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Abstract: The ability to quantify the impact of interventions in disease management is
important from a public health perspective. The impact of two local control strategies are
explored for a scale-free sexual contact network. The network is used to model the spread and
incidence of HIV and subjected to pinning control of nodes at random and thereafter selectively
pinning nodes with the highest degree. Infections are dependent on a stochastic function to
capture the discrete nature of infections. New cases of people that have acquired the Human
Immunodeficiency Virus (HIV) in the network are measured over a period of a year and also
over a period of 5 years, with the pinned nodes controlled from the moment they get infected.
Measurements are compared between pinning control schemes and to the uncontrolled scenario.
The resulting comparisons indicated that selective pinning reduced the incidence in a large
network (>1000 nodes) by at least 68%, compared to random pinning. This result is consistent
with selective pinning control schemes employed in other scale-free dynamical networks.

1. INTRODUCTION

A substantial volume of work is available that describes
the epidemiology of disease through complex network
modelling (Xiao [2002], Tuckwell et al. [1998] and Shi
et al. [2008]). In particular, the modelling of the spread
of HIV infection has been presented by Sloot et al. [2008].
From a control-systems perspective, advances have been
made to evaluate the impact of applying local control to
nodes of a complex network in a structured manner (Wang
and Wen [2008]), deemed “pinning control”. Given this, a
lack of published work exists that describes the impact
of a pinning control scheme on an HIV-infected disease
network. In this work, nodes will be locally controlled using
the application of Reverse Transcriptase Inhibitors (RTIs)
as prophylaxis to limit the spread of infection. RTIs, and in
particular Tenofovir, has been shown to yield a maximum
e�cacy of around 80% if used daily (Duwal et al. [2012]).

Existing methods for analysing disease networks focus on
the structure of a network as approximation to real-life
disease networks (Keeling and Eames [2005]). By varying
networks from randomly connected nodes to completely
“scale-free” and comparing the behaviour of disease-spread
through the variety of networks, it has already been as-
certained which network type corresponds to known epi-
demiologically modelled populations (Danon et al. [2011]).
It has indeed been determined that, with particular rele-
vance to HIV, that human networks of sexual contacts are
inherently “scale-free” (Liljeros et al. [2001]), which means
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that their cumulative degree-distribution follows a power-
law of the form

P (k) ⇡ k�↵ (1)

where P (k) is the proportion of nodes in the network
with k connections and ↵ determines the decay in this
proportion.

Given the type of network representing the spread of
disease, the questions remains: What would be the impact
on the number of new cases of HIV (incidence) in this
network over a period of 1 year if local control of the
virus with the prophylactic RTI Tenofovir is applied to
a random selection of the nodes? And a further question:
How would the impact change if the strategy of selection
of the controlled nodes is changed to only be the most
highly-connected nodes?

Together, these questions present a basis from which to
quantify the e↵ect of controlling an HIV network by
controlling individual nodes. In this work, a hypothetical
sexual network of individuals with HIV was examined. A
selection of assumptions were made:

• Nodes in the network are homogenous and have
identical HIV immune responses. The parameters
from Table 1 apply to each node, except uninfected
nodes which have an initial viral load of zero.

• The network is static, with all nodes participating
throughout the observed time and none of the nodes
leaving the network nor any nodes added

• Sexual relations occur on a continuous basis, and not
discrete events
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• One node is infected to start the infection in the
network. This node has an initial viral as indicated
in Table 1.

• Sexual contact is assumed to be heterosexual, thus
the network links represent a heterosexual network of
sexual contacts

• Reinfection occurs after the first infection of a node
• Sexual relationships are not broken during the year
of the simulation.

• Reverse transcriptase inhibitors are maximally e↵ec-
tive at 80% (Duwal et al. [2012]) for each person

In the light of the given assumptions, this work aims to
present a platform from which to refine the quantification
of control schemes on HIV and similar disease networks.

Given the type of network representing the spread of
disease, the questions remains: What would be the impact
on the number of new cases of HIV (incidence) in this
network over a period of 1 year if local control of the
virus with the prophylactic RTI Tenofovir is applied to
a random selection of the nodes? And a further question:
How would the impact change if the strategy of selection of
the controlled nodes is changed to only be the most highly
connected nodes?

Together, these questions present a basis from which to
quantify the e↵ect of controlling an HIV network by
controlling individual nodes. In this work, a hypothetical
sexual network of individuals with HIV was examined. A
selection of assumptions were made:

• Nodes in the network are homogenous and have
identical HIV immune responses

• The network is static, with all nodes participating
throughout the observed time and none of the nodes
leaving the network nor any nodes added

• Sexual relations occur on a continuous basis, and not
discrete events

• One node is infected to start the infection in the
network

• Sexual contact is assumed to be heterosexual, thus
the network links represent a heterosexual network of
sexual contacts

• Reinfection occurs after the first infection of a node
• Sexual relationships are not broken during the year
of the simulation.

• Reverse transcriptase inhibitors are maximally e↵ec-
tive at 80% (Duwal et al. [2012]) for each person

In the light of the given assumptions, this work aims to
present a platform from which to refine the quantification
of control schemes on HIV and similar disease networks.

2. MODELS AND CONTROL

2.1 3D model of HIV

For this work, each node’s dynamics of the immune re-
sponse to HIV in-vivo have been described by the three-
dimensional model Nowak and Bangham [1996], Nowak
and May [2001], with parameters estimated by Filter et al.
[2005]:

Ṫ = s� dT � �Tv

Ṫ ⇤ = �Tv � �T

v̇ = kT ⇤ � cv (2)

The states and parameters of the model represented by
Equation 2 are shown in Table 1.

Table 1. States and parameters of the 3D
model of HIV

State Description Value

T0 Initial CD4+ count 1000 copies/ml
T⇤

0 Initial infected CD4+ count 1 copy/ml
v0 Initial viral load 100 copies/ml

Parameter Description Rate (per day)

s Source of healthy CD4+ 10.7
d Death rate of CD4+ 0.015
� Rate of CD4+ infection 4.5 ⇥10�6

� Death rate of infected CD4+ 0.58
c Death rate of free virions 2.05
k Virus production rate 896.49

2.2 Network model

When this single-node immune response model is extended
to form part of a network of individuals linked through
their sexual partnerships and hence the possible transmis-
sion of HI virions, similar to the work done by Tuckwell
et al. [1998], the viral load equation becomes:

v̇
i

= kT ⇤ � cv + ⇣
i

(t)
NX

j 6=i

a
ij

�v
j

(3)

In this equation, the matrix a
ij

represents the network
structure, hence it indicates which nodes are connected to
node i. The matrix � represents the coupling of the viral
load of this node to the viral node of the node’s neighbours,
v
j

is the viral load of the node connected to node i.

2.3 Transmission function

The transmission of virions between the i-th node and
the nodes connected to it is represented by ⇣(t). In a
real network of sexual contacts, which represents the
main coupling method by which the virus is transferred
(Royce and Sena [1997]), the per-coital-act probability of
transmission of the virus in the case of African HIV-1-
serodiscordant couples is modelled by Hughes et al. [2012],
and denoted here as �

v

. The baseline risk of transmission
is increased by numerous risk factors, of which the main
two are the presence of multiple sexual partners and
Herpes Simplex Virus (HSV-2) infection. This increase in
likelihood of HIV infection is represented by R, a random
number generated from a uniform distribution, using the
range obtained in Arora et al. [2012]

�
v

= 1�
⇥
1� 9.36⇥ 10�4

⇤
e

(.92⇤log10(v
j

))

⇣
i

(t) =R⇥ �
v

⇥ �
v

, R ⇠ U(1, 6.44) (4)

where v
j

is the viral load (in copies per ml) of a sexual
partner. The function �

v

is represented in (Fig. 1) and
�
v

is the coupling-strength, or the actual amount of virus
transferred between two nodes.
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Fig. 1. (�
v

⇥R) - Per-coital-act probability of viral trans-
mission, with additional risk factors varied randomly
across the population. This creates a band of infectiv-
ity at a particular viral load.

2.4 Local control

The approach of using anti-retroviral drugs as control
inputs to an immune response model is not new and
was e↵ectively demonstrated by Je↵rey et al. [2003]. The
di↵erence with the work presented here is that an assump-
tion is made that drugs are a continuous control inputs,
rather than scheduled periodically (which is more realistic
but chosen as such for simplicity). A control is applied
locally to a selection of nodes. The control, which is the
application of RTIs to a node, is represented as proposed
by Perelson and Ribeiro [2013], preventing the infection of
healthy CD4+ T-cells by the virus:

u
i

= (�"
RTI

)�vT (5)

This means that the final controlled network model of HIV
in this case is represented by:

Ṫ
i

= s� dT � �Tv +�
i

u
i

Ṫ ⇤
i

= �Tv � �T +�
i

u
i

v̇
i

= kT ⇤ � cv + ⇣
i

(t)
NX

j 6=i

a
ij

�v
j

(6)

Here, �
i

is a function representing whether a node is
controlled or not, of the form:

�
i

=

⇢
1 : node controlled
0 : node not controlled (7)

For the random pinning control scheme, �
i

would thus be
equal to 1 for each one of the randomly predetermined per-
centage of pinned nodes in the network. For the selective
pinning control scheme, �

i

would be equal to 1 for each
of one of the highest degree network nodes selected for
control. In either control scheme, the specific percentage
of pinned nodes was determined before the simulation
commenced.

3. METHODS

An experimental scale-free network was set up to be able
to note the e↵ect of di↵erent pinning control schemes on
the incidence of HIV in the network.

3.1 The network and pinned nodes

To establish a simulation of the network of sexually con-
nected individuals, the node models of the network were
firstly addressed. Each node is an individual with an im-
mune response provided by Equation 2. Because it was
assumed that all individuals in this network have the same
immune response, the initial conditions and parameters
for each node were chosen to be the same. Model param-
eters were obtained from Filter et al. [2005], and given
as �̂ = {s; d; �; �; c; k} = {10.7; 0.015; 4.5 ⇥
10�6; 0.58; 2.05; 896.49}, with the initial conditions
for an infected node given as

�!
I
o

(t) = {T0; T ⇤
0 ; v0} =

{1000; 1; 100}. It should be noted here that only 1
node was randomly chosen to be infected at the start of
a simulation, and that the initial conditions for all other
nodes were

�!
U
o

(t) = {T0; T ⇤
0 ; v0} = {1000; 0; 0}.

For nodes that were pinned (people that were given RTIs),
the term u

i

was added as indicated in Equation 6. The
value of "

RTI

, which is the e↵ectiveness of prophylactic
RTI treatment, was chosen to be 70% for all individuals
in the network, which is close to the maximum protection
of 80% noted in the trial results of Duwal et al. [2012].

A network was set up with an arbitrary set of 1000 nodes.
The nodes were connected to resemble a scale-free network,
with ↵ = �2.4 as found from a random sample of people by
Liljeros et al. [2001]. This exponent of Equation 1, for the
particular simulation presented here, represents an average
node degree distribution of approximately 3 partners per
person. The network is also 100% reciprocal, which means
that the probability of viral transmission is bidirectional
between any two connected nodes. A summary of the
network used in all simulations is given in Table 2.

The transmission of virus between any two nodes are thus
dependent on the following list of conditions:

• (↵) - Whether the nodes are connected to begin
with, thus network architecture implying a sexual
relationship between the nodes

• (�
v

) - The probability of transmission given the viral
load of either partner

• (R) - The increased risk of transmission given the dis-
tribution of additional risk factors in the population

Closely related to, and following from the above list is
the coupling-strength between nodes, which designates the
exact amount of virus transferred between individuals once
transmission has been established. Very little information
exists on this parameter and indeed it would be onerous
to establish. For the purpose of this work the coupling
strength (transferred viral load) was chosen as 10% of the
concentration of viral load of the node transmitting the
virus.

3.2 Simulations

Two experiments of three simulations each were run con-
secutively to create three comparable populations: a net-
work without controlled nodes, a network with nodes
pinned at random and a network with a proportion of the
nodes with the highest number of links (sexual partners)
pinned. The proportion of nodes pinned was chosen to be
15% of the entire network.
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Table 2. Network statistics

Measure Value Units

Number of nodes 1000 -

Number of links 3294 -

Average node degree 3.29 -

To obtain comparable populations, it was ensured that the
portion of the network governed by stochastic parameters
were reset to identical initial conditions between consec-
utive simulations of non-controlled networks and pinned
networks.

For experiment 1, simulations were done over a period of
365 days or 1 year, and for experiment 2 over a period of
5 years.

4. RESULTS

4.1 Experiment 1: 1000 nodes over 1 year

The results from the simulations of three networks, two of
which were controlled, are shown in Figure 2 and Table 3.
Almost 80% of individuals in the network developed HIV
under the randomly-pinned control scheme, while only
about 10% developed HIV under the selectively-pinned
control scheme.

From the observed Risk Ratios in Table 4, it can be seen
that individuals in the randomly-pinned network were 28%
less likely to develop HIV over 1 year compared to the
uncontrolled network. This number was not statistically
significant, given the 95% confidence interval (CI) of [0.2�
2.21]. This confidence interval was calculated using the
method described by Giesecke [2002], dividing the Risk
Ratio by the error factor in Equation 8 for the lower limit
and multiplying by the error factor to obtain the upper
limit.

e1.96⇥
p

(1/a+1/b) (8)

In this equation, a is the risk of HIV for persons in the
network of interest (either randomly pinned or selectively
pinned). The remaining variable b is the risk of HIV for
persons in the uncontrolled network.

It was found that individuals in the selectively-pinned
network were approximately 90% less likely to develop HIV
over 1 year compared to the uncontrolled network. This
result was statistically significant, with a 95% confidence
interval (CI) of [0.074� 0.132].

Table 3. Exposure-Outcome Results for 1000
nodes over 1 year

HIV+ HIV- Total

Random Pinning 777 223 1000

Selective Pinning 99 901 1000

No RTIs 850 150 1000

Table 4. Control strategy performance for net-
work with 1000 nodes over 1 year

Measure None Random Selective

Risk Ratio - 0.78 0.0988

95% CI - [0.2-2.21] [0.074-0.132]
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Fig. 2. Experiment 1 for the incidence of HIV for 1000
nodes after using di↵erent control schemes over 1 year.
Note the di↵erence between the un-controlled network
(thick solid), the network pinned at random (thin
solid) and the network selectively pinned (dashed).

4.2 Experiment 2: 100 nodes over 5 years

The results from the three networks, are shown in Figure 3
and Table 5. A percentage of 87% of the network developed
HIV under the randomly-pinned control scheme, while
only 37% developed HIV under the selectively-pinned
control scheme over 5 years.

Table 5. Exposure-Outcome Results for 100
nodes over 5 years

HIV+ HIV- Total

Random Pinning 87 13 100

Selective Pinning 37 63 100

No RTIs 89 11 100

From the observed Risk Ratios in Table 6, it can be seen
that individuals in the randomly-pinned network were
13% less likely to develop HIV over 1 year compared
to the uncontrolled network. This number was not sta-
tistically significant, given the 95% confidence interval
(CI) of [0.013 � 57.61], and most likely caused by the
measurement over a small sample size. For individuals in
the selectively-pinned network, it can be seen that they
were approximately 63% less likely to develop HIV over 5
years compared to the uncontrolled network. This result
was statistically significant, with a 95% confidence interval
(CI) of [0.266� 0.513].

Table 6. Control strategy performance for net-
work with 100 nodes over 5 years

Measure None Random Selective

Risk Ratio - 0.87 0.37

95% CI - [0.013-57.61] [0.266-0.513]

5. DISCUSSION

Given the challenge to assess a human sexual connection
network and a control scheme (implying an intervention), a
complex-network modelling approach was followed in this
work. The nature of real-world data tends to be prone to
“self-reporting”-bias, hence estimations of the degree and
frequency of connectivity between nodes had to be done
or inferred from current literature.
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Fig. 3. Experiment 2 for the incidence of HIV after
using di↵erent control schemes for 100 nodes over 5
years. Un-controlled network (thick solid), Randomly-
pinned (thin solid) and Selectively-pinned (dashed).

Several suitable assumptions had to be made to simplify
the problem, most notably that all persons in the network
are the same, that sexual relations occur continuously, that
1 node starts the infection in a network and that reinfec-
tion occurs after first infection. Furthermore, assumptions
regarding the varying e↵ect of RTIs, the spread of risk
factors in the population and the actual amount of virus
transferred between persons were made.

Against this backdrop, and using comparable networks, a
clear distinction can be seen between a targeted control
approach of selecting people with the most sexual con-
nections and administering RTIs to them, and adminis-
tering RTIs at random in the population. Even though
the average e↵ect of RTIs in the populations may have
been overestimated (70% for all individuals), the risk of
HIV spread have also been over-estimated by assuming
constant daily sexual intercourse between all connections.
The simulations thus represent a worst-case scenario of
viral spread and very low drug coverage in the population
(15%), balanced with a best-case scenario of drug e↵ec-
tiveness.

The main result obtained here was that the two di↵erent
control strategies rendered vastly di↵erent values of HIV
incidence in the compared populations. The selective pin-
ning scheme provided a statistically significant result while
the random pinning scheme didn’t. Of particular interest
is the order of reduction in incidence that was seen when
the two schemes were compared: In a network with 100
nodes, the incidence in a randomly pinned network was
at least twice that of a selectively pinned network. In a
network with 1000 nodes, this increased to almost 8 times
more. Selective pinning is thus superior in both small and
larger networks regarding its e↵ectiveness. It should be
noted here that the networks simulated represent sexually
connected individuals and not general populations. This
explains the high steady-state of infected individuals (Over
85%) seen in the results.

The results obtained in this study are consistent with
pinning control scheme results obtained for other unrelated
networks of similar structure. Most notably, the conclusion
from Wang and Chen [2002] recommended that the most
e↵ective arrangement for placing controllers was to choose
nodes of the highest degrees.

Other results were also noted as part of the control scheme
comparisons. The uptake of HIV increased dramatically
much later in the selectively pinned network compared
to the randomly pinned network and the uncontrolled
network. For the 100-node network, the increased trans-
mission started at 100 days under random pinning and
at almost 1000 days (just under 3 years) under selective
pinning. This means that selective pinning could delay an
HIV epidemic by an order of magnitude if it was possible
to implement.

The biggest limitation regarding the practicability of im-
plementing any pinning control scheme is that intimate
knowledge about the network structure is needed. If it
could be known, the nodes with highest degree should be
identified and targeted with suitable additional care.

6. CONCLUSIONS

The challenge with simulating disease networks in the
manner presented here lies in a�rming the assumptions
made regarding sexual behaviour, quantifying viral trans-
fer, establishing the frequency of sexual intercourse and
modelling the broad range of risk factors at play in a
population. Within the constraints provided by access to
suitable data, the model can be refined to include com-
parisons with known real-world study populations. Disease
immune response models can be varied in this architecture
to capture a broader range of e↵ects. The co-infection of
HIV and TB can also be explored in further work.
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