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Abstract: This paper deals with multi-axis motion planning,  especially with time synchronization of 
mutually independent axes of motions (uncoordinated motion).  A novel time-optimal generator called 
GBAVS  is  used  as  a  basic  tool,  utilizing  the  chain  of  integrators.  The  structure  of  generator  uses  
3 integrators for generating motion variables. The task is to plan the single-axis motions while respecting  
hard motion constraints and to achieve the final states in the same time. In contrast to other approaches 
the initial/final state does not necessary mean the state with zero velocity and acceleration, so called  
rest-to-rest motion. To reach synchronization, time scaling is based on decreasing the individual values of 
Jerk for each axis except the slowest one. Jerk is a parameter to be reduced as first. No initial/final state 
limitation and reduction of the value of Jerk primal to other motion limitations (e.g. velocity limits) are  
the main advantages of this approach.

Keywords: Trajectory  generation,  time-optimal  control,  time  synchronization,  multi-axis  motion 
planning, hard constraints, Gröbner basis approach.

 1 INTRODUCTION

Solving  the  problem  of  uncoordinated  multi-axis  motion 
planning  is of  importance  for  numerous  practical 
applications, mostly there where is no restriction on motion 
path or  where the supervision of  admissibility is  available. 
Minimizing  the  time  of transfer  between  initial  and  final 
states is mostly required for this kind of applications. Typical 
examples  are  machine  tools,  pick  and  place  machines  or 
robots,  where  motion  planning  for  each  axis  is  made 
separately and appropriately adapted to the slowest axis.

Motion planning in single-axis is often done by time-optimal 
generator using chain of integrators. The standard task is to 
generate the motion variables from given initial to final state. 
Work in this area includes that  of Nguyen et  al.(2007) for 
rest-to rest motion, Kröger et al.(2006), Haschke et al. (2008) 
for general motion or some special cases. Other related works 
deal with generating the motion with hard motion constraints, 
mostly  formulated  as  constraints  on  maximal  velocity, 
acceleration, Jerk or even higher derivatives. Work by Kröger 
and  Wahl  (2010)  focuses  on  online  planning  algorithms 
respecting  the  constraints.  The  constraints  in  this  form 
naturally occur in real application as hard motion constraints. 
To  reach  the  given  transfer  time for  rest-to-rest  motion,  a 
simple algorithm for  scaling the single-axis motion can  be 
found.  It  follows from the integrator  sequence.  All  motion 
limitations  are  scaled  by  a  factor,  given  from  time  ratio. 
We get modified motion constraint parameters for single-axis 
generator. Resulting motion variables will then respect new 
lower limitations. For general motion, no similar time scaling 
approach exists, because of nonzero higher order derivatives 
of  motion  which  have  to  be  integrated.  Moreover  the 
modified  limitations  might  get  below  a  given  initial/final 
state,  which  makes  the  problem unsolvable.  Therefore  the 

scaling is mostly done by lowering the velocities of each axis 
with using an adapting method, see Ezair et al. This paper 
uses earlier work of Bláha et al. (2009) and gives a simple 
procedure to time scaling of general motion. Slowing down 
the motion is  primarily  done by decreasing  the Jerk limit, 
which is the main cause of motion inaccuracy,  see work of 
Kyriakopoulos  and  Saridis  (1988).  Moreover  this  method 
does not affect the solvability, see details further.

 2 TIME-OPTIMAL TRAJECTORY GENERATION

At  first,  we  make  the  outline  of  trajectory  generation  in 
single-axis, described in earlier work of Bláha et al. (2009). 
Consider the trajectory generator in form of third order chain 
of integrators

[ ṡ
v̇
ȧ]=[

0 1 0
0 0 1
0 0 0]

A

[ s
v
a]
x

[001]
B

u (1)

where the state components are  naturally labeled as

st − position
v t −velocity
a t −acceleration
u t − jerk

(2)

Next we consider the motion constraints in form

∣vt ∣≤VM
∣a t∣≤AM
∣u t∣≤BM

(3)
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Initial  and  final  states  are  given  as  x0=[ s0 , v0 , a0 ] , 
x f =[ s f , v f , a f ]  and  have  to  respect  the  constraints  (3), 

more  precisely  the  convex  subset,  given  by  parabolic 
segments

v=∓ a2

2 BM
±VM , (4)

see (Fig.1),  and work of Bláha et al.  (2009) in detail.  The 
states are related by the expression

x f =eA t f x0∫
0

t f

eA t f− B ud . (5)

The  task  is  to  find  the  time-optimal  control  u(t) which 
satisfies (3), drives the system from its x0  to xf  and minimizes 
the transfer time tf.

It  is  well  known,  that  using  the  Pontryagin  Maximum 
Principle  one  finds  that  for  the  system  (1)  with  bounded 
input, but without other constraints, the time-optimal control 
leads to bang-bang control with at most three time intervals, 
see  Athans  et  al.  (1966).  For  system  with  constraints  and 
rest-to-rest  motion planning is easy to  understand,  that  the 
time-optimal  control  sequence  for  that  system 
is bang-zero-bang type, with at most 7 time intervals, see the 
work  of  Castain  and  Paul  (1984).  To  the  best  knowledge 
of the author, there is no exact proof of that, even though the 
complex  constraints  can  be  added  to  maximum  Principle, 
see Locatelli (2001). This is why a following hypothesis will 
be  accepted  in  the  following  parts  of  this  work.  The 
hypothesis  uses  the  bang-zero-bang  control  strategy  for 
general  constrained  system  of  chain  of  integrators 
and provides  the  possibility  to convert  the  problem 
of time-optimal control of (1), (3) to a system of polynomial 
equations.  The author  believes  that  this  hypothesis  can  be 
proved  by  using  Maximum  Principle  with  global 
instantaneous inequality constraints.

Hypothesis. The  time-optimal  control  for  system  (1)  with  
state constraints (3) leads to bang-zero-bang control with at  
most  seven  time  intervals  1−7  where  the  input  is  
constant. There are two possible strategies where the input  
alternates  between +BM,  0 and -BM.  Furthermore,  single  
time intervals  can vanish if  the system does not reach the  
corresponding  constraint.  The  general  strategy  of  the  
time-optimal control can be expressed in two different forms

ut ={
BM , t∈[0,1 )

0 , t∈[1,2 )
−BM , t∈[2,3 )

0 , t∈[3,4 )
−BM , t ∈[4,5 )

0 ,t ∈[5,6 )
BM ,t ∈[6,7 )

 , u−t ={
−BM , t∈[ 0,1 )

0 , t∈[1,2 )
BM , t∈[2,3 )

0 , t∈[3,4 )
BM , t∈[4,5 )

0 , t∈[5,6 )
−BM , t∈[6,7 )

(6)

where

k=∑
i=1

k

ti , i=1..7 , min7=min∑
i=1

7

t i (7)

and ti, i=1,..,7 are the lengths of  the intervals with constant  
input. From a given x0 , x f  and by searching all solutions in  
both  sequences  (6)  is  possible  to clearly  determine  which  
solution transfers the system between the given states with  
minimal time, or whether the admissible control with respect  
the constraints does not exist.

For detailed understanding we refer reader to work of Bláha 
(2010).

Note that if the constraints are equal to infinity or the system 
states  do  not  reach  them  during  the  transfer,  then  the 
time-optimal control takes the well-known  bang-bang form 
for  third  order  system  without  state  constraints. 

Fig.  1:  Examples  of  state  trajectories  in  v-a plane  with 
depicted  initial/final  states,  time intervals  τi,  and  parabolic 
restrictions on state subspace.

 2.1  Algebraic approach

The  switching  strategy  uses algebraic  approach,  namely 
Gröbner basis approach. From Hypothesis there are only two 
strategies  where  input alternates  as  it  is  shown in (6),  (7). 
Taking into account  the maximal number of switching, we 
can find equations which define the trajectories from initial 
state to final state as some functions of time interval  lengths 
ti , i = 1,..,7.

We compose two sets of equations. One set for  u+, and one 
for u-. For simplicity and because of symmetry of the task we 
will focus only on the case when u+ is optimal. The strategy 
for u- is analogous. From (5) and (6) we obtain the first three 
equations.

e1 : a f =a0BM t1−t 5t 7−t3
e2 : v f =v0a 0t1t2t3t 4t5t6t 7

BM [t 1 t 2t 3t4t5t 6t7

−t3 t 4t5t6t 7−t5t 6t7−
t 3

2

2
−

t5
2

2


t7
2

2


t1
2

2 ]
e3 : s f = f  s0 , v0 , a0 , t 1 , t2 , t3 , t4 ,t5 , t6 , t 7 for lack of space

(8)
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The possible active constraints define another four equations.
If the acceleration constraint AM is active then

e4a : t1=
AM −a0

BM
(9)

otherwise
e4b : t2=0. (10)

If the deceleration constraint -AM is active then

e5a : t7=
−AM a f

BM
(11)

otherwise
e5b: t6=0. (12)

Finally,  if  the  velocity  constraint  VM is  active  then 
v 3 =v 4=VM  and

e6a : VM =v0a03BM t1 t2t1 t3−t3
2/2t1

2 /2 
e7a : VM =v0a0 t1t2t3t4 

BM t1 t2t3t1−t3t4−t3
2 /2t1

2 /2
(13)

else
e6b: t4=0
e7b: t35=t3t5.

(14)

As mentioned above, three are three types of constraint and 
each constraint can be active or inactive. Therefore we can 
compose 23 systems of seven polynomial equations e1,e2,...,e7 

for  control  sequence  u+.  Finally  we  will  get  eight  sets  of 
seven equations for u+ and eight sets for u-. From hypothesis 
and restrictions (4) on  x0 , x f  we know that one of sets of 
polynomial equations contains real positive solution of time-
optimal control problem.

 2.2  Algorithm GBAVS

Basic  steps of  computational  algorithm are  presented here. 
The  main  step  uses  the  Gröbner  basis  theory  to find  all 
solutions  of  given  polynomial  set,  first  introduced 
by Buchberger (1986). Finding the Gröbner basis of given set 
can dramatically reduce the order of given basis polynomial 
equations and thus helps finding the solution easier. The key 
part  of  the  algorithm  is  obtained  using  Gröbner  basis 
approach. The step 3 of algorithm obtains explicit analytical 
equations for t1,...,t7. Therefore it is easy to directly evaluate 
the  solution,  except  some  polynomial  root  finding  up  to 
maximal  4th order.  This  is  done  numerically,  even  that 
analytical  formulas  exist  as  well.  Therefore  the  following 
algorithm provides  analytic  solution  of  given  time-optimal 
problem.

input: x0 , x f , BM , AM ,VM

output: t1,...,t7, control strategy u±

step 1. Test admissibility of x0 = [a0,v0,s0] and xf = [af,vf,sf]. 
If x0, xf  are in admissible domain then the solution must 
exist. Testing the vertices of transfer curve

v0 lim=±v0∓
a0

2

2 BM
, v f lim=±v f ∓

a f
2

2 BM

to  satisfy  VM ≥{∣v0 lim∣,∣v f lim∣} and  acceleration  to  
satisfy AM ≥{∣a0∣,∣v f∣}.

step 2. Compose the eight sets Si  , i = 1,2,..,8 of equations 
for different possibilities of active constraints. Once for 
u+ once again for u- and insert the input data.

step 3. Evaluate all solutions from Gröbner  basis for each 
set  of  equations  Si and  take  into  account  only  real 
positive solutions.

step 4. Because  all  sets  of  equations  do  not  intrinsically 
accept  the constraints,  check the limits for  each time 
sequence
     ∣a 1∣≤AM ,∣a 5∣≤AM ,∣v 3∣≤VM

step 5. If still exist more than one real positive solution, use 
that one which minimizes (7).

 2.3  Example of trajectory generation

Assume that the system is already in motion with nonzero 
velocity and acceleration. We want to change these motion 
variables  without  changing  the  actual  position  for  some 
reason. The input data could be following

BM =0.2 , AM =0.3 , VM =0.7 ,
x0=[0 ,−0.5 ,0.2 ] , x f=[0, 0.3 ,−0.1 ]

The trajectory generator  gives the lengths of time intervals 
corresponding to control sequence, specifically

t 1..7=[0.2674 , 0 ,0.7674 , 0 ,0 ,1.2744 ,2.0000 ]
u-=[−BM ,0 , BM ,0 , BM ,0 ,−BM ]

and output motion control  sequences for  motion states (2), 
see (Fig.2), and (Fig.3).

   

Fig. 2:  Evolution  of  motion variables  in  time  horizon  to 
desired final state xf.
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Fig. 3: Transfer trajectory of GBAVS generator in v-a plane, 
with  depicted  the  initial/final  states,  switching  curves,  and 
admissible domain.

 3 TIME SCALING FOR REST-TO-REST MOTION

Assume the trajectory generator in form of third order chain 
of integrators. Input parameters are, as in section  2 , the Jerk 
limit, acceleration limit, velocity limit and  initial/final state
BM , AM , VM , x0 , x f .  If  the  motion  is  considered  as  so 

called rest-to-rest motion, than we can easily scale the final 
transfer time using k-factor substitution in form

k=
t f

t f
,

BM =BM k 3 , AM = AM k 2 , VM =VM k
(15)

where t f  is original transfer time, t f  is scaled transfer time 
given  by  the  same  control  strategy  with  modified  input 
parameters  BM , AM , VM .  Unfortunately,  this  standard 
procedure  obtains  crucial  restrictions  on  initial  and  final 
states. Let's give a simple deduction:

Assume the time scaling is in form (15). More precisely the 
actual state of generator has to follow the equation

xt =xt t  (16)

where t  is given by substitution t=t / k .

Making the first derivation of (16)

ẋt =∂ xt 
∂ t

d t
d t

 ẋt= ẋ t /k (17)

we  get  the  k-factor  scaling  dependency  for  first  motion 
derivative (velocity). This dependency implies that common 
initial/final  conditions  for  ẋt   and  ẋt   are  due  to 
k-factor multiplication  only  zero  velocity  conditions. 
Constraint on velocity VM is scaled by factor k.

Making the second derivation of (16)

ẍt =∂ ẋt 
∂ t

d t
d t

 ẍt = ẍ t /k 2 (18)

we get  the k-factor  scaling dependency for  second motion 

derivative.  This  again  restricts  the  x0 , x f  to  be  zero  in 
acceleration. The constraint AM is scaled by factor k 2.

Similarly for third derivation

xt =xt / k3 (19)

we get scaling by factor k 3  for Jerk limit.

K-factor  scaling  is  therefore  useful  only  for  rest-to-rest 
motion. The shape of motion trajectories is not affected.

Fig.  4:  Example  of  k-factor  scaling,  which  changes  all 
constraints, but not the shape of trajectories.

 4 TIME SCALING FOR GENERAL MOTION

Assume the GBAVS generator, described in section  2 . This 
generator can find t-optimal motion between any admissible 
x0,  xf.  Then  we  can  use  the  bisection  method  to  find 
appropriate  value of  Jerk,  which slow down the motion to 
desired transfer time t f . Scaling algorithm repetitively uses 
bisection and trajectory generator GBAVS to find the control 
sequence with given transfer time  t f .  If there is additional 
demand on lowering the other constraints of motion, it can be 
easily put to GBAVS inputs. There is no restriction on input 
data, except the solvability, see section  2 . 
Scaling of general motion does not have to have a solution. 
For example, when actual velocity is too high and lowered 
Jerk too small  for  not  over passing the  velocity  constraint 
during  the  stopping.  Note,  that  presented  scaling  by  Jerk 
modification does not conserve the trajectory type (shape), 
unlike k-factor scaling.

 5 BASIC EXAMPLE

Consider  a  planar  milling  machine  with  three  independent 
degrees of freedom, represented by two linear shifts and one 
rotational axis of milling cutter. The general task is to roll on 
the  cutter  to  desired  position  with  given  final  non-zero 
translational  velocity  in x-direction  and  with  given  milling 
cutter  revolutions,  see   (Fig.  5).  Input  data  could  look  as 
follows

axis x:
BM =5 , AM =1 ,VM =0.2 , x0=[0 ,0 ,0 ] , x f =[0.3 , 0.1 ,0 ]
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axis y:
BM =5 , AM =1 ,VM =0.2 , x0=[0 ,0 ,0 ] , x f =[0.1 , 0 ,0]

axis of revolution  :
BM =200 , AM =1000 , VM =1500 ,
x0=[0 , 0 , 0] , x f=[−,125612000 rev/min ,0 ]

Technologically  there  is  no  need  to  control  the  cutter 
orientation,  only  speed  of  rotation.  Therefore  we  can  use 
second  order  trajectory  generator  (GAVS)  for  cutter  axis. 

GAVS generator is only simpler version of GBAVS, using 
only two integrators. We get motion trajectories, see (Fig. 8), 
and final transfer time t f =5.01s . For translational axes we 
use GBAVS and get transfer times  t f x=1.77s ,  t f y=0.9s , 
see (Fig.  6) and (Fig.  9) for motion trajectories. Comparing 

   

Fig.  5.  The  basic  task  structure  with  marked  desired 
parameters of motion and presumed trajectory of motion.
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Fig. 8. Time-optimal motion trajectories of milling cutter
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Fig. 10. Scaled motion trajectories  of axis  y  for given final 
time.
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Fig. 6.  Time-optimal  motion  trajectories  of  axis  x  before 
time-scaling.
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Fig. 9.  Time-optimal  motion  trajectories  of  axis  y  before 
time-scaling.
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Fig. 7.  Scaled motion trajectories  of axis  x  for  given  final 
time.
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the transfer times  {t f  , t f x ,t f y},  it is evident that we have 
to  make  a  synchronization  by  extending  the  translational 
motions. Using procedure described in section  4  we get the 
modified  input  data  for  each  axis,  BM x=0.0235 , 
BM y=0.0253  with  preset  accuracy.  These  data  together 

with other given constraints and  x0,  xf leads to time-optimal 
trajectories with the same final time  t f x , y=5.01s.  (Fig.  7), 
and (Fig. 10) show the final motion trajectories.

CONCLUSION

In  this  paper,  the  time  scaling  problem  for  uncoordinated 
multi-axis motion planning has been solved. The hard motion 
constraints  on  each  axis  are  fully  respected.  This  solution 
uses third order trajectory generator called GBAVS in form 
of chain of integrators together with Gröbner Basis approach. 
This generator produces the time-optimal motion trajectories 
from arbitrary initial to arbitrary final state, fully respecting 
the constraints  of  motion.  Time scaling  is  made according 
to slowest axis, by lowering only the Jerk limits. This ensures 
better shapes of motion trajectories, keeping the other limits 
unchanged, unless otherwise requested.

The  presented  approach  has  been  validated  through 
experiments. An example has been given in section  5 , where 
the main advantages of this approach have been shown.
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Fig. 12. Resulting (uncoordinated) motion of milling cutter 
in x-y plane.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

5
b

Fig. 11. Bisection Iterative convergence of Jerk parameter for 
x axis according to given final time. The time accuracy was 
preset to 10-2.
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