 1. State feedback networked control scheme.

tion protocol. Recently, a huge effort has been made in
scientific research on Networked Control Systems (NCS),
see e.g. Zhang et al. [2001], Walsh and Ye [2001], Antsak-
lis and Baillieul [2004], Andersson et al. [2005], Gupta
et al. [2009], Hespanha et al. [2007],Heemels et al. [2010])
and on the interaction between control systems and com-
munication protocols (see e.g. Aström and Wittenmark
[1997], Walsh et al. [2002], Yook et al. [2002], Tabbara
and Nešić [2007], Tabbara et al. [2007]). In general, the
literature on NCSs addresses non–idealities (e.g. quantiza-
tion errors, packets dropouts, variable sampling and delay,
communication constraints) as aggregated network perfor-
mance variables, neglecting the dynamics introduced by
the communication protocols. In Andersson et al. [2005],
a simulative environment of computer nodes and commu-
nication protocols interacting with the continuous-time
dynamics of the real world is presented. To the best of
our knowledge, the first integrated framework for analysis
and co-design of network topology, scheduling, routing and
control in a wireless multi-hop control network has been
presented in Alur et al. [2011], where switching systems
are used as a unifying formalism for control algorithms
and communication protocols, and in extensions of this
framework D’Innocenzo et al. [2013], Pajic et al. [2011].
Following this research line, we restrict our focus in this
paper on the effect of routing and consider a multi-hop
network G that provides the interconnection between a
state-feedback discrete-time controller C and a discrete-
time LTI plant P (see Figure 1). The network G con-
sists of an acyclic graph where the node vc is directly
connected to the controller and the node vu is directly
connected to the actuator of the plant. As classically done
in (wireless) multi-hop networks to improve robustness
with respect to node failures we exploit redundancy of
routing paths, namely we assume that the number of paths
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that interconnect C to P is greater than one and that for
any actuation data sent from the controller to the plant
a unique path is chosen. Each path is characterized by a
delay in forwarding the data (see D’Innocenzo et al. [2013]
for details), as a consequence each actuation data will be
delayed of a finite number of time steps according to the
chosen routing. Since this choice usually depends on the
internal status of the network, i.e. because of node and/or
link failures, we consider the choice of the routing path as
an external disturbance and address both the cases when
it is measurable or not. Hence, we obtain as a model a
particular sort of switching system, where the switching
signal describes the evolution of the delay with respect to
time.

Systems with time-varying delays have attracted increas-
ing attention in recent years (see e.g. Liu et al. [2006],
Hetel et al. [2007], Heemels et al. [2010], Shao and Han
[2011], Lombardi et al. [2012] and references therein). In
Hetel et al. [2011] it is assumed that the time-varying delay
is approximatively known and numerical methods are pro-
posed to exploit this partial information for adapting the
control law in real time. Our model differs from this setting
because due to the routing, control commands generated
at different times can reach the actuator simultaneously,
their arrival time can be inverted, and it is even possible
that at certain times no control commands arrive to the
actuator.
In another line of research, sufficient stability conditions
and LMI based design procedures have been developed for
discrete-time switching systems with time-varying delays
(see e.g. L. Hetel and Iung [2006] and Zhang et al. [2008]).
These methods do not take into account the specific struc-
ture of the systems induced by the fact that the switching
is restricted on the delay-part of the dynamics. Our goal
is to leverage this particular structure in order to improve
our theoretical understanding of the dynamics at stake
in these systems. As we will see, it enables us to design
tailored controllers whose performances or guarantees are
better than for classical switching systems.

In a previous work Jungers et al. [2012] we proved that
our time-varying delay systems can be represented by pure
switching systems, where the switching matrices assume
a particular form. Switching systems are notably hard
to control, and one often has to resort to Lyapunov-
like conservative techniques (often based on LMI formu-
lations) in order to handle them. However we show that
the characteristic structure of these systems allows for a
more analytical understanding of the dynamics, leading to
exact algorithms for some particular questions. We think
that these dynamics, lying at the frontier between easy
LTI systems and hard (and often untractable) switching
systems are interesting both for theoretical and applied
purposes.

We will address the controller design problem by assuming
that, for each time t, the controller is aware of the
N ≥ 0 next future routing path choices. If N = 0 the
controller is not aware of any of the past, current and
future propagation delays: we will call this situation the
delay independent case. If N ≥ 1 the controller is aware
of the propagation delays of the actuation signals sent at
times t, t+ 1, . . . , t+N − 1, and keeps memory of the past

delays: we will call this situation the delay dependent case.
We call N the look-ahead parameter.

From the network point of view the practically admissible
values for N depend on the protocol used to route data
(see Y. Yang and Kravets [2005] and references therein
for an overview on routing protocols for wireless multi-
hop networks). If the controller node vc of G is allowed by
the protocol to chose a priori the routing path (e.g. source
routing protocols), then we can assume that the controller
is aware of the routing path and the associated delay,
and therefore is also aware of the switching signal (i.e.
N > 0). If instead the protocol allows each communication
node to choose the next destination node according to the
local neighboring network status information (e.g. hop-by-
hop routing protocols) then we cannot assume that the
controller is aware of the routing path, and therefore of
any of the past, current and future propagation delays (i.e.
N = 0).

We addressed the corresponding modeling and stability
verification problems in Jungers et al. [2012], while in
Jungers et al. [2014] we tackled the harder controller
design problem for the delay dependent case providing
an algorithm for controllability verification restricted to
regular plant matrices.
In this work we first analyze the situation where one can
chose an arbitrarily large (but finite) look-ahead param-
eter N. This can occur in situations where the dynamics
of the plant is given, but one can design the protocol, and
thus require a certain look-ahead knowledge if needed. We
prove that in this case the controllability verification prob-
lem can be split into two sub-problems, one characterized
by a regular matrix and one by a nihilpotent matrix: since
the regular case has been already solved in Jungers et al.
[2014], we address here the nihilpotent case and provide a
polynomial time algorithm.
In the second part of the paper, we analyze the situation
where the look-ahead parameter N is fixed and given as
part of the problem. We show that in this case it is much
harder to decide controllability of the plant: indeed we
show that it can be necessary to make use of nonlinear
controllers for stabilizing a linear plant.

The paper is organized as follows: in Section 2 we quickly
recall the problem formulation and the modeling frame-
work from Jungers et al. [2012]. In Sections 3 and 4 we
address the controller design problem for the arbitrarily
large look-ahead and the fixed look-ahead cases. In Section
5 we conclude and propose open problems for future re-
search.
The proofs are omitted due to length constraints.

2. MODELING

In this paper we will address the problem of stabilizing a
discrete-time LTI system of the form

x(t+ 1) = Ax(t) +Bu(t), y(t) = x(t), t ≥ 0,

with A ∈ Rn×n and B ∈ Rn×m, using a state-feedback
controller C. From now on we will obviously assume that
the plant pair (A,B) is controllable. We assume that
the control signal v(t) generated by C is relayed to the
actuator of the plant P via a multi-hop network Alur et al.
[2011]. The network G consists of an acyclic graph (V,E),
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where the node vc ∈ V is directly interconnected to the
controller C and the node vu is directly interconnected to
the actuator of the plant P. Since the network exploits
redundancy of routing paths the number of paths that can
be used to reach vu from vc is assumed to be greater than
one. In order to relay each actuation data v(t) to the plant,
at each time step t a unique path of nodes that starts
from vc and terminates in vu is exploited. To each path
a different delay can be associated in transmitting data
from vc to vu, depending on the transmission scheduling
and on the number of hops to reach the actuator (see
D’Innocenzo et al. [2013] for details). Since the choice of
the routing path usually depends on the internal status
of the network we assume that the chosen routing path
is time-varying. As a consequence the control signal v(t)
at time t will be delayed of a finite number of time steps
that we model as a disturbance signal σ(t) ∈ D : t ≥ 0,
where D ⊆ {0, 1, . . . , dmax} is the set of possible delays
introduced by all routing paths and dmax is the maximum
delay. For the reasons above we model the dynamics of the
networked control system N as follows 1 :

Definition 1. The dynamics of the interconnected system
N can be modeled as

x(t+ 1) = Ax(t) +Bu(v(t− dmax : t), σ(t− dmax : t))

= Ax(t) +B
∑

t− dmax ≤ t
′ ≤ t :

t
′
+ σ(t

′
) = t

v(t′), (1)

where v(t−dmax : t), σ(t−dmax : t) represents 2 the latest
dmax + 1 values of the output of the controller v(·) ∈ Rm
and of the switching signal σ(·) ∈ D. We define the signal
of actuation times τ : N → {0, 1} such that τ(t) = 1 if
there exists t′ ≤ t with t = t′ + σ(t′), τ(t) = 0 otherwise.

We now define the control signal v as a function of
its inputs. In order to keep things simple, we suppose
that the controller measures the full state x(t). As said
above, on top of this, at each time t, the controller is
aware of the N ≥ 0 future routing path choices, and
therefore of the future propagation delays σ(t), σ(t +
1), . . . , σ(t+N − 1) (that is, if N = 0 the controller does
not know any propagation delay). We also assume that the
controller keeps memory of the past dmax switching signals
σ(t− dmax), . . . , σ(t− 1). For classical (i.e. non-switched)
feedback systems with fixed delay it is well known that
the system can be neither controllable nor stabilizable if
the feedback only depends on x(t), that is if the controller
does not have a memory of its past outputs. Therefore, we
also assume that the controller keeps memory of its past
dmax outputs v(t− dmax), . . . , v(t− 1).

As a consequence we can assume without loss of generality
that, in the delay-dependent case (N > 0), the output
signal v of the controller depends on its past dmax output
values, on the current plant state, on the past dmax
switching signals and on the future N switching signals,
namely:

v (t, v(t− dmax : t− 1), x(t), σ(t− dmax : t+N − 1)) ,

1 Of course, one can expand the statespace in order to represent
delays, since it is finite-dimensional. However, this is not useful for
our purpose, so we chose a more concise representation.
2 This is the “matlab notation”.

because this information encapsulates the full state of the
closed-loop system.

In the delay-independent case (N = 0) this is not possible
since the controller ignores the current and thus also
the previous values of the switching signal, and the only
variables it can use are the past values of x(t) and of the
control commands, namely 3 :

v (t, x(t− dmax : t), v(t− dmax : t− 1)) .

Remark 1. The above model is quite general and allows
representing a wide range of routing communication proto-
cols for (wireless) multi-hop networks Y. Yang and Kravets
[2005]. We remark that several variations are possible. For
instance, in our setting, it could happen during the run
of the system that at some particular time no feedback
signal comes back to the plant: we assume that in this
situation the actuation input to the plant is set to zero. A
variation is to implement a hold that would keep memory
of the previous input signal and resend it if the new one
is empty. Moreover, in our setting, it could also happen
that two control signals sent at different times reach the
actuator simultaneously: we assume that in this situation
the actuation input to the plant is set to the sum of the
control signals that arrive simultaneously. A variation is
to keep the most recent control signal and discard all
the others. We defer the comparison of such variants for
further studies (see Gommans et al. [2013] for a recent
work that provides a comparison among some of these
approaches and also takes into account packet dropouts).

3. DELAY DEPENDENT CONTROLLER DESIGN

In this section we address the following problem: given a
system with variable delays as in (1), does there exist a
sufficiently large look-ahead N, together with a particular
controller, such that the closed loop system is controllable
for any switching signal? Very little is known in the
literature about the controllability of switching systems,
and thus this question is quite challenging.

We restrict ourself to the single input case, i.e. m = 1.
Thus, B is a vector, which we denote by b for the sake
of clarity. The extension to m > 1 is not straightforward,
and will be the topic of further work. We first define the
controllability notion for System (1).

Definition 2. We say that the system (1) is controllable
with look-ahead N if, for any initial state x(0) = x0, any
final state xf and any switching signal σ(t), there exists a
control signal v(t, v(t− dmax : t− 1), x(t), σ(t− dmax : t+
N)) such that

∃t ≥ 0 : x(t) = xf .

If there is no look-ahead N such that the system is
controllable, we say that the system is uncontrollable.

The existence of a controller as in Definition 2 seems to
be very hard to decide: to the best of our knowledge,
controller design is widely overlooked in the literature on
general switching systems, and only sufficient conditions
for the existence of a linear controller are known Ge and
Sun [2005], Lee and Dullerud [2006]. As a first attempt

3 We arbitrarily restrict the memory of the controller to dmax. We
defer to further research the impact of the size of the memory on the
performances of the controller in this case.
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to tackle the problem for our systems with varying delays,
we assume here that the controller can require an arbitrary
look-ahead knowledge of the switching signal. However, as
one will see below, this is in some cases not sufficient to
ensure controllability, even if the pair (A, b) is controllable.
Nevertheless, it turns out that it is possible to decide
controllability, and efficiently build a controller in the
controllable cases. We will show that one can compute
a finite value N depending only on the dimension of
the plant and the set of delays such that if the system
is controllable with infinite look-ahead, it is controllable
with finite look-ahead N. This obviously gives conditions
for controllability when the look-ahead is a fixed finite
value N ′ : if the system is uncontrollable with infinite
look-ahead, it is clearly uncontrollable with the actual
value N ′; if, on the other hand, the system is controllable
with infinite look-ahead and N ′ ≥ N, then the actual
system is controllable. In the next definition, we define
a controllability matrix as if the controller knew at time
t = 0 the infinite future sequence of signals σ(t).

Definition 3. Given a system (1) and a switching signal
σ(t) we define

Ct(A,B,D, σ(t))
the controllability matrix at time t, whose columns are
given by

{At−t
′−σ(t′)B : t′ ≥ 0, t− t′ − σ(t′) ≥ 0}. (2)

The order of the columns (although not that important)
is by increasing order of t′, so that

x(t) = Atx0 + Ctvt, (3)

where the components of vt are given by

vt(t
′) = v(t′) : t′ ≥ 0, t− t′ − σ(t′) ≥ 0,

namely by all the control signals delivered to the actuator
up to time t.

We denote by span(Ct) the space generated by the columns
of the matrix Ct.

Proposition 1. The system (1) is uncontrollable if and only
if there exists a switching signal σ(t) such that, for all
t ∈ N, we have

span(Ct) 6= Rn. (4)

In Jungers et al. [2014] we provided an exponential time
algorithm for controllability verification (when arbitrarily
large look-ahead of the switching signal is allowed) which
is restricted to regular matrices A of the plant. In this
work we first prove that the controllability verification
problem can always be split into two sub-problems, one
characterized by a regular matrix and one by a nihilpotent
matrix: since the regular case has already been solved in
Jungers et al. [2014], the end of the section is devoted to
an algorithm which works for nihilpotent matrices. In fact,
in case the matrix only has zero eigenvalues (i.e. if it is
nihilpotent), our algorithm even terminates in polynomial
time.

3.1 Reduction to nihilpotent matrices

Lemma 1. If the matrix A has more than one Jordan block
with eigenvalue zero, the system is uncontrollable.

Lemma 2. Suppose that the matrix A has one Jordan
block of size k with eigenvalue zero. That is, there is an
invertible matrix T such that

TAT−1 =

(
J0,k 0

0 A′

)
, T b =

(
b0
b′

)
.

Then, the system (1) is uncontrollable if and only if the
system (J0,k, b0) is uncontrollable with the set of delays
D, or the system (A′, b′) is uncontrollable with the set of
delays D.

3.2 A naive algorithm for nihilpotent matrices

Since the case of a regular matrix has been tackled in
Jungers et al. [2014], we are thus left with the problem of
deciding whether a system with a controllable pair (J0,k, b)
is uncontrollable with a given set of delays D. It turns out
that there is a very simple combinatorial characterization
of the controllability matrix to be full rank in that case:

Lemma 3. Suppose that the matrix A is a single Jordan
block of size k with eigenvalue zero. Then, the controlla-
bility matrix is full rank if and only if b, Ab,A2b, . . . Ak−1b
are columns of the controllability matrix.

Thus, the controllability problem for nihilpotent matrices
amounts to check whether there exists a sequence of delays
σ : N → D such that the controllability matrix never
contains b, Ab,A2b, . . . , Ak−1b. In the next subsection we
derive an efficient (polynomial time) procedure for that.
In this subsection we quickly show that there is a simple
exponential time procedure to answer this question. The
reason is that the polynomial-time algorithm that we
derive in the next subsection is exclusively designed for
the particular problem at stake here (i.e. one input vector
b, a single Jordan block A = J0,k) while we believe that
the exponential time algorithm we derive here can be used
in more general contexts.

Lemma 4. Suppose that the matrix A is a single Jordan
block of size k with eigenvalue zero. Then, the rank of the
controllability matrix at time t only depends on the values
of the switching signal at times t− dmax − k + 1, . . . , t.

We can now prove the following theorem:

Theorem 1. Let A, b,D represent a system as in (1). If
A is a nihilpotent matrix, a naive algorithm to verify
controllability takes O((dmax + k)|D|dmax+k) operations.

3.3 A polynomial time algorithm for the nihilpotent case

We show that when the matrix is nihilpotent there is
a polynomial time algorithm to decide controllability. In
fact, we are able to characterize the uncontrollable systems
as follows:

Theorem 2. Let A, b,D represent a system as in (1). If A
is a nihilpotent matrix, then the system is uncontrollable,
except if A is (similar to) a 2 × 2 Jordan block and the
set of delays has only two different delays, of equal parity.
In that case the minimal look-ahead needed to guarantee
controllability is equal to dmax.

Corollary 1. If A is a nihilpotent matrix, there is a poly-
nomial time algorithm to decide whether System (1) is
controllable with arbitrarily large lookahead.

The following corollary is directly implied by the above
corollary and by the results in Jungers et al. [2014].
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Corollary 2. Given any A, b,D there is an algorithm to
decide in finite time whether the system is controllable
with arbitrarily large lookahead.

Remark 2. In practice our algorithm for nihilpotent ma-
trices is a constant time algorithm: we basically provide
a characterization of the pathological uncontrollable sit-
uations, and the algorithm can check these conditions in
essentially constant time, independently of the state space
dimension or the precise values of the delays.

4. DELAY INDEPENDENT CONTROLLER DESIGN

When the controller cannot chose the look-ahead the
design problem is trickier. In particular, when the look-
ahead is zero, one has to design a single controller that
would work for any possible switching signal. In this
section we make some initial steps to tackle the design
problem in the delay independent case, and present an
example for which there is a nonlinear controller which
works better than any linear controller. An asset of our
nonlinear controller is that it can detect at time t + 1
the switching signal σ(t) using the state-space measure
x(t+ 1) as a proxy, and make use of it in order to improve
the next control signals. Our result implies that restricting
oneself to linear controllers leads to conservativeness. This
is, to our knowledge, the first example of that kind.
It shows that, contrary to what has been done until
now in the switching systems literature, one should not
restrict his search to linear controllers in order to avoid
conservativeness.

Example 1. The system in this example is a rotation of an
angle α :

A =

(
cos (α) −sin (α)
sin (α) cos (α)

)
, B =

(
1
0

)
.

The set of delays is D = {0, 1}, and the controller is
delay-independent. We show in the next theorem that this
system is stabilizable with a rate of decay equal to 0.69 . . . ,
but no linear controller can achieve a rate smaller than
0.755 . . . .

Theorem 3. For the system from Example 1, there are
values of α such that if the system is stabilized with a
linear controller, one cannot guarantee the existence of a
constant K such that

x(t) ≤ Kρt

for any ρ < 0.755 . . . . However, there is a nonlinear
controller that allows such a guarantee with ρ = 0.69 . . . .

5. CONCLUSION

Motivated by applications in wireless control networks,
we continue in this paper a research line where we intro-
duced and analyzed a new model of linear time invariant
(LTI) systems with switching delays. These systems can
be represented as particular switching systems, but in
terms of difficulty, they seem to lie halfway between easy
LTI systems, for which closed form formulas or efficient
algorithms are available for most control questions, and
switching systems, for which even the simplest questions
are intractable, or bound to conservative solutions.

Contrary to what has been done in the recent literature,
our goal was not to apply or adapt switching systems-
oriented techniques to our systems, but rather to develop

methods that would take advantage of the algebraic struc-
ture of these particular switching systems.
We have provided an analytical characterization of control-
lable systems when enough delays are known in advance.
This condition is more complex than for LTI systems, but
yet, allows for an algebraic characterization of controllable
systems.
On the contrary, we have shown that in general, unlike LTI
systems, ours can need nonlinear strategies in order to be
stabilized, if there is a limit on the number of forthcoming
delays that the controller can know in advance. We believe
that this type of results will be useful in forthcoming
applications, where the design of the controller and of
the communication protocol (i.e. the routing policy) are
tangled, as for instance in a multi-hop networked control
system.

On top of their practical usefulness, we believe that the
questions we investigate are promising for theoretical re-
search, as they necessitate new theoretical ideas in order
to answer classical control questions, but yet, they seem
to allow for closed form characterizations and algorithmic
decision procedures (as opposed to Lyapunov-like meth-
ods, which are prevalent for switching systems and are
often bound to conservativeness and lack of structure).
Our future research will focus on characterizing the com-
putational complexity of the controllability verification
problem and algorithmic optimal design of non-linear con-
trollers.
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