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Abstract: Model based techniques are increasingly applied to develop mechatronic systems.
The automated modeling methodology supports the model synthesis of electrical components
included in the automotive driveline. Since the time to market of vehicles is decreasing steadily
and the demand for efficiency and quality is increasing, model based methods are required to
enable the possibility of simultaneous engineering. The proposed solution is based on available
measurement series of previously validated components as the lambda sensor and the electrical
water pump. A model generation library enables the assembling of analogous models according to
a predefined component classification. To increase the transparency and quality of the models
experts can implement extensions and predefine parameters of the physical software models.
Subsequently a parameter estimation identifies the values of the parameters by the objective to
minimize the difference between measured values and simulation results. Applying this method
the model dependant difference between simulation results and measured reference values could

be minimized to 8.6% considering the lambda sensor.
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1. INTRODUCTION

The difficulties in development of complex mechatronic
systems is increasing steadily. This trend is caused by
decreasing design and construction cycles as well as in-
creasing expectations regarding quality and efficiency. Es-
pecially components of the electrified driveline need to be
adapted to the different vehicle variants. Currently the
operational strategy is developed by preliminary tests and
evaluation of the measured values. Based on the experi-
ence of experts the component behavior is adapted to the
predefined characteristics. Since this iterative procedure
applying real systems demands high financial and time
investments model based methods can help to increase
the efficiency (Karlberg et al. [2013]). Scientists present
many methods and possibilities which lead to fulfill the
raised requirements. Representative for numerous meth-
ods Kalawsky et al. [2013] shows the approach of model
based simultaneous engineering encombassing a hardware-
in-the-loop-analysis applying Matlab/ Simulink and the
xPC Target. Kalawsky et al. points out the challenge of
combining domain specific modeling tools and the effort
to build new models. Since evaluations in an early state of
design cannot be executed using existing physical systems,
the model driven development is applied and adjusted to
the real system in later stages of engineering by parameter
tuning.

Physical models represent the real system by software com-
ponents which are based on mathematical equations using
an equal parameter set compared to the physical com-
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ponent. The connection of represented component blocks
enables the design of complex mechatronical systems. Thus
evaluations regarding dynamic behavior, energy consump-
tion and thermal characteristics are possible. Many de-
velopment environments e.g. Matlab/ Simulink and Dy-
mola provide a graphical user interface which facilitates
the modeling process and comprehension even for people
without knowledge of differential equations.

This paper presents a method which enables the possibility
to generate models in an automated way. Especially in the
field of automotive systems components are characterized
by a high rate of reuse. Since measurement values for these
proven components are available, the objective of this work
is to use existing measurement information and transfer
the generated knowledge into models.

An automated modeling process for physical systems re-
quires both, the model composition of classified physical
systems and the parameter estimation process to achieve
a realistic behavior. In addition an important issue turns
out by the possibility to extend the generated model
by the knowledge and experience of professional users.
Brommundt et al. [2012] presents one way how to apply
object orientated modeling and graphical editors to simu-
late complex mechatronic systems. Barth and Fay [2013]
uses and recommends object orientation for an automatic
generation of simulation models based on data exchange
and P&I-diagrams. It is shown how simulations can lower
fault rates by early identification of failure by genera-
tion of physical models. According to Fritzson [2004] the
Modelica-standard supplies the paradigms multi-physical
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domains and object oriented modeling using an equation
based language. In Brommundt et al. [2012] the advan-
tages of object oriented modeling methods for a simpli-
fied construction of complex models is explained. The
Modelica modeling language primarily developed by the
continuous systems community in Europe offers a freely-
available Modelica Standard Library which is supported by
simulation environments e.g. OpenModelica, Wolfram Sys-
tem Modeler, Dymola etc.. These editors contain technical
system items of different domains. Furthermore it supports
the creation of customized libraries, the extension of the
Modelica Standard Library or the purchase of licenses
for commercial libraries, for example PowerTrain-library,
VehicleDynamics-library or ElectricPower-library.

The Dymola-editor supports the graphical connection of
different objects using input and output ports. Beside nu-
merical Data, physical quantities such as voltage, current,
pressure, temperature, etc. are potential choices. These
features offer the possibility to use inheritance for reusing
existing components and adaption of those characteristics
to fulfill newly defined requirements. An exemplary model
demonstrates how a multi-physical domain application of
a floating wind turbine can be modeled in an effective way,
without the user being an expert in multi-body dynamics
or object oriented modeling. Regarding these prerequisites
Modelica should be applied in this approach to generate
the analogous models.

To achieve a satisfying model behavior, parametrization
is the second main subject of the automated model syn-
thesis. Chen et al. [2011] presents the process of parameter
estimation for transfer functions and evaluates the estima-
tion results of different approaches. In addition increasing
estimation options are supported by tools e.g. Matlab/
Simulink. Ljung and Singh [2012] introduces the eighth
version of the system identification toolboxr which enables
an easy access to execute different identification methods.
Applying these tools for estimation of system characteris-
tics enables an easy way of model synthesis. In addition
the Wiener Model structures can be applied to charac-
terize mechatronic systems. Wills et al. [2011] presents
algorithms for blind identification of Wiener Models where
the input signal is not known and the measurements are
corrupted by noise. The results of the referred methods
are transfer functions or state space matrices, whose pa-
rameters can hardly be assigned to the to real param-
eters of a physical system. Since Regarding the method
of physical modeling, the process of parameter estimation
has to be extended. Elmqvist et al. [2005] describes the
design optimization of physical models using the Mod-
elica development environment Dymola and the design
optimization toolbox. Since the parameter estimation is
based on large data series and the level of automation
should be increased, Matlab and Simulink turn out as an
appropriate framework. The data processing, evaluation,
the Modelica model import facility as well as the object
oriented programming language are prerequisites for an
automated model generation.

2. CONCEPT OF THE AUTOMATED MODEL
SYNTHESIS

The following chapter presents the concept of the auto-
mated model synthesis containing architectural charac-
teristics of the models and the tool chain. In addition

the synthesis process concluding mathematical context is
described.

2.1 Classification of heterogenous system components

Conventional modeling processes try to identify each part
and its connection within one component and represent
the behavior by related blocks containing the parameter
an equation set. In contrast to this method the approach
of automated model synthesis classifies different domains
of a mechatronical system. To define the influencing do-
mains for a system component, it is necessary to interview
experts on the field of component topology. Focusing elec-
trical automotive parts of the driveline following domain
categories could be considered:

mechanics
electric-mechanical
electric-thermal
thermal-fluid

Each domain is represented by one generic equivalent
model and its appropriate connectors. The model for
a specified component can be generated by combining
generic blocks of the corresponding domains.

2.2 Model architecture in Modelica

The paradigm object orientation allows programmers to
build complex software systems in short periods of time
and ensure a high level of maintainability.

According to Sinha et al. [2001] high complexity and
variety of mechatronic systems may lead to high effort ap-
plying procedural or functional languages. In addition the
prerequisites for an efficient reuse are not supported. Re-
garding these considerations an object oriented approach
should be applied to design the model generation library.

The architecture was composed based on results of previ-
ous work of Regulin et al. [2013]. According to the iden-
tified domains and interrelationships the generic blocks
are organized in domain specific packages containing the
related basic class. Due to a simple library of equivalent
models has been initialized. Inheritance helps to set up
extensions by implementation of expert knowledge about
parameters or the component setup.

To generate a component model the user selects the model
blocks according to the predefined parts of the classifica-
tion. The compatibility among the blocks is guaranteed
by standardized interfaces which have to be connected.
Finally the representing model for a component is com-
posed.

An advantage of this architecture turns out by the possi-
bility to use the basic classes in case of ignorance about
a component and the application of adapted extensions to
increase the accurateness by user knowledge.

2.8 Block interfaces

The applied blocks of the Modelica standard library are
based on mathematical equations. In contrast to Mat-
lab/Simulink Modelica modeling language supports a bidi-
rectional connection of interfaces. From a semantic point
of view these connectors contribute further equations in-
cluding all submodels of the linked classes. Pepper et al.
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Pepper et al. [2011] defines the semantic link among classes
linked by connectors and the influence on the equations.
To generalize the blocks, standardized interfaces and units
are required.

Regarding the presented approach using different domain
specific packages and models, the accurate connection of
the required equations is important to build executable
component models. The standardization of block interfaces
is based on the in- and outputs of the basic classes and
could be identified as follows:

e flange -transmission of mechanical torque
e data -exchange of numerical information
e heat port -transmission of thermal values

Applying these connectors all focussed components of the
electrified driveline can be generated.

2.4 Composition of identified partial models and
mathematical context

The following section presents the developed basic classes
including parameters which are initialized by variables.
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Fig. 1. Class Basic_mechanics

A view under the top layerof the Basic_mechanics class
in figure 1 shows the components contained in the model.
In general mechanical systems are characterized by masses
as well as torsional forces. Limited stiffness and damping
characteristics which can usually be substituted applying
a spring-damper-system. Since one mass combined with a
spring-damper-system can only be applied for one oscil-
lation mode it is necessary to increase the dimension of
freedom by a second mass in many cases. In addition the
difference of rotary speed between input and output can
be adapted by a transmission ratio. Applying this model
the behavior of many rotational mechanical systems can
be approximated. An adaption to very simple structures,
for example shafts, is possible by parameter setting e.g.
Jo = 0 kg-m?. Subsequently following parameters have to
be determined for a simulation:

transmission ratio r

inertia Ji representing the one mass of the system
inertia J, representing the second mass of the system
stiffness ¢ representing the mechnical stiffness
absorption d representing the machanical absorption

The following equations represent the mathematical con-
text:

Jl(gl = C(¢J1 - (sz) + d((le - (sz) (1)
Jads = (¢, — bs,) + d(ds, — b1,) (2)

To approximate the behavior of electrical systems apply-
ing physical models it is necessary to define the output.
Electricity can be transformed into thermal, mechanical
or chemical energy. Since the connectors of adjacent model
parts may need a specific type of energy the basic electric
classes are classified and grouped in separate packages.
Figure 2 shows the Basic_electric_mechanical class which
contains of controlled power supply, an inductance, a resis-
tance, as well as an electro motoric force block (emf) which
transforms electrical into mechanical rotational energy in
relation to the constant k. The interface to the mechanical
system is realized by the mechanical connector. According
to the equations, the desired motor power can be adjusted
using a controllable voltage source, which concurrently
represents the interface to the system controller. Kirch-
hoff’s laws can be applied to describe the behavior of
the resulting circuit considering the following boundary
conditions:

e electrical current ¢

e inertia ® representing the converted mechanical en-
ergy

e resistance R representing the entire electrical resis-
tance

e inductance L representing the entire electrical induc-
tance

e inducted countervoltage ;nq

e constant k which defines the torque ratio as well as
the iducted voltage into the electric circuit

The mathematical decription is given by 3.

di di .
ut)=R-i+L- d—eruind —R-i+L- d%*k'@bmm (3)
Since only the electrical parameters are focussed in this

basic class the resulting torque can simply expressed by 4.

k1= Mmech- (4)
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Fig. 2. Class Basic_electric_.mechanic

The convertion of electrical to thermal energy is an often
occurring phenomenon in mechatronic systems. Modelica
supports the thermal connection of blocks by an appropri-
ate interface. The Basic_electric_thermal class illustrated
in figure 3 shows the model architecture. According to
Joule’s first law a temperature dependent resistive heater
emits thermal energy respective the electric current and a
material specific thermal coefficient. A evaluation is based
on the following parameters:

e clectrical current 7



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

e resistance R representing the entire electrical resis-
tance

e thermal coefficient o material and temperature de-
pendent parameter

e current temperature ¢

e reference temperature tg

Equation 5 represents the thermal, 6 the electrical current

dependeny:
R(t) = Ry, - (1+ ayy - (t = o)) ()

Piperm = R(t) . 112 (6)
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Fig. 3. Class Basic_electric_thermal

A similar approach can deliver a model representing the
conversion of mechanical to thermal energy; since no fo-
cused component requires this transformation it is not
implemented yet.

The Basic_thermal_fluid class typically can be applied to
describe the system behavior of cooling or heating pro-
cesses [4]. A heat capacity specifies the required amount
of thermal energy for changing the temperature defined
by the surrounding model parts. The temperatur 7T influ-
ences the thermal energy which leads to the temperature
Ti. According to the principle of convection, a temperature
gradient Or, 1, and a convective thermal conductance G.
define the heat transfer between the heat ports. Surround-
ing conditions are restricted by the following issues:

temperature T3 (solid heat port); T (fluid heat port)
convective thermal conductance G,

heat flow rate Q fiow

heat transfer coefficient ¢,

convection surface A

thermal capacity C'

The equations below express the descripted charackteris-
tics:

Qflow = Ge - (T = T) (7)
0.78
GC:cO~A~<3T26> (8)

The generical analogous models are organized in a newly
developed Modelica model generation library which en-
ables the easy synthesis of component specific models
according to the classification [current contend fig. 5].
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Fig. 5. Modelica library for model generation

2.5 Parameter estimation

To implement the correct characteristics, the parameters
of the analogous model have to be defined. This step has
been automated using Matlab optimizers and Simulink.
An appropriate framework supports the simulation, opti-
mization and parameter estimation process [fig. 6]. Figure
illustrates the developed architecture of the parameter
estimation program in Matlab.

Test-bench measurement values

u(t) y(®

y(t)

Error-function

E(y(0),3()

Simulation S(x)
5% = | B2y conie)

Objective-function F(x, i (t), ¥(t), y(t)

Optimization-Algorithm

Fig. 6. Architecture of the parameter estimation program

Model import to Simulink  The Simulation S(x) delivers
result which is the evaluation criterion for calculating the
error € [fig. 6]. Since the model parameters x are varied
optimization algorithm, each iteration requires a new
simulation. The interface to transfer the Modelica model
designed in Dymola into Matlab is the Dymola-block of
the Simulink library. This model import block enables
the possibility to compile the Dymola model file into a
S-fuction which is executable by the Simulink solvers.
According to a successful compiling process the model
parameters as well as the in- and outputs are added to the
Dymola block in Simulink automatically. The control data
sequence should be imported from the Matlab workspace
into the Simulink model applying the simin block. For
recording the model outputs the block out should be used.
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Error function  An parameter estimation of the created
model requires an objective function to perform the opti-
mization process. The aim is finding a set of parameters @
with the result ™°%! which causes a minimal error to a
reference signal §. The mismatch between the signals can
be computed by mean square error (MSE) function

g(t:))*. 9)

n

1
eMsE = Z(ymOdel(ti) -

i=1

As time reference for the computation of the MSE the time
steps of the simulation of model are used

t; = t’z(nodel )

(10)
Since the reference signals usually are sampled on a test
bench, data series are not discretized at equally time
stamps in comparison to the simulation. According to
Molnar et al. [2003] the measurement series has to be
interpolated. For each time step of the simulation i a
corresponding measured time index j has to be found.

{ij | & <tpotd <ipp) (11)
Since (11) is fulfilled the reference signal can be approxi-
mated by linear the interpolation.

N . N . ty —t;
G(t:) =95 + (G541 — 9j) - ——=
b1 — 1

(12)

The error function (9) applies the interpolated signal to
quantify the mismatch e.

Optimization ~ The process of parameter estimation is
executed, applying the fminsearch simplex search method
of Lagarias et al. [1998] implemented to Matlab. The cal-
culated error e represents the optimization input. Subse-
quently the optimizer varies the selected main parameters
of the model to minimize the difference between measured
values and simulation results.

Continuous simulation of the model can be described as
non-linear and not differentiable mathematical functions.
In combination with the error function (9) which evaluated
each time after the computation of the simulation the
overall optimization problem results to

min F(x, @, 9, t).

xr

(13)

The used optimization algorithm based on the Nelder-
Mead method Wright [2010] is suitable non-linear and not
differentiable problems. A genetic algorithm could also be
applied to solve the optimization task and will be subject
of following research activities on this topic.

3. CASE STUDY LAMBDA SENSOR HEATING

This section shows the functionality of the method applied
to the heating of a lambda or oxygen probe which is
influenced by thermodynamical and electrical effects. The
sensor delivers the oxygen proportion of the vehicular
exhaust emissions to control the air-fuel ratio. Since a
minimum temperature of 400 degreeC to 700 degreeC
is a prerequisite for correct operation and the exhaust

temperature during the start period cannot provide the
required conditions, the electrical heating is necessary for
calculating the quantity of fuel injection. To analyze the
behavior during the engineering process and proof the
measured values of driving cycles on test beds a software
model is required.

3.1 Model generation for the lambda sensor heating

To generate the model for the lambda sensor heating the
related generically model parts have to be chosen out of the
model generation library. In this case two model parts, the
Basic_electric_thermal and Basic_thermal_fluid class have
to be applied. According to the interface heat_port of the
two blocks one connector is required to build the entire
analogous model. Subsequently needed in- and outputs are
defined by the interfaces:

e control signal input ctrl_var
e time variant exhaust teperature input T_amb
e clectrical current output i_mod

Figure 7 illustrates the model including interfaces and
connectors.

ctrl_var

i_mod

basic_electric_thermal basic_thermal_fluid

Fig. 7. Generated model of the lambda sensor heating

3.2 Parameter estimation

In case of the lambda senor heating the following param-
eters are varied and identified to the listed values:

Varied Parameter Estimation result
Resistance R 0.6Q2
Thermal coefficient « 0.1
Thermal capacity C 6.6%
Heat transfer coefficient ¢, 11.1%

Since the resulting value depends on the relation among
these parameters, a predefinition of particular ones based
on expert knowledge helps to increase the quality of the
estimated characteristics.

3.8 Ewvaluation of the simulation results

Since the model behavior is adapted to the character-
istics of the real component it can be used to evaluate
the component states according to different control signal
inputs. The quality of the model which can be rated by
the difference of measured data and simulation results
applying real control values as model input. A good con-
formity regarding the signal sequence can be detected by
comparing the simulation results and measured values; the
quantified difference constitutes 8.6% [fig.8]. Additionaly
the modeling method was proofed by evaluation of further
simulation results of an electrical water pump; a difference
between measured values an simulation results of 9.3%
could be quantified.
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Fig. 8. Simulation results of the lambda sensor heating
4. CONCLUSION AND OUTLOOK

In this paper, a method for automated model generation
has been shown and the required prerequisites in the
field of automotive. Classified partial models of different
domains can be assembled according to the mechanism of
action considering the composition of the real component.
The Modelica development environment Dymola is used
to generate analogous models by drag and drop out of
a newly developed model generation library. Beside the
model set up including the mathematical background the
automatic parametrization of characteristic parameters is
the second key point of the presented method. Since Mat-
lab is recommended for data processing, optimization and
programming it is applied to estimate the corresponding
parameters. Thus an model import to Simulink using the
Dymola Block is required. To avoid limitations caused by
predefined toolbox algorithms and to increase the trans-
parency, the method is implemented using the object ori-
ented programming in Matlab. The presented concept has
been evaluated within a case study on a lambda sensor
heating and an electrical water pump. Based on previously
measured data series of existing nodes a fully satisfying ap-
proximation could be reached by automatic optimization
of the model parameters.

Further evaluations have verified the functionality of the
presented method. It is intended to increase the level of
automation to reduce the generation time as well as the
tool dependent work steps of the model transfer and setup
to prepare the estimation.

An evaluation of experts has shown the relevance of the
presented method to reduce the development time of vehic-
ular physical models. In addition it reduces the obstacles
to a model based work even for inexperienced poeple. The
method was introduced for a model based evaluation of
measured data series.
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