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Abstract: In this paper the problem of adaptive observer design in the presence of disturbances
is studied, and an augmented adaptive observer is proposed. First, the H∞ gain of a conventional
adaptive observer is estimated, which characterizes the effect of disturbances on output errors.
Next, it is shown that if the disturbance is “matched” in the plant equations, then it is possible
to introduce additional sliding-mode feedback, dependent on the plant output, improving the
accuracy of observation. Simulation results confirm the improvement.

1. INTRODUCTION

The problem of adaptive observer design for nonlinear sys-
tems is very challenging Besanon [2007]. In this situation
the observer has to generate estimates of the vector of
unknown parameters and unmeasured state components.
Almost all solutions are based on special canonical repre-
sentations of the uncertain nonlinear systems, that allows
the observer to be designed. An important obstacle is the
relative degree between the output signal and the vector
of unknown parameters (i.e. the number of derivatives of
the output required, before the direct dependence on the
vector of unknown parameters is obtained). The observers
designed in the case when the degree is one Fradkov et al.
[2000] and for the higher relative degree case Fradkov et al.
[2002], Xu and Zhang [2004], Zhang [2002], Efimov [2004]
have completely different structures, and the dimension of
the observers in the latter case is much higher.

The structure of the observer proposed in Zhang [2002]
for the high relative degree case is quite sophisticated,
and strongly related to a canonical form of the plant
equations. A small modification to the plant structure
may render the observer design impossible. To overcome
this limitation, a deviation of equations of the real system
from the canonical form can be modeled by external
disturbances. These disturbances have to be bounded,
but in some situations it is hard to assume that the
disturbance is sufficiently small. Thus it is necessary to
ensure robustness of the designed observers with respect
to such a disturbance.
? This work was supported in part by the Government of Russian
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There exist a number of solutions aimed at improving the
robustness in nonlinear systems by applying dynamic or
static feedback. Some very promising solutions have been
obtained in the area of sliding mode theory since sliding
mode feedback is able to fully compensate for matched
disturbances even granting the closed loop system finite-
time stability Shtessel et al. [2013]. Recently the sliding
mode approach has been successfully applied to adaptive
observer design for the case of relative degree one Yan
and Edwards [2008], but the application of this theory
for adaptive observer design with a high relative degree is
somewhat complicated due to the fixed observer structure.
In this paper a method is presented for modifying the
adaptive observer from Zhang [2002] using a sliding-mode
feedback in the spirit of Yan and Edwards [2008], that
allows us to improve the level of observer robustness with
respect to some matched disturbances.

The paper is structured as follows. The adaptive observer
equations and the problem statement are given in Section
2. The H∞ gain of the adaptive observer from Zhang
[2002] is computed in Section 3. Then the sliding-mode
feedback methodology is applied in Section 4. An example
of a computer simulation (for a nonlinear pendulum) is
presented in Section 5 to demonstrate the efficacy of the
approach.

2. PROBLEM STATEMENT

Consider the following uncertain nonlinear system:

ẋ = Ax+ φ(y, u) +G(y, u)θ +Bv, y = Cx, (1)

where x ∈ Rn, y ∈ Rp, u ∈ Rm are the state, the
output and the control respectively, θ ∈ Rq is the vector
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of unknown parameters, v ∈ Rs is the vector of external
disturbances and v : R+ → Rs is a (Lebesgue) measurable
function of time; the matrices A, B, C are known and have
corresponding dimensions, the functions φ : Rp+m → Rn
and G : Rp+m → Rn×q are also assumed to be known and
ensure uniqueness and existence of the system (1) solutions
at least locally.

The symbol |x| denotes the Euclidean norm of a vector x
(for a matrix A the symbol |A| denotes the induced matrix
norm), and for the (Lebesgue) measurable functions v :
R+ → Rs, the norm is defined as ||v|| = ess supt≥0{|v(t)|}.
For a matrix function A : R+ → Rs×q we denote
||A|| = ‖|A(t)|‖. The identity matrix of dimension n×n is
denoted as In. The symbols λmin(A), λmax(A) represent
the minimal and maximal eigenvalues of a symmetric
matrix A ∈ Rn×n.

In this work we will assume that all external and internal
signals in the system (1) are bounded:

Assumption 1. ||x|| < +∞, ||v|| < +∞, ||u|| < +∞.

Although assumed to be bounded, the disturbance v may
have a large amplitude, and therefore special attenuation
techniques have to be applied to ensure reliable estimates
for the states in system (1).

The objective of this work is to design an adaptive observer
for (1) under the conditions of Assumption 1. The observer
has to provide estimates of the vectors x and θ with
an improved degree of robustness with respect to the
external disturbance v. The proposed design procedure is
completed in two steps. Firstly, an adaptive observer is
designed such that the H∞ gain between the disturbances
and the output errors is calculated (and thus it can be
minimized). Secondly, an additional sliding mode output
injection is applied to further reduce the influence of
the disturbance components which cannot be completely
rejected by the first step. The proof of stability is given
for each case. An analysis of the structure of the resulting
observers suggests that the augmented adaptive observer
behaves better than the conventional adaptive observer
withH∞ gain optimization. The simulation results confirm
this.

An adaptive observer for the system (1) has been proposed
in Zhang [2002], and takes the form:

ż = Az + φ(y, u) +G(y, u)θ̂ + L(y − Cz) + Ω
˙̂
θ, (2)

where
Ω̇ = (A− LC)Ω +G(y, u),

˙̂
θ = γΩTCT (y − Cz).

(3)

In (2)–(3), z ∈ Rn is the estimate of x, θ̂ ∈ Rq is
the estimate of θ, and Ω ∈ Rn×q is an auxiliary/filter
variable, that helps overcome possible high relative degree
obstructions in system (1). In (3) γ > 0 is a design
parameter, and L is the observer gain that is chosen to
ensure a Hurwitz property for the matrix A − LC. The
analysis of the estimation abilities of the observer in (2),

(3) is based on the errors δ = x − z + Ωθ̃ and θ̃ = θ̂ − θ
whose dynamics can be shown to have the form:

δ̇ = (A− LC)δ +Bv, (4)

˙̃
θ= γΩTCT (Cδ − CΩθ̃). (5)

From equation (4) we conclude that δ → 0 for v = 0 and
the variable δ stays bounded for any bounded disturbance
v. The Hurwitz property of the matrix A − LC and
Assumption 1 imply boundedness of the variable Ω. If
the signal G(y, u) is persistently exciting (PE) Anderson
[1977], Yuan and Wonham [1977], then due to the filtering
property of the variable Ω, the variable CΩ is also PE.
Moreover, it is possible to show Efimov [2004] that for any

bounded signal Cδ, the variable θ̃ has a bounded response,
and if Cδ → 0, then θ̃ → 0 also. Since as a consequence
of Assumption 1 the variables x, δ, θ̃ and Ω are bounded,
the variable z is also bounded according to the definition
of δ. In addition, it is easy to verify that if θ̃ → 0, then

z → x. Thus, we have shown that the variables z, Ω and θ̂
stay bounded for any bounded disturbance v, and for the

case when v = 0 the estimates θ̂ and z converge to their
ideal values θ and x respectively. Thus the proof is based
on general stability arguments, and no strict Lyapunov
function has been proposed.

To improve the accuracy of estimation in the observer
(2)–(3), one can design the matrix L optimizing the H∞
gain of the system (C,A − LC,B) Henry and Zolghadri
[2005]. In this case the influence of the disturbance v on the
output Cδ of the system in (4) is minimized, and implies

a proportional amelioration of the error θ̃ in (5). This will
be proven formally in Section 3 below. Moreover, it will be
shown that if v is a Lipschitz function of x, then by proper
selection of L it is possible to attenuate the disturbance v.
If the amplitude of the disturbance v is large, then such
an optimization could be insufficient. This problem can be
addressed by modifying equation (2): this approach is later
demonstrated in Section 4 using a sliding mode technique.

3. CONVENTIONAL ADAPTIVE OBSERVER

First let us show that the system in (5) is input-to-state
stable with respect to the input Cδ.

Lemma 1. Let the variable ΩTCT be PE and bounded, i.e.
0 < ρ = ||CΩ|| < +∞ and there exist constants ϑ > 0 and
` > 0 such that∫ t+`

t

Ω(τ)TCTCΩ(τ)dτ ≥ ϑIq ∀t ≥ 0.

Then

a) there exists a continuous symmetric matrix function
P : R+ → Rq×q such that ρ−2Iq ≤ 2γP (t) ≤ αIq for
all t ≥ 0, where α = γη−1e2η` and η = −0.5`−1 ln(1 −

γϑ
1+γ2`2ρ4 );

b) for all t ≥ 0

Ṗ (t)−γP (t)Ω(t)TCTCΩ(t)−γΩ(t)TCTCΩ(t)P (t)+Iq = 0;

c) for S(t, θ̃) = θ̃TP (t)θ̃ we have for all θ̃ ∈ Rq, δ ∈ Rn
and t ≥ 0

Ṡ ≤ −γα−1S + 0.5ρ2α2|Cδ|2.

In addition, for all θ̃(0) ∈ Rq and all t ≥ 0 the following
estimate is satisfied:

|θ̃(t)| ≤ ρ
√
α[e−0.5γα−1t|θ̃(0)|+ ρα||Cδ||].

The proof is omitted for brevity.
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Remark 2. This lemma also provides an estimate on the
fastest rate of decrease of the parametric estimation er-
ror θ̃(t). Indeed, the rate of decrease equals 0.5γα−1 =
0.5ηe−2η` = g(η), where the function g(η) for η > 0
has the unique maximum value gmax = 0.25`−1e−1 at
ηopt = 0.5`−1. However, as shown in the proof of Lemma
1, 0 < η ≤ ηmax = 0.5`−1 ln 2. Since ηopt > ηmax and the
function g(η) is strictly increasing for 0 < η ≤ ηopt, then
the maximal rate of error decrease that can be reached is
g(ηmax) = 0.125`−1 ln 2.

Note that in order to use these estimates we have to know
the value of the coefficient ρ. The existence of such a ρ
follows from Assumption 1 for the Hurwitz matrix A−LC,
but to compute it we have to know ||x||, which is assumed
to be unavailable.

Theorem 3. Suppose Assumption 1 is satisfied, the vari-
able ΩTCT is PE, i.e. there exist constants ϑ > 0 and
` > 0 such that∫ t+`

t

Ω(τ)TCTCΩ(τ)dτ ≥ ϑIq ∀t ≥ 0,

and there exists a n×nmatrixW = WT > 0 and constants
r > 0, h > 0 such that

(A− LC)TW +W (A− LC) + 0.5rα2CTC

+hWBBTW + γα−1W ≤ 0, (6)

where α = γη−1e2η`, η = −0.5`−1 ln(1 − γϑ
1+γ2`2||CΩ||4 )

and γ > 0. Then in system (1), (2), (3) all solutions are
bounded for all t ≥ 0, and[
|x(t)− z(t)|
|θ̃(t)|

]
≤(1 + ||Ω||){

√
α2

α1
e0.5γα−1t

∣∣∣∣[ δ(0)

θ̃(0)

]∣∣∣∣
+

√
α

α1γh
||v||},

where α1 = min{λmin(W ), 0.5rγ−1||CΩ||−4}, α2 =
max{λmax(W ), 0.5r||CΩ||−2γ−1α}.

Proof. It follows from Assumption 1 the variable Ω is
bounded for any Hurwitz matrix A − LC (the stability
of this matrix follows from the Riccati equation for the
matrix W ), and it is also a continuous matrix function of
time. Define ρ = ||CΩ|| < +∞. Consider as a candidate
Lyapunov function V (δ) = δTWδ, then

V̇ = δT [(A− LC)TW +W (A− LC)]δ + 2δTWBv.

Note that 2δTWBv ≤ hδTWBBTWδ + h−1vT v, then

V̇ ≤ δT [(A− LC)TW +W (A− LC)

+hWBBTW ]δ + h−1|v|2.
Define U(t, δ, θ̃) = V (δ)+rρ−2S(t, θ̃), then using the result
of Lemma 1 we have

U̇ ≤ δT [(A− LC)TW +W (A− LC) + hWBBTW ]δ

−γrρ−2α−1S + 0.5rα2|Cδ|2 + h−1|v|2

≤ δT [(A− LC)TW +W (A− LC) + 0.5rα2CTC

+hWBBTW ]δ − γrρ−2α−1S + h−1|v|2

≤ δT [(A− LC)TW +W (A− LC) + 0.5rα2CTC

+hWBBTW + γα−1W ]δ − γα−1U + h−1|v|2

≤−γα−1U + h−1|v|2.

Note that according to the result of Lemma 1 the following
inequalities hold:

λmin(W )|δ|2 + 0.5rγ−1ρ−4|θ̃|2 ≤ U(t, δ, θ̃)

≤ λmax(W )|δ|2 + 0.5rρ−2γ−1α|θ̃|2.
Therefore, for all δ(0) ∈ Rn and θ̃(0) ∈ Rq, and for all
t ≥ 0 we obtain:∣∣∣∣[ δ(t)θ̃(t)

]∣∣∣∣ ≤√α2

α1
e0.5γα−1t

∣∣∣∣[ δ(0)

θ̃(0)

]∣∣∣∣+

√
α

α1γh
||v||.

Since the variables x, δ, Ω and θ̃ are bounded, then the
variable z has the same property (z = x− δ+ Ωθ̃), and in
addition

|x(t)− z(t)| ≤ |δ(t)|+ ||Ω|| |θ̃(t)|

≤ (1 + ||Ω||)
∣∣∣∣[ δ(t)θ̃(t)

]∣∣∣∣ ,
which gives the required estimate.

This theorem estimates the H∞ gain of the observer from
the input v to the estimation errors θ̃ and x − z. A
minor modification of the LMI for W in Theorem 3 is
needed in order to ensure the H∞ gain from v to a generic
output Z(x − z), where Z is a matrix (this modification
is omitted). Next, a minimization of the H∞ gain can be
performed, using the nonlinear optimization routines (the
detailed presentation of this part is skipped for brevity).

The Riccati equation (6) depends on α which is a function
of the PE parameters `, ϑ and ρ, which can be unknown
a priori. However, this equation can be rewritten as

(A− LC)TW +W (A− LC) + r1C
TC

+hWBBTW + r2W ≤ 0,

where r1 = 0.5rα2 and r2 = γα−1 are the new tuning
parameters. If this Riccati inequality is satisfied for some
h > 0, r1 > 0 and r2 > 0, and the PE property is true for
ΩTCT , then there exist γ > 0 and r > 0 such that (6) is
satisfied.

Remark 4. It is straightforward to verify that if the distur-
bance v contains a globally Lipschitz nonlinear function of
the state, then augmenting the value of h, and introducing
a minor modification in (2), it is possible to attenuate this
type of uncertainty. Indeed, let v(t) = µ(x) + ṽ(t), where
µ : R→ Rs is a function which for any x, x′ ∈ Rn satisfies
the inequality |µ(x)−µ(x′)| ≤ Lµ|x− x′| for some Lµ > 0
and ṽ : R+ → Rs is a new bounded exogenous input.
Then introducing in (2) an additional term Bµ(z) and
solving the LMI of Theorem 3 for a sufficiently large value
of h > 0, complete compensation of the influence of µ(x)
can be achieved.

4. SLIDING-MODE ADAPTIVE OBSERVER

In this case the observer equation (2) is modified as follows:

ż = Az + φ(y, u) +G(y, u)θ̂ + L(y − Cz) + Ω
˙̂
θ

+kB sign[F (y − Cz)],
(7)

where k > 0 is a design constant, F ∈ Rn×p is a matrix to
be designed and sign[v] = v/|v| for a vector v ∈ Rm.

Theorem 5. Let assumption 1 be satisfied and let k = ||v||.
Assume the variable ΩTCT is PE, i.e. there exist ϑ > 0
and ` > 0 such that
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∫ t+`

t

Ω(τ)TCTCΩ(τ)dτ ≥ ϑIq ∀t ≥ 0,

and suppose there exists a matrix W = WT > 0, a matrix
F ∈ Rn×p and constants r > 0, ω > 0 such that

(A− LC)TW +W (A− LC) + γα−1W

+(0.5rα2 + ω)CTC ≤ 0, (8)

WB = CTFT ,

where

α = γη−1e2η`, γ > 0,

η = −0.5`−1 ln(1− γϑ

1 + γ2`2||CΩ||4
).

Then in the system (1), (3), (7), all variables z, Ω and θ̃
are bounded and[
|x(t)− z(t)|
|θ̃(t)|

]
≤ (1 + ||Ω||)(

√
α2

α1
e−0.5γα−1κt

∣∣∣∣[ δ(0)

θ̃(0)

]∣∣∣∣
+2

√
α

α1ωγκ
|F | ||v||).

where κ = 0.5r
0.5r+ω||CΩ||2 ,

α1 = min{λmin(W ), γ−1(0.5r||CΩ||−4 + ω)},
α2 = max{λmax(W ), γ−1(0.5r||CΩ||−2 + ω)α}.

Proof. As in the previous theorem the variable Ω is
bounded for any Hurwitz matrix A − LC (the stability
of this matrix follows from the Lyapunov equation for the
matrix W ) and let ρ = ||CΩ||. The error δ = x − z + Ωθ̃
for the system (1), (3), (7) has the following dynamics:

δ̇ = (A− LC)δ +B{v − k sign[F (y − Cz)]}.
Consider three Lyapunov function components given by
V (δ) = δTWδ, Z(θ̃) = γ−1θ̃T θ̃ and S(t, θ̃) = θ̃TS(t)θ̃.
These have the property that

V̇ = δT [(A− LC)TW +W (A− LC)]δ +

+2δTCTFT {v − k sign[F (y − Cz)]}
≤−δT [γα−1W + (0.5rα2 + ω)CTC]δ

+2[y − Cz]TFT {v − k sign[F (y − Cz)]}
+2θ̃TΩTCTFT {v − k sign[F (y − Cz)]}
≤−δT [γα−1W + (0.5rα2 + ω)CTC]δ

+4|θ̃TΩTCT | |F | ||v||
Ż = 2θ̃TΩTCT (Cδ − CΩθ̃)

≤ |Cδ|2 − |θ̃TΩTCT |2

Ṡ ≤−0.5θ̃T θ̃ + 0.5ρ2α2|Cδ|2.
Introduce a new candidate Lyapunov function given by
U(t, δ, θ̃) = V (δ) + ωZ(θ̃) + rρ−2S(t, θ̃), then we obtain

U̇ ≤−γα−1δTWδ − 0.5rρ−2θ̃T θ̃

+4|θ̃TΩTCT | |F | ||v|| − ω|θ̃TΩTCT |2

≤−γα−1δTWδ − 0.5rρ−2θ̃T θ̃ + 4ω−1|F |2||v||2,
where the inequality 4s|F | |v||−ωs2 ≤ 4|F |2||v||2/ω, which
is satisfied for all s ∈ R+, has been used in the last step of
transformations. Since

γ−1(0.5rρ−4 + ω)|θ̃|2 ≤ ωZ(θ̃) + rρ−2S(t, θ̃)

≤ γ−1(0.5rρ−2 + ω)α|θ̃|2,

we finally obtain

U̇ ≤ −γα−1κU + 4ω−1|F |2||v||2,
and for all t ≥ 0∣∣∣∣[ δ(t)θ̃(t)

]∣∣∣∣≤√α2

α1
e−0.5γα−1κt

∣∣∣∣[ δ(0)

θ̃(0)

]∣∣∣∣
+2

√
α

α1ωγκ
|F | ||v||.

According to the proof above, the variables x, δ, Ω and
θ̃ are bounded, consequently the variable z has the same
property (z = x− δ + Ωθ̃), and again

|x(t)− z(t)| ≤ (1 + ||Ω||)
∣∣∣∣[ δ(t)θ̃(t)

]∣∣∣∣ ,
which gives the required estimate.

Remark 6. Comparing with the case of Theorem 3, in
Theorem 5, the accuracy of estimation is improved, since in
part, the disturbance v is compensated by sign(·). Indeed,
the dynamics of the state estimation error e = x−z yields
the following differential equation

ė= (A− [L+ γΩΩTCT ]C)e−G(y, u)θ̃

+B[v − ksign(FCe)],

which for k = 0 reduces to (2). Consider the Lyapunov
function V (e) = eTWe, then

V̇ ≤ eT {(A− LC)TW +W (A− LC)}e
+2eTCTFT (v − ksign(FCe))

−2eTW [γΩΩTCTCe+G(y, u)θ̃]

≤ eT {(A− LC)TW +W (A− LC)}e
−2|FCe|(k − ||v||)
−2eTW [γΩΩTCTCe+G(y, u)θ̃].

Therefore, for the observer in (7), with k = ||v||, the term
proportional to |FCe| disappears and the influence of v is
cancelled. The Lyapunov equation for the matrix W is also
simpler than in the case of Theorem 5 (and an additional
decision variable F appears).

In order to find a solution to the LMI in (8) we have to
reformulate it, to avoid direct dependence on α. To this
end it can be rewritten as follows:

(A− LC)TW +W (A− LC) + r1C
TC + r2W ≤ 0,

where r1 = (0.5rα2 + ω) and r2 = γα−1 are new tuning
parameters.

Remark 7. The introduction of the “structural constraint”
WB = CTFT in (8) imposes limitation on the case
of triple (A,B,C) to which these results are applicable.
However a constructive approach to solving such problems
is given in Edwards et al. [2007]. Equivalent conditions can
be found in Lemma 1 of Efimov and Fradkov [2006].
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5. EXAMPLE

Consider a nonlinear pendulum:

n = 2, A =

[
0 1
0 −β

]
, B =

[
1
0

]
, C = [1 0] ,

φ(y, u) =

[
0

u−$2 sin(y)

]
, G(y, u) =

[
0

sin(y)

]
,

v(t) = sin(2t).

The values of the parameters are $ = 1, β = 0.1, θ = 0.5.
Let L = [10, 0]T , then if P = diag[1, 10] all the conditions
of Theorem 3 hold for h = 10, r1 = 40 and r2 = 0.2. The
conditions of Theorem 5 are satisfied for F = 1, r1 = 50
and r2 = 0.2. In both cases the simulations have been
performed for γ = 20.

The results of the numerical experiments are presented in
figures 1 and 2. The parameter estimates are shown in
Fig. 1, and the variable e2 = x2 − z2 is plotted in Fig. 2.
The trajectories of the conventional observer (2),(3) are
denoted by solid lines (red), whilst the trajectories of the
sliding-mode observer (3),(7) are denoted by dashed lines
(blue). It can be seen from these results the sliding mode
observer (3),(7) ensures better attenuation of disturbances.

  

θ
⌢

 

0 10 20 30 40 t 
0.2 − 

0 

0.2 

0.4 

0.6 

0.8 

Fig. 1. The estimates of unknown parameter

  

2e  

0 10 20 30 40 t 
1 − 

0.5 − 

0 

0.5 

Fig. 2. The unmeasured state component estimation error

6. CONCLUSIONS

The problem studied in this paper is that of improving the
performance of the adaptive observer originally proposed
in Zhang [2002]. Following Yan and Edwards [2008], a
scheme augmented by including a sliding mode term is
proposed. First, the H∞ gain with respect to external
disturbances is evaluated to minimize the effect of distur-
bances on the output errors in a H∞ sense. Next, a sliding-
mode modification of the adaptive observer equations from
Zhang [2002] is proposed in order to improve disturbance
attenuation. The conditions for stability of the new scheme
have been established. Numerical simulations confirm the
accuracy improvement obtained from the newly proposed
observer with respect to that proposed in Zhang [2002].
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