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Abstract: This paper design a method for fault detection and isolation based on observers
for systems modelled as Descriptor-Linear Parameter Varying (D-LPV) with Unmeasurable
Scheduling Functions (USF). The first contribution of the paper is deal with the USF problem
by transforming the into an uncertain D-LPV system with an estimated scheduling parameter.
As a second contribution, a robust LPV observer is designed with H∞ performance to supply a
robust state estimation against uncertainties provided by USF. Sufficient conditions to guarantee
the robustness and convergence are obtained via linear matrix inequalities (LMIs). Finally,
an observer bank based on robust H∞ observers is used to generate residuals and perform
sensor fault detection and isolation. A numerical example demonstrates the effectiveness of our
methods.

1. INTRODUCTION

The majority of model-based FDI schemes rely on linear
time-invariant (LTI) models. Unfortunately, in the real
world physical systems present a nonlinear behaviour.
However, a FDI scheme for nonlinear systems is more
complicated and difficult than for linear systems. An
attractive alternative to represent nonlinear systems is
through Descriptor-Linear Parameter Varying models (D-
LPV). D-LPV, also known as multi-models systems, are
mathematical models that are able to exactly represent
or to approximate to an arbitrary degree of accuracy
a large class of nonlinear systems in a compact set of
the descriptor linear models (D-LTI). D-LTI systems are
obtained by the decomposition of the operating space
of a nonlinear system into a finite number of operating
zones. The behavior of the system in each zone is rep-
resented by a local linear model [Ghorbel et al., 2012].
The linear models are interpolated by scheduling functions
which determine the proportion of which model is active.
The typical approach considers scheduling functions as
depending on a measurable parameter (as the input or the
output of the system). Nevertheless, in many applications
the scheduling parameter is unmeasurable (as the state
of the system). Models which depend on an unmeasur-
able scheduling parameter (USP) cover a wide class of
nonlinear systems compared to models with a measurable
scheduling parameter [Bergsten et al., 2002, Yoneyama,
2009, Theilliol and Aberkane, 2011]. On the other hand,
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descriptor systems, also known as singular systems, are
mathematical models with the property of integrate static
(algebraic) and dynamical (ordinary differential) equations
in the same model. This property improves the capacity
of describing a large class of physical systems. Descriptor
systems have many important applications, e.g. aircraft
modelling [Masubuchi et al., 2004], composition estimation
in distillation columns [Aguilera-González et al., 2013], ob-
server design for waste-water treatment plants[Nagy-Kiss
et al., 2011], analysis of electrical systems [Duan, 2010],
among others. Nevertheless, few results on robust fault
diagnosis for D-LPV systems have been reported [Habib
et al., 2012a, Boulkroune et al., 2013]. So the study of such
problems is of both practical and theoretical importance.

This paper addresses the problem of design a suitable
robust LPV observer for fault diagnosis purpose for D-
LPV systems with unmeasurable scheduling functions. In
order to deal with the unmeasurable parameter, the D-
LPV system with USF is transformed into an uncertain
system with an estimated scheduling parameter. H∞ cri-
terion is employed to guarantee flexibility and robustness
performance, even in the presence of model-reality dif-
ferences, disturbances and, the uncertainty provided by
the unmeasurable scheduling parameter. Finally, based on
the robust LPV observer, a generalized observer scheme
bank (GOS) is built to perform robust fault detection and
isolation.

The paper is composed as follows: some preliminary re-
sults in finding the uncertain state-space error and the
problem formulation are presented in Section 2. Section 3
is dedicated to the design of the robust residual generator.
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Section 4 is dedicated to the synthesis of fault diagnosis
based on the residual generator. A numerical example is
presented in Section 5. Section 6 is dedicated to some
conclusions and future works.

Notations: The notations used in this article are standard.
For a matrix A ∈ Rm×n, AT , A−1 and A† denote its
transpose, inverse and pseudoinverse respectively. He{A}
is a shorthand notation for A + AT . ρi and ρ̂j are short-
hand notations of ρi(x(t)) and ρj(x̂(t)), respectively. The
symbol ? denotes the transposed element in the symmetric
positions of a matrix.

2. PRELIMINARIES AND PROBLEM STATEMENT

Consider a continuous D-LPV system affected by unknown
inputs such as:

Eẋ(t) =

h∑
i=1

ρi [Aix(t) +Biu(t) +Bdd(t)] (1)

y(t) =Cx(t),

where x ∈ Rn, u ∈ Rm, d ∈ Rq, and y ∈ Rp are the state
vector, the control input, the disturbances, and the mea-
sured vector respectively. Ai, Bi, Bd, and C are constant
matrices of appropriate dimensions. E is a singular matrix
with rank(E) = r ≤ n, h is the number of models. In
addition, ρi are scheduling functions which depend on the
state x(t). The scheduling functions of the h sub-models
satisfy the following convex set sum property:

∀i∈ [1, 2, ..., h] , ρi(x(t)) ≥ 0,

h∑
i=1

ρi(x(t)) = 1, ∀t. (2)

To carry out an appropriate state estimation, the following
assumptions are considered:

Assumption 1. [Vermeiren et al., 2012] The D-LPV sys-
tem(1) is admissible. It means that there exists a Lyapunov
function

V (x(t)) = xT (t)ETPx(t), (3)

where ETP = PTE ≥ 0, and whose derivative
V̇ (x(t)) = ẋT (t)ETPx(t) + xTETPẋ(t), is negative.

Assumption 2. [Habib et al., 2012b, Aguilera-González
et al., 2013] The D-LPV system (1) is R-observable:

rank

[
sE −Ai

C

]
= n, ∀i ∈ [1, 2, ...h] . (4)

Assumption 3. [Habib et al., 2012b, Aguilera-González
et al., 2013] The D-LPV system (1) is I-observable:

rank

[
E Ai
0 E
0 C

]
= n+ rankE, ∀i ∈ [1, 2, ..., h]. (5)

The following lemmas will be useful to prove our main
results.

Lemma 1. [López-Estrada et al., 2013] The descriptor
LPV system (1) is said to be stable with H∞ performance
if there exists a scalar γ > 0, and a matrix X = XT > 0
such that:

ETX = XTE > 0He{ATi X} XBi CT? −γ2I 0
? ? −I

≤ 0.

Lemma 2. [Yang et al., 2005] Let M, H and, Φ be real
matrices of appropriate dimensions, with matrix Γ(t) sat-
isfying ΓT (t)Γ(t) ≤ I, then for a given system

M +HΓΦ + ΦTΓTHT < 0

the following property is verified, if and only if there exists
a positive scalar ε > 0 such that

M + εΦTΦ +
1

ε
HHT < 0

or equivalently M H εΦT

HT −εI 0
εΦ 0 −εI

 < 0.

For an admissible and R/I observable system (1), the
following observer is proposed:

ż(t) =

h∑
i=1

ρi(x̂(t)) [Niz(t) +Giu(t) + Liy(t)]

x̂(t) =z(t) + T2y(t) (6)

where z(t) represents the estimated vector and x̂(t) the
estimated states. Ni, Gi, Li, and T2 are unknown gain
matrices of appropriate dimensions to be computed. Addi-
tionally, an auxiliary normalized residual vector is defined,
to perform fault detection and isolation, as

r(t) =‖W (y(t)− Cx̂(t)) ‖ (7)

where W is the residual weighting matrix to determine.
As expressed by (7), the residual is the difference between
the measured output and an estimated output. In practical
applications, the residuals are corrupted by the presence
of noise, unknown disturbances, and model uncertainties.
Hence, the main objective is to synthesize the gain matri-
ces for the observer (6) to guarantee the convergence of
the state estimation error and to generate residual which
present robustness against the unmeasurable scheduling
parameters ρi and disturbances d(t).

3. OBSERVER SYNTHESIS

In this section a methodology to deal with the unmeasur-
able scheduling problem by transforming the system (1)
into an uncertain system (21), is presented. To guaran-
tee the convergence and robust performance, even in the
presence of uncertainties, H∞ criterion is applied to the
uncertain system.

Based on (1) and (6), the state-space error e(t) is

e(t) = x(t)− x̂(t)

e(t) = (I − T2C)x(t)− z(t),
assuming that there exists a T1 ∈ Rn×n matrix as

I − T2C = T1E. (8)

By considering (8), the error becomes

e(t) = T1Ex(t)− z(t). (9)

The error equation is given by
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ė(t) =T1Eẋ(t)− ż(t)

ė(t) =

h∑
i=1

ρiT1 [Aix(t) +Biu(t) +Bdd(t)]

−
h∑
i=1

ρ̂i [Niz(t) +Giu(t) + Liy(t)] (10)

ė(t) =

h∑
i=1

ρiT1 [Aix(t) +Biu(t) +Bdd(t)] (11)

−
h∑
i=1

ρ̂i [NiT1Ex(t)−Nie(t) +Giu(t) + Liy(t)]

By considering the convex property of the gain scheduling

function (2), the term −
∑h
i=1 ρi(x̂(t))NiT1Ex(t) can be

handled as

h∑
i=1

ρi

 h∑
j=1

[(ρj − ρ̂j)]NrT1E

x(t)−
h∑
i=1

ρiNiT1Ex(t),

(12)
Similar procedures are done for the remaining terms of
(11) and are not presented here due to space limitations.
Based on the previous manipulations, the error equation
(11) is rewritten as follows:

ė(t) =

h∑
i=1

ρi(x(t)) {(T1Ai −NiT1E − LiC)x(t)

+(T1Bi −Gi)u(t) +Nie(t) + T1Bdd(t)

+

h∑
j=1

[(ρj − ρ̂j)] ((NjT1E − LjC)x(t)

+Gju(t) +Nje(t))} . (13)

In order to guarantee the convergence to zero of the error
dynamics, the following constraints are considered

T1Ai − LiC −NiT1E = 0 (14)

Gi − T1Bi = 0 (15)

T1Bd = 0. (16)

By considering (14), the following equations are equiva-
lent:

Ni = T1Ai +KiC (17)

Ki = NiT2 − Li (18)

A particular solution of matrices T1 and T2 is computed
as

[T1 T2] = [In 0]

[
E Bd
C 0

]†
. (19)

The error equation becomes

ė(t) =

h∑
i=1

ρi

Nie(t) +

h∑
j=1

[(ρj − ρ̂j)] [(T1Aj)x(t)

+Gju(t)−Nje(t)]] .
(20)

In order to construct a residual-state-space error system,

the states are extended as xe(t) =
[
x(t)T e(t)T

]T
. As

a result, by considering (20), (1) and (7), the following
uncertain residual state-space error system is obtained

Ēẋe(t) =

h∑
i=1

ρi
[(
Āi + ∆Āi

)
xe(t) +

(
B̄i + ∆B̄i

)
u(t)

]
(21)

r(t) = C̄xe(t)

with

Ē =

[
E 0
0 I

]
, Āi =

[
Ai 0
0 Ni

]
, B̄i =

[
Bi
0

]
, C̄ = [0 WC] .

and, matrices ∆Ā and ∆B̄ defined by

∆Āi = HAFAΦA, ∆B̄i = HBFBΦB ,

with

HA =

[
0 0

[T1A1 ... T1Ah] [N1 ... Nh]

]
, FA =

[
F 0
0 F

]
,

ΦA =

[
IA 0
0 −IA

]T
, IA = [In1 . . . Inh ]

T
,

HB =

[
0

[G1 ... Gh]

]
, FB = [ F ] ,ΦB = IB ,

IB = [Im1 . . . Imh ]
T
, F =

(ρ1 − ρ̂1) ... 0
...

. . .
...

0 . . . (ρh − ρ̂h)

 .
Note that this transformation is possible due to the convex
property (2) which implies FT (t)F (t) ≤ I. The problem is
reduced to design the observer gains to reject the influence
of the control input u(t) and to maximize the robustness
against the uncertainty provided by the unmeasurable
scheduling function. Sufficient conditions to achieve this
objective are given through the following theorem:

Theorem 1. There exists a robust state estimation ob-
server (6) for the D-LPV system (1) with H∞ attenuation
level γ > 0, if there exist scalars εA > 0, εB > 0, matrices

X =

[
P 0
0 Q

]
with P > 0, Q = QT > 0, and gain matrices

Ki = Q−1Ξi, ∀i ∈ [1, 2, ..., h], such that there exists a
solution to the following optimization problem:

min
P,Q,Ξi, εA, εB

γ

s.t.

ETP = PTE > 0 (22)

Ψi ≤ 0

where Ψi is given in (23) (see next page).

Proof. By considering Lemma (1), H∞ performance is
guaranteed if the following LMI hold

ĒTX = XT Ē >0 (24)He
((
Āi + ∆Āi

)T
X
)
X
(
B̄i + ∆B̄i

)
C̄T

? −γ2I 0
? ? −I

 ≤0. (25)

By considering the following

M =

He (ĀTi X) XB̄i C̄
T

? −γ2I 0
? ? −I

 , (26)

The LMI (25) can be rewritten as
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He{ATi P} 0 PBi 0 0

? He
{

(T1Ai)
T
Q+ CΞi

}
0 [QT1A1 . . . QT1Ah] [QT1A1 + Ξ1C . . .QT1Ah + ΞhC]

? ? −γ2Im 0 0
? ? ? −εAIn×h 0
? ? ? ? −εAIn×h
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?

εAI
T
A 0 0 0 0

0 −εAITA [QG1 . . . QGh] 0 (WC)
T

0 0 0 εBΦTB 0
0 0 0 0 0
0 0 0 0 0

−εAIn×h 0 0 0 0
? −εAIn×h 0 0 0
? ? −εBIm×h 0 0
? ? ? −εBIm×h 0
? ? ? ? −Ip


≤ 0. (23)

M +

He (∆ĀTi X) 0 0
? 0 0
? ? 0

+

0 X∆B̄i 0
? 0 0
? ? 0

 ≤ 0. (27)

LMI (27) is rewritten in an equivalent form as

M + H̃AFAΦ̃A + (H̃AFAΦ̃A)T + H̃BFBΦ̃B

+
(
H̃BFBΦ̃B

)T
≤ 0 (28)

with

H̃AFAΦ̃A =

[
XHA

0
0

]
FA [ΦA 0 0]

H̃BFBΦ̃B =

[
XHB

0
0

]
FB [0 ΦB 0] .

By considering Lemma 2, the previous inequality becomes

M + εAΦ̂TAΦ̂A + εBΦ̂TBΦ̂B +
1

εA
ĤT
AĤA +

1

εB
ĤT
BĤB ≤ 0.

By applying lemma 2 and the Schur complement the
inequality becomes

He
(
ĀTi X

)
XB̄i C̄

T XHA εAΦTA XHB 0
? −γ2I 0 0 0 0 εBΦTB
? ? −I 0 0 0 0
? ? ? −εAI 0 0 0
? ? ? ? −εAI 0 0
? ? ? ? ? −εBI 0
? ? ? ? ? ? −εBI


≤ 0.

(29)
In order to rearrange column 3 and 7 from LMI (29), the
LMI is post and pre-multiplying by

I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 0 0 0 0 I
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0

 ,

and its transpose, respectively. The LMI (29) results in

He
(
ĀTi X

)
XB̄i XHA εAΦTA XHB 0 C̄T

? −γ2I 0 0 0 εBΦTB 0
? ? −εAI 0 0 0 0
? ? ? −εAI 0 0 0
? ? ? ? −εBI 0 0
? ? ? ? ? −εBI 0
? ? ? ? ? ? −I


≤ 0.

Note that by replacing X =

[
P 0
0 Q

]
> 0 and the extended

matrices of (21) implies (23). Finally, it is clearly that for
given matrices P > 0 and Q = QT > 0, the equality
constraint (24) has the equivalent form given in (22). This
completes the proof. �

4. SENSOR FAULT DETECTION AND ISOLATION

The fault isolation problem is to determine in which
sensor the fault has occurred. For purposes of sensor fault
diagnosis, a bank of observers, as in [Frank, 1990], is
adopted. Each observer is dedicated to one single fault fk
as proposed in the generalized observer scheme. As result,
each residual is sensitive to all but one fault. Hence, for
each sensor fault, the descriptor-LPV system corrupted by
faults and unknown inputs is described by

Eẋ(t) =

h∑
i=1

ρi(x(t)) [Aix(t) +Biu(t) +Bdd(t)] (30)

y(t) = Ckx(t) +Dk
ffk(t)

Where Ck and Dk
f are the matrix and sensor fault distri-

bution without the kth component. If each derived system
(30) satisfies Assumptions (1)-(3), then a bank of k resid-
uals are generated by
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żk(t) =

h∑
j=1

ρj(x̂(t))
[
Nk
j z(t) +Gkju(t) + LkjC

kx(t)
]

x̂k(t) =zk(t) + T2C
kx(t). (31)

rk(t) = ‖W k(y(t)− Ckx̂k(t)) ‖ . (32)

Finally, fault detection and isolation is done by evaluating
the rk residual produced by the kth robust LPV observer.
Note that the isolation scheme can only isolate a single
fault at the same time. This is based on the fact that the
probability for two or more faults to occur at the same
time is very small in a real situation [Habib et al., 2012b].

5. SIMULATION EXAMPLE

A numerical example is presented to illustrate the per-
formance of the proposed method. Consider the D-LPV
system (1) under disturbances d(t), described by the fol-
lowing gain matrices

E = diag(1, 1, 0), A1 =

[−10 5 6.5
2 −5.5 −1.25
−9 4 8.5

]

A2 =

[−10 5 6.5
5 −4 −1.25
−2 4 7

]
, A3 =

[−8 5 6.5
5 −4 −1.25
−5 4 6

]

B1 =

[
0
1

0.5

]
, B2 =

[
0

0.7
1

]
, B3 =

[
0

0.5
0.6

]

Bd =

[
0
1

0.5

]
, C =

[
1 0 0
0 1 1
0 0 1

]
.

The gain scheduling functions which depend on the
scheduling parameter x1(t) are defined as

ρi(x(t)) =
µi(x1(t))∑3
i=1 µi(x1(t))

(33)

µ1(t) = exp

[
1

2

(
x1(t) + 0.4

0.5

)2
]

µ2(t) = exp

[
1

2

(
x1(t)− 0.4

0.1

)2
]

µ3(t) = exp

[
1

2

(
x1(t)− 1

0.5

)2
]
.

In order to evaluate the observer performance, a first
simulation is done by considering the system in the fault-
free case. The synthesis of the stable D-LPV observer
with H∞ performance (6) has been achieved with Yalmip
toolbox [Lofberg, 2004]. The attenuation level obtained
by solving (23) is γ = 2.4214 × 10−4 which leads to the
following state matrices:

N1 =

[−5.78 3.37 2.76
6.42 −5.87 −4.25
−3.21 2.93 2.12

]
, N2 =

[−5.78 3.37 2.76
4.42 −5.12 −3.50
−2.21 2.56 1.75

]

N3 =

[−4.78 3.37 2.76
5.92 −5.12 −3.00
−2.96 2.56 1.50

]
, L1 =

[−2.10 1.50 1.74
2.28 −2.87 −1.99
−1.14 1.43 0.99

]

L2 =

[−2.10 1.50 1.74
1.28 −2.3 −1.81
−0.64 1.15 0.90

]
, L3 =

[−1.60 1.50 1.74
2.03 −2.19 −1.43
−1.01 1.09 0.71

]
.
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Fig. 1. Square estimation error.
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Fig. 2. (a) Scheduling functions estimation error, (b)
Evolution of the estimated scheduling functions.

Matrices Gi and T2 are not displayed here due to space
limitations but can be computed by solving (15)-(19).
Initial conditions are considered as x(0) = [0, 1, −1]T ,
z(0) = [0.1, 0, 0]T . A sinusoidal input u(t) = 5sin(t)
is applied. The disturbance d(t) included in the process
is zero-mean noise with a standard deviation of 0.3. As
illustrated in Fig. 1, the observer performs well with an
square estimation error close to zero. Fig. 2a shows the
estimation error of the gain scheduling functions. Clearly,
a good estate-estimation implies also good estimation of
the scheduling functions. Fig. 1b display the evolution of
the scheduling functions which gives information about the
contribution of each model to the global behaviour over
time. As can be observed, in both Fig. 1 and Fig. 2a-b,
due to the uncertain approach and the H∞ performance,
the observer converges fast and asymptotically. System
disturbances and model uncertainties are well attenuated.
A second simulation is done by considering Df = I3 in
order to consider one fault for each sensor. To provide
useful residuals a generalized bank of observers as detailed
in section 4 is constructed. Assumptions 1-3 are verified for
all derived systems. By solving (23), the attenuation levels
obtained for each observer are γ1 = 3.5683 × 10−4, γ2 =
3.022×10−4, and γ3 = 3.087×10−4. These small values of
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Faults.

the attenuation levels guarantee the objective performance
and the robustness against the uncertainty provided by
the scheduling functions for all the observers. The faults
considered for each sensor are shown in Fig. 3d. The fault
which occurred on the first sensor is a sinusoidal fault,
the fault on the second sensor is an abrupt fault whereas
the fault on the third sensor is an incipient fault. The fault
identification is done by comparing the generated residuals
with the incidence matrix given in the generalized observer
scheme. For example, for the fault occurred in the sensor
1 all the residual have some changes at t = 10s except r1.
Clearly, in this case the fault is identified and isolated in
sensor 1. In general, for all cases, the fault detection turns
out to be successful.

6. CONCLUSIONS

A robust observer for D-LPV systems with unmeasurable
gain scheduling parameter was proposed. To deal with
the unmeasurable scheduling problem, the system was
transformed into an uncertain system based on the convex
property of the scheduling functions. Sufficient conditions
to ensure the convergence and H∞ performance were
given in terms of LMIs. A generalized LPV observer
scheme was considered to perform the fault detection
and isolation problem. In fault-free and faulty cases, the
method provides useful residuals despite disturbances and
the error given by the unmeasurable scheduling parameter.
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