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Abstract: We propose an optimal allocation and reservation system for Electric Vehicles (EVs)
at charging stations distributed in an urban environment. The system assigns and reserves an
optimal space at a charging station based on the user’s cost function that combines proximity
to current location (or destination) and charging cost. Our approach is motivated by a similar
system we have developed for “smart parking”, where resources are parking spaces rather than
EV charging station spaces. We solve a Mixed Integer Linear Program (MILP) problem at each
assignment decision point over time. The solution of each MILP is an optimal allocation based
on current state information, and is updated at the next decision point. Formal guarantees are
included that there is no resource reservation conflict and that no user is ever assigned a resource
with a higher than this user’s current cost function value. Simulation results are included to
illustrate how our system, compared to uncontrolled processes or guidance-based approaches,
reduces the average time to find a charging space and the associated user cost, while the overall
charging space capacity is more efficiently utilized.

1. INTRODUCTION

The increasing popularity of battery-powered vehicles
(BPVs) has set the stage for a variety of research prob-
lems stemming from four major BPV characteristics: lim-
ited cruising range, long charge times, sparse coverage of
charging stations, and their energy recuperation ability
[Artmeier et al. (2010)] which can be exploited. Focusing
on the problem of recharging Electric Vehicles (EVs), the
sparsity of charging stations makes it critical for an EV to
identify an optimal station given its current location, desti-
nation, and charge state. Moreover, the limited capacity of
charging spaces at a station creates an additional difficulty
similar to the classic parking problem: it is estimated that,
on a daily basis, 30% of vehicles on the road in downtown
areas of major cities are cruising for a parking spot and it
takes an average of 7.8 minutes to find one [Arnott et al.
(2005)]. This causes not only a waste of time and fuel (or
battery energy) for drivers looking for parking, but it also
contributes to additional waste of time and fuel for other
drivers as a result of traffic congestion. For example, it
has been reported by Shoup (2005) that over one year
in a small Los Angeles business district, cars cruising
for parking created the equivalent of 38 trips around the
world, burning 47, 000 gallons of gasoline and producing
730 tons of carbon dioxide. This problem is exacerbated
by the presence of EVs requiring “charging spaces” which
in fact are sometimes dedicated on-street parking spaces
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in urban areas and may be incorporated into the overall
parking problem to be dealt with.

The parking problem has been addressed over the past
decade through so-called Parking Guidance and Informa-
tion (PGI) systems. PGI systems present drivers with
dynamic information on parking within controlled areas
and direct them to vacant parking spots. Parking informa-
tion may be displayed on variable-message signs (VMS)
at major roads, streets, and intersections, or it may be
disseminated through the Internet [Streetline (2012); Grif-
fith (2000); Teodorovic and Lucic (2006)]. PGI systems are
based on the development of autonomous vehicle detection
and parking space monitoring, typically through the use
of sensors placed in the vicinity of parking spaces for ve-
hicle detection and surveillance, e.g., see Parkhelp (2012);
Cheung and Varaiya (2007); Mimbela and Klein (2000).
However, it has been found that using PGI systems,
system-wide reductions in travel time and vehicle benefits
may be relatively small [Thompson and Bonsall (1997)].
As pointed out in [Geng and Cassandras (2013)], current
guidance-based systems have several shortcomings. For
example, drivers may not find vacant parking spots by
merely following a VMS; drivers may miss a better parking
spot; and parking space utilization becomes imbalanced.
Most importantly, these systems may in fact cause added
traffic congestion by guiding drivers to an area with a few
attractive spaces which only a subset of these drivers can
occupy while the rest contribute to congestion in the area.
In the case of EV charging stations, the same problem
arises if several vehicles are guided to a specific station
with a limited numbers of spaces.
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In this paper, we propose an approach which parallels
a “smart parking” system developed in [Geng and Cas-
sandras (2013)] and which is specifically designed for EV
charging stations. This system explicitly allocates and re-
serves optimal EV charging spaces for its users, as op-
posed to simply guiding them to a space that may not
be available by the time it is reached. The allocation
is based on the user’s objective function that combines
proximity to the EV’s current location (or its ultimate
destination) and the charging cost, while also ensuring that
the overall charging space capacity is efficiently utilized
with a built-in “fairness” guarantee. Similar to the parking
problem [Teodorovic and Lucic (2006)], it is also possible
to dynamically control the price of charging spaces so as
to further alleviate congestion.

The rest of the paper is organized as follows. In Section
2, we introduce the framework for our system by adopting
the key features of the “smart parking” system developed
in [Geng and Cassandras (2013)]. In Section 3, we describe
the dynamic resource allocation model and formulate the
MILP problem which is solved at every decision point
with certain performance guarantees. Simulation results
are presented in Section 4.

2. SYSTEM FRAMEWORK

Our proposed system for optimal EV charging space
allocation and reservation adopts the basic structure of a
“smart parking” system in [Geng and Cassandras (2013)].
The system includes a Request Processing Center (RPC)
and a Space Allocation Center (SAC). A central Resource
Management Center (RMC) collects and updates all real-
time charging station information, and disseminates it
via VMS or Internet. The RPC collects EV charging
requests from users and real-time information (e.g., EV
location), keeps track of user allocation status, and sends
back assignment results to users. The SAC communicates
with both the RPC and RMC: based on the user requests
from the RPC and the resource states (i.e., the availability
of spaces at charging stations) from the RMC, the SAC
makes assignment decisions and allocates and reserves
charging station spaces to users.

The basic allocation process (to be precisely modeled
and analyzed in the next section) is described as follows.
Users (i.e., EV drivers) who are looking for charging
station spaces send requests to the RPC. A request is
accompanied by two requirements: (i) a constraint (upper
bound) on the charging rate cost and (ii) a constraint
(upper bound) on the distance between a charging space
and the EV’s current location (or its eventual destination).
It also contains the user’s basic information such as license
number, current location, car size, etc. The SAC collects
all user requests in the PRC over a certain time window
and makes an overall allocation at decision points in
time, seeking to optimize a combination of user-specific
and system-wide objectives. An assigned charging space
is sent back to each user through the RPC. If a user is
satisfied with the assignment, he has the choice to reserve
that space. Once a reservation is made, the user still has
opportunities to obtain a better space (with a guarantee
that it can never be worse than the current one) before
the current assigned space is reached. The RMC then

updates the corresponding space state from vacant to
reserved, and provides the guarantee that other users have
no permission to take that space. If a user is not satisfied
with the assignment (either because of limited systemwide
resources or his own overly restrictive requirements) or if
he fails to accept it for any other reason, he has to wait
until the next decision point. During intervals between
allocation decisions made by the SAC, users with no
charging space assignment have the opportunity to change
their cost or distance requirements, possibly to increase the
chance to be allocated if the system is highly utilized (it is
of course possible that no space is ever assigned to a user).

In order to physically realize this system, there are four
main requirements.

(1) Charging Space Detection. First, the SAC has
to know the state of all charging spaces. Current sensing
technologies make monitoring parking or charging station
spaces implementable; for example, in the “smart park-
ing” system currently implemented at Boston University
(see [Geng and Cassandras (2013)]), both induction loop
sensors placed on the ground at individual parking spaces
and cameras are used. In addition, standard GPS technol-
ogy provides accurate localization and speed estimates of
vehicles [Mimbela and Klein (2000)].

(2) Vehicle-Allocation Center Communication. The
second requirement involves effective wireless communica-
tion between EVs and the SAC. This is also achievable
through existing wireless networks that may be propri-
etary or part of cellular telephone service providers. Once
a user sends out a request, the system will send back space
allocation results based on his preferences and the state of
the system. There are two possible allocation results: (i)
If the system fails to find a charging space, a notification
asks the user to wait for the next allocation time with an
appropriate justification, e.g., there are no vacant spaces
or the user’s requirements are too restrictive. The user may
then either release his request by changing his preferences
to increase the chance to be allocated, or simply wait. (ii)
If a space is allocated, the user may accept it or reject it
and adjust his requirements. If the user is satisfied with
the allocation, then the system reserves that space for
him and driving directions to the reserved space are given
through standard guidance methods (usually through a
smartphone application as in the “smart parking” system
in [Geng and Cassandras (2013)]. Note that while driving
towards the assigned space the system may notify the
user about a better space for him based on his real-time
position. The driver needs to respond and tell the system
whether he/she accepts it or not.

(3) Reservation Guarantee In order to implement this
key system function, when a space is reserved by the
user the system must guarantee that this will not be
taken by other vehicles. This is achievable through wireless
technology interfacing a vehicle with hardware that makes
a space accessible only to the user who has reserved it
(e.g., gates, “folding barriers,” and obstacles that emerge
from and retract to the ground). However, this approach
incurs significant infrastructure costs. A simpler scheme is
to use a light system placed at each space, where different
colors indicate different states. In [Geng and Cassandras
(2013)], a GREEN light indicates that a vacant space is
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available for any user, a RED light indicates that the space
is reserved by another user, a blinking YELLOW light
attracts a driver in the vicinity who has reserved that
space, and a blinking RED light notifies a user who is
accessing a space reserved by someone else. An LED light
with a wireless sensor node is placed at each space. When
a user is approaching the space reserved for him, this is
automatically detected by the GPS data sent from the
device used to make the request (typically, a smartphone)
and the sensor node switches the light at his reserved
spot from RED to blinking YELLOW. After accessing
the space, the light goes off until the vehicle leaves and
returns to its GREEN state or RED state if the space
is reserved. Further details on the complete supervisory
control mechanism for the light system are provided in
[Geng and Cassandras (2013)].

(4) Optimal Allocation. This is carried out through
an efficient allocation algorithm executed at the SAC.
In what follows, we will concentrate on the methodology
that enables us to make optimal space allocations and
reservations and the specific algorithm developed for this
purpose.

3. DYNAMIC RESOURCE ALLOCATION MODEL

For simplicity, we will employ the term “user” when refer-
ring to EVs or their drivers and the term “resource” when
referring to charging spaces. We adopt a queueing model
for the problem as shown in Fig. 1 (introduced in [Geng
and Cassandras (2013)]), where there are N resources and
every user arrives randomly and independently to join an
infinite-capacity queue (labeled WAIT) and waits to be
assigned. At the kth decision point occurring at time tk,
the system makes allocations for all users in both the wait-
ing queue and the queue (labeled RESERVE) of users who
have already been assigned and have reserved a resource
from a prior decision point. If a user in WAIT is success-
fully assigned a resource, he joins the RESERVE queue,
otherwise he remains in WAIT. A user in RESERVE may
be assigned a different resource after a decision point and
returns to the same queue until he can physically reach
the resource and occupy it. A user leaves the system after
occupying a resource for some amount of time at which
point the resource becomes free again.

Fig. 1. Queueing Model for Dynamic Resource Allocation

At the kth decision point we define the state of the
allocation system, X(k), and the state of the ith user,
Si(k) as explained next. First, we define

X(k) = {W (k), R(k), P (k)}
where W (k) = {i : user i is in the WAIT queue},
R(k) = {i : user i is in the RESERVE queue}, and

P (k) = {p1(k), ..., pN (k)} is a set describing the state
of the jth resource with pj(k) denoting the number of
free spaces at resource j, j = 1, . . . , N . This allows the
possibility that pj(k) > 1 if a resource models a group
of spaces, e.g., a whole charging station, rather than an
individual space; when each resource is identical to a space,
then pj(k) ∈ {0, 1}.
We assume that each resource j has a known location
associated to it denoted by yj ∈ Z ⊂ R2, and its capacity
is nj . We also define

Si(k) = {zi(k), ri(k), qi(k),Ωi(k)}
where zi(k) ∈ Z ⊂ R2 is the location of user i, ri(k) ∈ R+

is the total time that user i has spent in the RESERVE
queue up to the kth decision point (ri(k) = 0 if i ∈W (k)),
and qi(k) is the reservation status of user i:

qi(k) =

{
0 if i ∈W (k)
j if user i is reserving resource j

(1)

Finally, Ωi(k) is a feasible resource set for user i, i.e.,
Ωi(k) ⊆ {1, . . . , N} depending on the requirements set
forth by this user regarding the requested resource. We
will define Ωi(k) in terms of two attributes associated with
user i. The first, denoted by Di, is an upper bound on the
distance between the resource that the user is assigned
and his current location when making a request. This
is a difference between this setting and that of “smart
parking” where a user typically indicates his distance from
a specific driving destination di. Although it is still possible
that a user specifies such a criterion instead, we shall
concentrate in the sequel on the former case. Thus, let
Dij(k) = ‖zi(k)− yj‖ be the distance of the user at the
kth decision point from resource j located at yjwhere ‖·‖
is a suitable distance metric. Then, the constraint

Dij(k) ≤ Di (2)

defines a requirement that contributes to the determina-
tion of Ωi(k) by limiting the set of feasible resources to
those that satisfy (2). Alternatively, we can define the
traveling time tij(k) = f(Dij(k), ω), where ω denotes all
random traffic conditions, and t̄ij(k) the expected travel-
ing time. We can then replace (2) by

t̄ij(k) ≤ Ti (3)

where Ti is an upper bound on the expected traveling time
between the resource that the user is assigned and his
current location when making a request. For simplicity,
in what follows we will adopt (2) with the understanding
that this can readily be replaced by (3).

The second attribute for user i, denoted by Mi, is an upper
bound on the cost this user is willing to tolerate for the
benefit of reserving and subsequently using a resource. The
actual cost depends on the specific pricing scheme adopted
by the allocation system and may include a fee dependent
on the total reservation time and subsequently a fee for
occupying the resource. Our approach does not depend
on the specific pricing scheme used, but we will assume
that each user cost is a function of the total reservation
time ri(k) and the traveling time tij(k) defined above. We
use Mij(ri(k), tij(k)) to denote the total cost for using
resource j, evaluated at the kth decision time, and M̄ij(k)
the associated expected value.. Comparing M̄ij(k) to Mi,
leads to the constraint

M̄ij(k) ≤Mi (4)
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This defines a second requirement that contributes to
the determination of Ωi(k) by limiting the set of feasible
resources to those that satisfy (4). In order to fully specify
Ωi(k), we further define

Γ(k) = {j : pj(k) > 0, j = 1, . . . , N}
to be the set of free and reserved resources at the kth
decision time and set

Ωi(k) = {j : M̄ij(k) ≤Mi, Dij ≤ Di, j ∈ Γ(k)} (5)

Note that this set allows the system to allocate to user i
any resource j ∈ Ωi(k) which satisfies the user’s require-
ments even if it is currently reserved by another user (i.e.,
if pj(k) = m 6= i). If user i provides no requirements,
then Ωi(k) = Γ(k). It is worth pointing out that since
M̄ij(k) is generally an estimate of the cost a user incurs,
it is subject to noise contributed by random traffic events
and, therefore, so is the set Ωi(k) as defined in (5). This
implies that a resource j ∈ Ωi(k) may in fact be such that
j /∈ Ωi(k + l) for some l > 0. Indeed, it is possible that
Ωi(k) 6= ∅ whereas Ωi(k+l) = ∅. In such cases, a user may
perceive as unfair the fact that he is assigned a feasible
resource which ultimately becomes infeasible subject to
his requirements. We will assume that this happens as a
result of uncontrollable random events, in which case the
user must re-enter the allocation system with new Di and
Mi requirement parameters.

We can now concentrate on defining an objective function
which we will seek to minimize at each decision point by
allocating resources to users. We use a weighted sum to
define user i’s cost function, Jij(k), if he is assigned to
resource j, as follows:

Jij(k) = λi
M̄ij(k)

Mi
+ (1− λi)

Dij(k)

Di
(6)

where λi ∈ [0, 1] is a weight that reflects the relative
importance assigned by the user between cost and resource
quality. In the case of charging station space allocation,
resource quality is measured as the distance (or expected
time) between the charging space the user is assigned and
his current location.

From the system’s point of view, the objective is to make
allocations for as many users as possible and, at the same
time, to achieve minimum user cost as measured by Jij(k).
Define binary control variables:

xij =

{
0 if user i is not assigned to resource j
1 if user i is assigned to resource j

(7)

and define the matrix X = [xij ]. We can now formulate
the allocation problem (P) at the kth decision point as
follows:

min
X

∑
i∈W (k)∪R(k)

∑
j∈Ωi(k)

xij · Jij(k) +
∑

i∈W (k)

(1−
∑

j∈Ωi(k)

xij)

(8)
s.t. ∑

j∈Ωi(k)

xij ≤ 1, ∀i ∈W (k) (9)

∑
j∈Ωi(k)

xij = 1, ∀i ∈ R(k) (10)

∑
i∈W (k)∪R(k)

xij ≤ pj(k), ∀j ∈ Γ(k) (11)

∑
j∈Ωi(k)

xij · Jij(k) ≤ Jiqi(k−1)(k), ∀i ∈ R(k) (12)

 ∑
n∈Ωi(k)

xin

− xmj ≥ 0, ∀i, j,m s.t.j ∈ Γ(k), j ∈ Ωi(k),

(13)

m ∈W (k), tmj(k) > tij(k)

xij ∈ {0, 1}, ∀i ∈W (k) ∪R(k), j ∈ Γ(k) (14)

In this problem, the objective function focuses on user
satisfaction. One can formulate alternative versions that
incorporate system-centric objectives such as maximizing
resource utilization or total revenue without affecting the
essence of our approach. If the system fails to allocate a
resource to some user i, i.e.,

∑
j∈Ωi(k) xij = 0, a cost of

1 is added to the objective function. Therefore, the added
term

∑
i∈W (k)(1 −

∑
j∈Ωi(k) xij) in (8) is the total cost

contributed by the number of “unsatisfied” users. Since
by its definition in (6) Jij(k) ≤ 1, the added cost of value
1 is sufficiently large to ensure that a user is assigned to a
resource if there are free qualified resources left.

The constraints (9) indicate that any user in the WAIT
queue may be assigned at most one resource but may
also fail to get an assignment. On the other hand, (10)
still guarantees that each user in the RESERVE queue
maintains a resource assignment. The capacity constraints
(11) ensure that every resource is occupied by no more
than pj(k) users. The constraints (12) add a unique
feature to our problem by guaranteeing that every user
in the RESERVE queue is assigned a resource which is no
worse than the one most recently reserved, i.e., qi(k − 1).
Together (10) and (12) ensure a reservation guarantee and
improvement.

The final constraint (13) imposes a fairness requirement:
as we can see from (9) and (10), a solution of (P) gives
a higher assignment priority to users in the RESERVE
queue. This is because these users are already incurring
a positive cost (recall that the pricing scheme we assume
does not impose a fee to unassigned users, i.e., users still
in the WAIT queue). On the other hand, (9) makes no
distinction among waiting users, regardless of where they
are located. This introduces unfairness among waiting
users. For example, a waiting user may be located right
next to an available resource which, however, is assigned to
another waiting user at a considerably larger distance from
it. To explain (13), consider a resource j which is available
for assignment (i.e., j ∈ Γ(k)) and qualified for user i (i.e.,
j ∈ Ωi(k)). If i fails to be allocated any resource, we have∑
n∈Ωi(k) xin = 0 and (13) requires that xmj = 0, i.e., any

other waiting user m located farther away from j than user
i (i.e., tmj(k) > tij(k)) is forbidden from being assigned
to j. If, on the other hand,

∑
n∈Ωi(k) xin = 1, i.e., user i

is assigned some resource, then xmj ≤ 1, i.e., there is no
constraint on allocating resource j to any user m as long
as condition (11) is satisfied. We also note that there is no
fairness issue related to users in the WAIT queue in terms
of how long they have resided in it since this does not
affect the cost objective unless a user is in the vicinity of
his/her destination, a situation that we handle through the
wandering ratio metric defined later in (15). Finally, if the
traveling times tij are random, we replace tmj(k) > tij(k)
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by the corresponding expectations, i.e., t̄mj(k) > t̄ij(k), as
in (3).

Problem (P) is a Mixed-Integer Linear Programming
(MILP) problem Bertsimas and Tsitsiklis (1997) that can
be solved using any of several commercially available soft-
ware packages (e.g., ILOG CPLEX). In this formulation,
we can easily prove that the problem is always feasible.
Indeed, letting the matrix X∗ ≡ [x∗ij ] denote a solution of
(8), then the set

{X∗ :
∑

j∈Ωi(k)

x∗ij = 0, x∗mqm(k) = 1, i ∈W (k), m ∈ R(k)}

is always a feasible solution, since it implies that all
users in W (k) are not allocated and all users in R(k)
simply maintain their previous reservation (assuming that
R(k) 6= ∅).

Regarding the computational complexity of obtaining a
solution of (P), the problem is obviously NP-hard and
if the proposed dynamic resource allocation system is
deployed in a large urban area the number of variables
and constraints may become extremely large. Obtaining a
solution at each decision point becomes time-consuming
and during this time the system state changes and the
solution may no longer be optimal. In such cases, there are
several simple steps one can adopt to reduce the complex-
ity of the problem as discussed in [Geng and Cassandras
(2013)]. Briefly, one can partition the geographic area
of interest into regions and solve problem (P) for user
requests pertaining to each such region. One can also group
resources which are located in close proximity, such as a
single charging station with several spaces; in this case, we
treat the station as a single resource with pj denoting the
number of vacant spaces. The system may randomly pick
a vacant spot for the user upon arrival. Finally, we can
adopt a “user discrimination” approach by restricting the
number of users in the waiting queue who are assigned a
resource according to certain criteria such as the urgency
for recharging.

An additional issue regarding problem (P) concerns the
choice of decision points over time, or, equivalently, defin-
ing appropriate “decision intervals” τ(k), k = 1, 2, . . .
Similar to the parking problem solution in [Geng and
Cassandras (2013)], our approach is to follow a time-driven
strategy for decision making. After the (k − 1)th decision
point, the system waits for some duration τ(k) and then
makes a new allocation over all users that arrived during
τ(k) and all previous users residing in either the WAIT or
RESERVE queue. Clearly there is a tradeoff: a large τ(k)
may eventually yield a lower cost for all users involved,
but it also forces a large number of users to remain in
the WAIT queue with no assignment, until it is either
too late because a user has reached his destination or has
lost patience and searches for resources by himself. This
tradeoff was empirically explored in [Geng and Cassandras
(2011)] for the closely related parking problem by varying
τ(k) on the performance of the system. For simplicity,
in practice we usually adopt a fixed interval τ between
decision points.

A final issue, not directly addressed in problem (P), arises
when users in the waiting queue who are close to their
intended destination reach it before having an opportunity

to be assigned a charging space. To deal with this effect, we
adopt the following Immediate Allocation (IA) policy. Let
di be the user i destination which we will assume the user
specifies even though, as mentioned earlier, this may not
be used as part of the objective function (6). The purpose
of this information is to assess if a user in the WAIT queue
is approaching a critical point by which a charging space
allocation needs to be made (if possible). Thus, whenever
user i is in the WAIT queue and reaches a location zi such
that ‖zi − di‖ ≤ viτ , the user is placed in an “immediate
allocation” queue. Here τ is the interval between allocation
decisions made by the system (as discussed above) and vi is
the average driving speed. If this queue is not empty, then,
as soon as a user departure makes a resource available, the
system immediately prioritizes user i over other users in
W (k) and assigns him this resource if it is feasible. This
“immediate allocation” problem is easy to solve. We define
an “urgent” user set

I(k) = {i : i ∈W (k), ‖zi − di‖ ≤ viτ}
and, as soon as a resource j becomes free, we allocate it
to user i such that Jij = minn∈I(k),j∈Ωn(k)Jnj , if such i
exists.

3.1 Performance Metrics

In solving problem (P) we aim to minimize user costs as
defined by (6) at each decision point. In order to assess
the overall system performance over some time interval
[0, T ], we define several appropriate metrics evaluated over
a total number of users NT served over this interval (e.g.,
a simulation run length).

From the system’s point of view, we consider resource
utilization as a performance metric and break it down
into two parts as in [Geng and Cassandras (2013)]: ur(T )
is the utilization of resources by reservation (i.e., the
fraction of resources that are reserved) and up(T ) is the
utilization by occupancy (i.e., the fraction of resources that
are physically occupied by a user).

From the users’ point of view, we first define a satisfaction
metric for those users that actually occupy a resource.
Let P (T ) be the set of such users over [0, T ]. Moreover,
returning to (6), let q∗i ∈ {1, . . . , N} be the resource
ultimately assigned to user i ∈ P (T ). We then define

Jiq∗
i

= λi
M̄iq∗

i

Mi
+ (1− λi)

Diq∗
i

Di

and

J̄(T ) =
1

|P (T )|
∑

i∈P (T )

Jiq∗
i

measuring the average cost of users served. We point out
that, unlike traditional queueing problems, waiting times
are not a measure of user satisfaction, since users do not
actually need a resource until they have physically reached
it. Instead, another metric we will use is the wandering
ratio w(T ) defined as follows. Let

AW (k) = {i : i ∈W (k), ‖zi(k)− di‖ ≤ ε}
be the set of users who reach a destination but are still in
the WAIT queue at the kth decision point, where ε ≥ 0 is
a small real number used to indicate that a user is in the
immediate vicinity of his destination di. Letting kT denote
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the last decision point within the time interval of length
T , we then define the fraction of unsatisfied users

w(T ) =
|AW (kT )|

NT
(15)

Finally, we consider the average time to a charging space
tc(T ), which is the time from the instant a user sends a
request to the instant he physically occupies a charging
space.

4. SIMULATION RESULTS

In this section, we seek to quantify the improvement
resulting from our approach over an uncontrolled setting
where users find charging stations without any guidance
(NG) and with guidance (G). If there is guidance, users
know exactly the location of free resources; otherwise, they
always search for the closest free resource by themselves.
We present results for a simulated small business district
map shown in [Geng and Cassandras (2011)]. In the map,
there are 30 charging stations and 5 destinations. In all
simulations, user arrival times are Poisson distributed
with rate λ, and uniformly located in the map. The
user cost parameter Mi is uniformly distributed in the
interval [Mmin,Mmax], and the distance parameter Di is
also uniformly distributed in [Dmin, Dmax]. The resource
occupancy time is exponentially distributed with rate µ.

We also adopt the same pricing scheme as in [Geng and
Cassandras (2011)]: Mij(k) = eα(ri(k)+tij(k)) + CTi where
α is a positive constant, ri(k) is the time already spent at
the RESERVE queue, tij(k) is an estimate of the driving
time for i to reach j, and Ti is the expected charging time
of user i.

The distance cost is defined as Dij = βdij where β is
a positive constant and dij measures the distance from
resource j to user i’s location.

In all simulations, we set 1/µ = 220 (time units), Mmin =
0, Dmin = 0, Mmax = 100, Dmax = 200, α = 0.025, β = 1
and C = 1. We use a constant decision interval τ(k) = τ ,
k = 1, 2, . . . We set τ = 15 since it was empirically found
to produce better allocation results. Each simulation lasts
for T = 20000, which is long enough for the simulation
results to converge. We seek to compare results under
different traffic intensities by changing the value of the
interarrival interval 1/λ. Our results are shown in Fig. 2 for
fhe four performance metrics defined earlier. We find that
as the traffic intensity increases, the improvement offered
by our approach becomes more significant. For example,
we see that charging space utilization may increase by
14% compared to a guidance-based system, the time to a
charging space can be reduced by 9.5%, and the wandering
ratio can be reduced by 30%.

5. CONCLUSIONS AND FUTURE WORK

We have proposed a system for optimal dynamic allo-
cation of spaces for EVs at charging stations, including
reserving these spaces. The system exploits technologies
for space availability detection and for EV localization.
It also allocates charging station spaces to users instead
of only supplying guidance to them. We have focused on
determining an efficient and optimal allocation strategy

Fig. 2. Performance Metrics Under Different Traffic Inten-
sities

for both users and the system by solving a sequence of
MILP problems which are guaranteed to have a feasible
solution and to satisfy some fairness constraints.

Current research focuses on selecting proper decision in-
tervals and on the use of pricing control to adjust space
prices for different classes of users or other bidding-type
mechanisms that can enhance fairness.
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