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Abstract: The poles/residues expression of the frequency-limited H2-norm is used to derive
two upper bounds on the H∞-norm of a MIMO LTI dynamical system. These bounds can be
efficiently computed when the eigenvalues and eigenvectors of the model are available. This
specificity make them particularly well suited to watch the H∞-norm of the approximation
error in the context of the frequency-limited H2 model approximation method suggested
recently by the authors.The efficiency of these bounds, as well as their integration in the model
approximation algorithm are illustrated through several numerical examples.
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1. INTRODUCTION

The optimal H2 model approximation problem has re-
cently known several advances especially through the
methods proposed in Gugercin et al. (2008) or Van Dooren
et al. (2008). They perform rational or tangential inter-
polation in particular complex points to achieve optimal
H2 model approximation and are numerically efficient in
practice, even on (very) large-scale models. Yet, due to
sensors and actuators limited bandwidth, it may be more
relevant to build a reduced order model that matches well
the large-scale one in a bounded frequency range. This can
be done by considering the frequency-limited H2-norm,
denoted here H2,Ω-norm, as criterion in the approximation
process.

To the authors’ knowledge, the H2,Ω-norm (see Definition
1) has firstly been suggested in Anderson et al. (1991) to
perform frequency analysis of nominally unstable systems.
More recently it has been used in robust analysis (Masi
et al. (2010)) and comfort analysis (Poussot-Vassal et al.
(2013)). The norm is also closely related to the frequency-
limited gramians implied in the frequency-limited bal-
anced truncation (Gawronski and Juang (1990)) since it
can be computed with one of them, similarly to the H2-
norm.

Definition 1. (H2,Ω-norm). The H2,Ω-norm of a LTI dy-
namical system with transfer function H, is defined as the
restriction of the H2-norm over Ω = [0, ω], ω ∈ R∗+, i.e.

‖H‖H2,Ω
=

√
1

2π

∫ ω

−ω
tr (H(jν)H(−jν)T ) dν. (1)

Based on this norm, the frequency-limited model approx-
imation problem is stated in Problem 1.

Problem 1. Let us consider a n-th order LTI dynamical
system realization H with nu inputs and ny outputs,
described by its transfer function H as

H(s) = C(sIn −A)−1B +D ∈ Cny×nu , (2)

where A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n and D ∈
Rny×nu . The goal is to find a reduced order model Ĥ with
transfer function Ĥ,

Ĥ(s) = Ĉ(sIr − Â)−1B̂ + D̂ ∈ Cny×nu , (3)

where Â ∈ Rr×r, B̂ ∈ Rr×nu , Ĉ ∈ Rny×r and D̂ ∈ Rny×nu

with r � n such that Ĥ(s) minimizes the frequency-
limited H2-norm of the error system, i.e.

‖H − Ĥ‖2H2,Ω
= min
Gstable

‖H −G‖2H2,Ω
= min
Gstable

JH2,Ω
.

(4)

The frequency-limited H2-norm can be computed either
with the frequency-limited gramians or with the poles
and residues of the model’s transfer function (Vuillemin
et al. (2012)). Both formulations have been used to ad-
dress Problem 1. Indeed, optimization schemes have been
introduced in Petersson (2013) and Vuillemin et al. (2014),
based on the gramian and poles/residues formulations, re-
spectively, to perform optimal H2,Ω model approximation.
Those approaches ensure a decrease of the H2,Ω error, but
there is no indication on the H∞-norm of the error unlike
the balanced truncation, which offers an upper bound. In
this article, we propose two new upper bounds of the H∞-
norm of LTI dynamical systems. Since these bounds are
based on the poles/residues formulation of the frequency-
limited H2-norm, they naturally fit within the optimiza-
tion scheme for model approximation purpose presented in
Vuillemin et al. (2014). Indeed, computing the H∞ bounds
of the approximation error results only in very few extra
numerical costs.

The paper is divided as follows : in Section 3, the two upper
bounds on the H∞-norm of a LTI dynamical system are
proposed. Section 2 then presents the integration of those
bounds in a recently proposed optimization algorithm for
frequency-limited model approximation. Then, in Section
4, the behaviour of the two bounds is illustrated though
several examples. Finally Section 5 concludes the paper.
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2. TWO UPPER BOUNDS ON THE H∞-NORM OF
LTI MIMO SYSTEMS

In this section, two bounds on the H∞-norm are intro-
duced. The first bound is obtained through an optimiza-
tion process, whereas the second bound is more conserva-
tive but analytically obtained. Both bounds are grounded
on the poles/residues expression of the frequency-limited
H2-norm recalled thereafter.

2.1 Poles/residues formulation of the H2,Ω-norm

If the matrix A arising in (2) is diagonalizable, then H(s)
can be written as

H(s) =

n∑
i=1

φi
s− λi

+D, (5)

where λi, φi (i = 1, . . . , n) are the poles and associ-
ated residues of the transfer function. The poles/residues
expression of ‖H‖H2,Ω

is based on this partial fraction
expansion and is recalled in Theorem 1.

Theorem 1. (Vuillemin et al. (2012)). Let us consider a
transfer function as in (5), a frequency band Ω = [0, ω],

ω > 0, and aω,i = 2
πatan

(
ω
λi

)
where atan(z) is the

principal value of the arctangent of z ∈ C \ {j,−j}, then
the H2,Ω-norm of H, can be expressed as,

‖H‖2H2,Ω
= tr

(
n∑
i=1

−φiH(−λi)Taω,i +
ω

π
DDT

)
. (6)

Proof : See Vuillemin et al. (2012). �

Remark 1. (Strictly proper case). When D = 0, the ex-
pression (6) simplifies in

‖H‖2H2,Ω
= tr

(
n∑
i=1

−φiH(−λi)Taω,i

)
, (7)

which is similar to the poles/residues expression of the
H2-norm given in Antoulas (2005),

‖H‖2H2
= tr

(
n∑
i=1

φiH(−λi)T
)
, (8)

excepted from the weightings coefficients aω,i. Moreover, if
H is stable, as ω tends towards infinity, aω,i tends towards
−1 (see Haber (2011)), hence

lim
ω→∞

‖H‖2H2,Ω
= ‖H‖2H2

. (9)

Remark 2. (Multiples frequency intervals). The frequency-
limited H2-norm can also be computed on more complex
intervals. Indeed, considering Ω = Ω1

⋂
Ω2 where Ω1 =

[0, ω1] and Ω2 = [0, ω2] with ω1 < ω2 then

‖H‖2H2,Ω
= ‖H‖2H2,Ω2

− ‖H‖2H2,Ω1
. (10)

2.2 Link between the H∞ and H2,Ω norms

The link between the H∞-norm, recalled in Definition
2, and the H2,Ω-norm, is presented in Theorem 2. It
is grounded on the Frobenius norm which is recalled in
Definition 3. Since the extension is straightforward, only
the strictly proper case is addressed in the sequel.

Definition 2. (H∞-norm). TheH∞-norm of a LTI dynam-
ical system H, is defined as

‖H‖H∞ := max
ω∈R

σmax (H(jω)) , (11)

where σmax (H(jω)) is the largest singular value of H(jω).

Definition 3. (Frobenius norm). The Frobenius norm of a
matrix M ∈ Cm×n is given by

‖M‖F :=
√
tr (MMH) =

√√√√min(m,n)∑
i=1

σ2
i , (12)

where the σi, i = 1, . . . ,min (m,n) are the singular values
of M .

Theorem 2. (H∞ upper bound). Let us consider a stable
LTI dynamical system H, its H∞-norm is upper bounded
as

‖H‖H∞ ≤ max
ω∈R

√
π
d‖H‖2H2,Ω

dω
. (13)

Proof : Considering the definition of the H∞-norm, it
comes that

‖H‖H∞ ≤ max
ω∈R
‖H(jω)‖F . (14)

The H2,Ω-norm can be written as the integral of the
transfer function’s Frobenius norm over [−ω, ω],

‖H‖2H2,Ω
=

1

2π

∫ ω

−ω
‖H(jν)‖2F dν. (15)

Thus by differentiating this expression with respect to ω,
it comes that

‖H(jω)‖2F = π
d‖H‖2H2,Ω

dω
, (16)

which concludes the proof. �

Remark 3. (SISO case). For SISO systems, the bound (13)
becomes an equality.

The bound presented in Theorem 2 (equation (13)) can be
conveniently expressed based on the spectral expression of
the frequency-limited H2-norm. Indeed, by differentiating
(7) with respect to ω, it comes that

d‖H‖2H2,Ω

dω
= − 2

π

n∑
i=1

tr
(
φiH(−λi)T

) λi
λ2
i + ω2

=

n∑
i=1

fi(ω).

(17)
Each function fi is a scalar complex valued function but
the sum is real (each function comes with its complex
conjugate in the sum). Therefore, only the real parts of
the functions fi need to be considered. By denoting

xi + jyi = λi and

ai + jbi = − 2

π
tr
(
φiH(−λi)T

)
λi,

(18)

it comes that, for i = 1, . . . , n,

gi(ω) = Re (fi(ω)) =
ai(x

2
i − y2

i + ω2) + 2biyixi
(x2
i − y2

i + ω2)2 + 4x2
i y

2
i

. (19)

Grounded on this formulation, two upper bounds are
proposed in Theorem 3.

Theorem 3. H∞-norm upper bounds Given a MIMO LTI
dynamical system H of order n with a diagonalizable
realization matrix A, its H∞-norm is bounded by Γ and Γ̄
as follows,
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‖H‖H∞ ≤

√√√√max
ω∈R

π

n∑
i=1

gi(ω)

︸ ︷︷ ︸
Γ

≤

√√√√π

n∑
i=1

max
ω∈R

gi(ω)

︸ ︷︷ ︸
Γ̄

(20)

where the functions gi are defined in (19).

2.3 Practical computation of the bounds

The two upper bounds proposed in Theorem 3 are ob-
tained as follows :

• Computing Γ̄ consists in finding the maximums of
n simple rational functions. This can be achieved
analytically.
• Computing Γ consists in finding the maximum of a

sum of rational functions. This can be achieved by a
standard optimization algorithm.

Computation of Γ̄ : in order to compute Γ̄, the max-
imum of each function gi has to be found, this is done
by expressing the stationary points of the functions. The
derivative of gi (i = 1, . . . , n) with respect to ω is given
by,

g′i(ω) =
2ωNi(ω)

((x2
i − y2

i + ω2)2 + 4x2
i y

2
i )2

, (21)

where,

Ni(ω) = [(x2
i − y2

i +ω2)(−ai(x2
i − y2

i +ω2)− 4biyixi) . . .

+ 4aix
2
i y

2
i ]. (22)

The stationary points are then given by the zeros of the
numerator, i.e. 0 and the roots pi,k, k = 1, . . . , 4 of the
polynomial Ni which are

pi,k = ±

√
±2

√
x2
i y

2
i (a2

i + b2i )

ai
− 2bixiyi

ai
− x2

i + y2
i . (23)

The functions gi have no real pole and tends towards 0
as ω tends towards infinity, hence they are bounded on R.
In particular, they are bounded either by 0 when they are
strictly negative, or by their value at one of the stationary
points. This property is used in Algorithm 1 to compute
the bound Γ̄.

Algorithm 1 Computation of Γ̄

Require: The model’s state space realization (A,B,C).
1: Compute the eigenvalue decomposition ofA, i.e.AV =
V∆, where ∆ = diag (λ1, . . . , λn).

2: Compute ai, bi, xi and yi i = 1, . . . , n from (18).
3: for i = 1, . . . , n do
4: Compute pi,k, k = 1, . . . , 4, with (23).
5: Evaluate gi(0) and gi(ri,j) where ri,j , j = 1, . . . , nr

are the nr real values of the roots pi,k, k = 1, . . . , 4.
6: Set ḡi = max {0, gi(0), gi(ri,j)}.
7: end for
8: Set Γ̄ =

√
π
∑n
i=1 ḡi.

Note that to determine ai and bi, i = 1, . . . , n (step 2), the
residues should not explicitly be constructed. Indeed, by
denoting � the Hadamard product between two matrices,

[ a1 + jb1 . . . an + jbn ]
T

=
((
cT c
)
�
(
bbT
)
� L

)
1, (24)

where c = CV ∈ Cny×n, b = V −1B ∈ Cn×nu , 1 ∈ Rn×1

is a column vector full of 1 and L ∈ Cn×n is the matrix
which i, j-th element is given by [L]i,j = 2

π
λi

λi+λj
.

Computation of Γ : Finding Γ requires to find the
global maximum of a non-convex function composed by a
sum of rational functions. Specific approaches address this
complex issue (Bugarin et al. (2011)), but since a good
initial point is available, a more straightforward approach
has been considered here. Indeed, only a local optimization
process is used together with a good initialization. This
does not offer any guarantee on the result however it has
proven to be very effective in practice. As the Hessian is
easily obtained from g′i (21), a Newton method is used.
The initial point ωinit is chosen as the argument of the
maximum value among all the ḡi, i = 1, . . . , n computed
at step 6 of Algorithm 1, i.e.

ωinit = arg max {ḡ1, ḡ2, . . . , ḡn} . (25)

Remark 4. Standard optimization tools can be used to
compute Γ. This is why the algorithm is not detailed here.

Remark 5. Note that Γ and Γ̄ can also be constructed to
bound the H∞-norm of the system over a finite frequency-
interval Ω. Indeed, it only implies to restrict the search
space to this specific interval Ω. In practice, this results in
evaluating the functions gi at the bounds of the interval
for Γ̄ and to choose the initial point ωinit in Ω for Γ.

3. APPLICATION OF THE BOUNDS IN
FREQUENCY-LIMITED MODEL APPROXIMATION

In this section, the bounds presented in Theorem 3 are
integrated in a H2,Ω model approximation method. They
enable to have information on the H∞-norm of the er-
ror for reasonable numerical costs given the considered
model approximation framework. Indeed Problem 1 is ad-

dressed by looking for the poles λ̂k, residues φ̂k and direct
feedthrough D̂ of the reduced-order model Ĥ described by
its transfer function Ĥ,

Ĥ(s) =

r∑
k=1

φ̂k

s− λ̂k
+ D̂. (26)

Such a parametrization has already been considered for
the optimal H2 model approximation problem in Beattie
and Gugercin (2009) and the extension to the frequency-
limited case has been proposed in Vuillemin et al. (2014).
The approach consists in expressing the H2,Ω approxima-
tion error (4) as a function of the reduced order model
poles and residues and to differentiate it to obtain the
first-order optimality conditions. Again, for sake of sim-
plicity, both models are supposed to be strictly proper,
i.e. D = D̂ = 0 but the general case can be handled as
well (see Vuillemin et al. (2014)).

3.1 H2,Ω approximation : first-order optimality conditions

Grounded on the poles/residues expression of the H2,Ω-
norm presented in Theorem 1, the H2,Ω-norm of the
approximation error (4) between the initial large-scale

model H and the low order one Ĥ is then expressed in

Theorem 4 as a function of the poles λ̂i and residues φ̂i,
i = 1, . . . , r, of the low-order model.

Theorem 4. Given a stable n-th order model H given as
(5), a stable r-th order model Ĥ given as (26) and a
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∂JH2,Ω

∂λ̂∗m
= −

r∑
i=1

ĉ∗mĉ
T
i b̂ib̂

H
m

(λ̂i + λ̂∗m)

(
âω,i + â∗ω,m

(λ̂i + λ̂∗m)
+

2ω

π(λ̂∗2m + ω2)

)
+

n∑
i=1

ĉ∗mc
T
i bib̂

H
m

(λi + λ̂∗m)

(
aω,i + â∗ω,m

(λi + λ̂∗m)
+

2ω

π(λ̂∗2m + ω2)

)
(28)

∂JH2,Ω

∂b̂∗m
=

r∑
i=1

b̂Ti ĉiĉ
H
m

λ̂i + λ̂∗m

(
âω,i + â∗ω,m

)
−

n∑
i=1

bTi ciĉ
H
m

λi + λ̂∗m

(
aω,i + â∗ω,m

)
(29)

∂JH2,Ω

∂ĉ∗m
=

r∑
i=1

ĉTi b̂ib̂
H
m

λ̂i + λ̂∗m

(
âω,i + â∗ω,m

)
−

n∑
i=1

cTi bib̂
H
m

λi + λ̂∗m

(
aω,i + â∗ω,m

)
(30)

frequency interval Ω = [0, ω], ω > 0, the H2,Ω error JH2,Ω

(4) between H and Ĥ can be expressed as

JH2,Ω = ‖H‖2H2,Ω
+ ‖Ĥ‖2H2,Ω

· · ·

−
n∑
i=1

r∑
k=1

tr
(
φiφ̂

T
k

)
λi + λ̂k

(aω,i + âω,k) , (27)

where aω,i = 2
πatan

(
ω
λi

)
and âω,k = 2

πatan
(
ω
λ̂k

)
.

Proof : See Vuillemin et al. (2014). �

Remark 6. (Computation of the H2,Ω-norm). Note that if
the eigenvalues and eigenvectors of the initial model are
available, then evaluating (27) is numerically cheap since
it only involves matrix and vectors products (see Vuillemin
et al. (2014) for more details).

The residues of the reduced-order model φ̂i, i = 1, . . . , r,
are not directly used as optimization variables. Indeed,
these residues must be of rank 1 for the reduced-order
model Ĥ given by the equation (26) to be of order r.
A convenient way to handle this constraint consists in
expressing the residues as outer product of two vectors

ĉi ∈ C1×ny and b̂i ∈ C1×nu , i.e. φ̂i = ĉTi b̂i for i = 1, . . . , r.
Problem 1 is finally restricted to the determination of ĉi,

b̂i and λ̂i, i = 1, . . . , r (in the strictly proper case) which
minimizes the approximation error JH2,Ω

. For notation
consistency, the initial model’s residues φi are also written
as φi = cTi bi where ci ∈ C1×ny and bi ∈ C1×nu (i =
1, . . . , n).

The approximation error JH2,Ω is a function of r(1 +
ny + nu) parameters in the strictly proper case. Since
only r (ny + nu) parameters are required to describe a ny
outputs, nu inputs model of order r, the problem is slightly
over-parametrized. To decrease the number of decision
variables, additional constraints could be added like it has
been done in theH2 case Beattie and Gugercin (2009). Yet
here, only unconstrained optimization is considered so that
the problem fit the complex optimization framework stated
in Sorber et al. (2012). In this article, the authors address
the optimization of non-holomorphic functions f(z, z∗) by
constructing optimization schemes based on the scaled
conjugate cogradient 2 ∂f

∂z∗ . The same procedure is applied
here with the approximation error JH2,Ω

and its conjugate
cogradient is presented in Theorem 5.

Theorem 5. Given a n-th order model H(s) and a r-th

order model Ĥ(s) described by (5) and (26), respectively,
the complex derivatives of the approximation error JH2,Ω

(27) with respect to λ̂∗m, b̂∗m and ĉ∗m (m = 1, . . . , r) are
given by equations (28), (29) and (30), respectively.

Proof : The gradient is obtained through straight deriva-
tion of the error expression (27). �
Remark 7. (Computation of the gradient). Despite its ap-
parent complexity, the conjugate cogradient of JH2,Ω

can
also be computed efficiently through Hadamard, matrix
and vector products.

3.2 An optimization algorithm for model approximation

Algorithm 2 Descent Algorithm for Residues and Poles
Optimization (DARPO)

Require: A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, Ω = [0 ω]
with ω > 0 and r ∈ N∗.

1: Compute the eigenvalues of A and their associated
eigenvectors.

2: Choose an initial point z0 composed of λ̂
(0)
i , ĉ

(0)
i , b̂

(0)
i ,

i = 1, . . . , r.
3: k ← 0.
4: while not converged do

5: Compute JH2,Ω(zk) and
∂JH2,Ω

∂z∗ |z=zk through the
equations (27), (28), (29) and (30), respectively.

6: [Optional] : Compute the H∞-bounds Γ̄ (and Γ) of
the error system.

7: Set pk = −2
∂JH2,Ω

∂z∗ |z=zk .
8: Choose αk such that JH2,Ω

(zk + αkpk) satisfies the
complex strong Wolfe conditions.

9: Set zk+1 = zk + αkpk.
10: k ← k+1.
11: end while
12: Use λ̂

(k)
i , ĉ

(k)
i , b̂

(k)
i , i = 1, . . . , r to construct Ĥ =(

Â, B̂, Ĉ
)

.

Both Theorem 4 and Theorem 5 are used in a gradient
descent procedure called DARPO and presented in Al-
gorithm 2. Note that computing the bound Γ̄ at step 6 is
done using Algorithm 1 but does not require to solve any
eigenvalue problem. Indeed, the eigenvalues and residues of
both models are known and can be used directly. Similarly,
computing Γ only involve the optimization process and
no additional eigenvalue problem. Note that the error can
be computed at each iteration or just at the end. The
impact on the computation time is illustrated in Section
4. Besides, the following remarks can be made on this
algorithm :

• At step 7, the descent direction is symbolically chosen
as the opposite of the conjugate gradient, but in
practice, a quasi-newton procedure (BFGS) is imple-
mented and leads to better performances.

• At step 12, the reduced-order model’s realization is
constructed by arbitrary choosing eigenvectors X̂ =
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Fig. 1. Computation times of the H∞-norm, Γ and Γ̄ of
random models with an increasing order n.

[x̂1, . . . , x̂r] ∈ Cr×r associated to the eigenvalues λ̂i,
i = 1, . . . , r.
• Since the eigenvalues and eigenvectors of the initial

model are required, this algorithm is dedicated to
medium-scale models approximation for which these
quantities can be computed.

4. APPLICATION

4.1 Illustration of the bounds

The first test consists in computing the H∞-norm (with
Matlab’s routine), Γ and Γ̄ of randomly generated systems
which order n varies from 1 to 300 with ny = nu = 5 in
order to show the good scalability of the method. For each
order n, the computation time of each routine is measured
100 times, Figure 1 compares the computations times and
in Table 1 (left), the ratio of the bounds overs the true
H∞-norm are presented. The second test is similar but
here, the order n is fixed to 10 while the number of inputs
and outputs is increased from 1 to 300 1 (with ny = nu).
Again, the computation times are measured 100 times for
each number of inputs/outputs. The computation times
are plotted on Figure 2 together with the ratios of the
bounds over the H∞-norm. Those ratios are also presented
in Table 1 (right).

Table 1. Ratios of the bounds over the real
H∞-norm for varying order n (left) and vary-

ing number of inputs/outputs (right).

varying n Γ Γ̄

min 1 1
mean 1.13 1.26
max 1.53 2.56
var 0.014 0.069

varying ny , nu Γ Γ̄

min 1 1
mean 1.26 1.43
max 2.33 2.42
var 0.07 0.11

Figure 1 shows that the bounds are seemingly faster
to compute than the real H∞-norm. This comes from
the underlying eigenvalue problem solver which is very
efficient. Yet with mean ratios value of 1.13 and 1.26 (Table
1, left), both Γ and Γ̄ are relatively close to the real H∞-
norm. As expected, increasing the number of inputs and
outputs make both bounds more conservative, as presented

1 Given the nature of the bounds, the number of inputs and outputs
is more likely to impact their quality.
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Fig. 2. Ratios and computation times of the H∞-norm, Γ
and Γ̄ of random models with an increasing number
of inputs and outputs ny = nu going from 1 to 100.

in Table 1 (right). Indeed, the mean values of Γ and Γ̄
are now 1.26 and 1.43. However, we can see on Figure
2 (bottom plot) that there is not a clear increase of the
ratio as ny and nu grow. Besides, the number of inputs
and outputs has only few impact on the computation
times of the bounds compared to the impact it has on
the computation of the true H∞-norm.

4.2 Comparison with the balanced truncation’s bound

In this example, the ISS model (270 states, 3 outputs,
3 inputs) from Leibfritz and Lipinski (2003) is reduced
for several order r going from 2 to 30 with the balanced
truncation (BT). For each reduced-order model, the real
H∞-norm of the error, the bound given by the balanced
truncation and the proposed bounds Γ and Γ̄ are com-
puted. The results are plotted on Figure 3.

We can see that both Γ and Γ̄ are tighter than the bound
given by the balanced truncation (see for instance An-
toulas (2005)) whereas they do not require more compu-
tation. Obviously though, the proposed bounds are not
computable a priori and require the reduced order model
to be constructed.

4.3 Behaviour of the bound with DARPO

The ISS model is reduced to several orders r going from 2
to 30 with DARPO. For each order, the following relative

quantities are computed
‖H−Ĥ‖H∞
‖H‖H∞ andΓ(H−Ĥ)

‖H‖H∞ , Γ̄(H−Ĥ)
‖H‖H∞

and the computation time of the reduced-order model is
measured (i) without the computations of the bounds (ii)
with computation of the bounds at each iteration (iii) with
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Fig. 4. Comparison of the bounds and the realH∞-norm of
the error when reducing the ISS model with DARPO
for several orders r.

computations of the bounds at the end of the algorithm.
The results are plotted on Figure 4.

We can see that both bounds are very close to the realH∞-
norm and does not really impact the computation time
when they are only computed at the end of the algorithm
(i.e. for the final approximation error).

5. CONCLUSION

In this paper, two upper bounds on the H∞-norm of
a MIMO LTI dynamical systems have been introduced.
Those bounds are grounded on the relation between the
H∞-norm and the frequency-limited H2-norm. Their com-
putation is done by exploiting the poles/residues formula-
tion of this norm and is fast whenever the eigenvalues and

eigenvectors of the system are available. The two bounds
have been integrated into DARPO, a descent algorithm
for optimal frequency-limited model approximation, thus
giving an indication on theH∞-norm of the approximation
error which is interesting since only few model reduction
techniques offer such information. The efficiency of the
bounds, both in terms of computation times and closeness
to the H∞-norm, has been illustrated through several
numerical examples.
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