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Abstract: We present a method to design a feedback controller which stabilizes a continuous-
time linear system and its discretized models simultaneously. These discretized models include
the Euler approximate discrete-time model and the exact discrete-time model. We present some
conditions on solvability of the simultaneous stabilization problem, and a procedure for designing
such a controller. We also give three examples to illustrate our research results.
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1. INTRODUCTION

Digital control, see, e.g., Fadali and Visioli [2009], is
an important branch in control theory that uses digital
computers to implement controllers. In a digital control
system, a continuous-time plant is typically controlled by
a discrete-time feedback algorithm. Samplers and hold
devices (such as ZOH) provide the interface between the
continuous-time and discrete-time parts of the closed-
loop system. Since a digital computer has finite precision,
causing quantization distortion, see, e.g., Wu et al. [2010],
Xu et al. [2013], in analog-to-digital conversion, extra
care is needed to ensure errors in coefficients, analog-to-
digital conversion, and digital-to-analog conversion are not
producing undesired effects.

Although an analog controller is stabilizing when imple-
mented as an analog controller, it may not provide closed-
loop stability when implemented as a digital controller
because of pathological sampling or sampling too slow(
Babaali and Egerstedt [2004], Middleton and Freuden-

berg [1995]
)
. One typical way to address this problem is

to use a sufficiently small sampling period. However, the
hardware used to sample and hold the plant measurements
or implement the feedback control algorithm may make it
impossible to reduce the sampling period to a level that
guarantees acceptable closed-loop performance. In this
case, it becomes meaningful to investigate the existence
conditions of such stabilizing feedback controllers that can
stabilize the original continuous-time system and its dis-
cretized models simultaneously, as well as the requirements
on the sampling period

(
Nes̆ić et al. [1999], Nes̆ić and Teel

[2004, 2006]
)
.

We would like to study this feedback stabilization problem
through the following continuous-time linear system:

ẋ(t) = Ax(t) + Bu(t) (t ≥ 0), (1)

and its Euler approximate discrete-time model
x(k + 1) = (TA + I)x(k) + TBu(k) (k ≥ 0), (2)

as well as the exact discrete-time model

x(k + 1) = eAT x(k) +

T∫

0

eAτdτBu(k) (k ≥ 0), (3)

where x ∈ Rn is the state, u ∈ Rm is the input, T > 0 is
the sampling period, and I ∈ Rn×n is the identity matrix;
A ∈ Rn×n and B ∈ Rn×m are time-invariant matrices.

Besides, when n is large and A does not have many zero
elements, regular methods (such as the undetermined co-
efficients method, the Jordan canonical form method, and
the series summation method) have difficulties to precisely
calculate eAT and

∫ T

0
eAτdτ in the exact discrete-time

model (3). Thus in practice, engineers usually use the Eu-
ler approximate discrete-time model in (2) instead of the
exact discrete-time model in (3) for convenience. However,
Nes̆ić and Teel [2004] introduced an example, where they

found a feedback gain matrix K = [
1

T 3
,

3
T 2

,
3
T

] that can

stabilize the continuous-time linear system (whose closed-

loop eigenvalues are ξ1 = ξ2 = ξ3 = − 1
T

) and the

Euler approximate discrete-time model (the closed-loop
eigenvalues are λ1 = λ2 = λ3 = 0), but cannot stabilize
the exact discrete-time model no matter how small the
sampling period T is. This example demonstrates that
the stabilizing controller for systems (1) and (2) does not
naturally stabilize system (3). In this circumstance, we
would like to study all the above three systems together
for the simultaneous stabilization problem.
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In summary, the problems which we will study are listed
as follows:

1. Whether there exists a feedback gain matrix K ∈
Rm×n, which can stabilize system (1) and its discrete-
time models (2) and (3) simultaneously, or can stabi-
lize two of them at least, e.g., (1) and (2), or (1) and
(3)?

2. What are the existence conditions of K? Are there
any special requirements on the sampling period T?

3. If K does exist, can we find a method to design such
a K?

So far, few research results have been published on how
to stabilize these three systems simultaneously. Therefore,
it is meaningful to conduct theoretical analysis on the
simultaneous stabilization conditions for system (1), and
its discrete-time models (2) and (3). Moreover, since
controllability and stabilizability are closely related, we
will also conduct some analysis on controllability of these
three systems.

2. THEORETICAL ANALYSIS ON THE
SIMULTANEOUS STABILIZATION CONDITIONS

In this section, we will conduct some theoretical analysis
on the simultaneous stabilization conditions.

Theorem 1. If there exists a feedback gain matrix K ∈
Rm×n that stabilizes system (2), then this K also stabilizes
system (1).

Proof. For system (2), let u(k) = −Kx(k), then

x(k + 1) = [T (A−BK) + I] x(k) (k ≥ 0). (4)

Assume that K can make the eigenvalues of system (4)
within the unit circle, such that the corresponding charac-
teristic polynomial is
det [λI−I−T (A−BK)] =(λ− α1)(λ− α2) · · · (λ− αn),
where |αi| < 1 (1 ≤ i ≤ n) and | · | denotes the absolute
value in this paper. Thus, the eigenvalues are λi = αi

(1 ≤ i ≤ n), and |λi| < 1. We can use this K ∈ Rm×n to
stabilize system (2).

Let Vi ∈ Rn denote the eigenvector of [T (A−BK) + I]
corresponding to λi (1 ≤ i ≤ n). Then, we have

[T (A−BK) + I]Vi = λiVi,
T (A−BK)Vi = (λi − 1)Vi,

(A−BK)Vi =
(

λi − 1
T

)
Vi.

(5)

When we use the same feedback gain matrix K to control
system (1), i.e. u(t) = −Kx(t),

ẋ(t) = (A−BK) x(t) (t ≥ 0). (6)

By (5), Vi is the eigenvector of (A−BK) corresponding to

the eigenvalue
(

λi − 1
T

)
. Since |λi| < 1, Re

(
λi − 1

T

)
< 0

(1 ≤ i ≤ n). Then, the equilibrium point x = 0 of system
(1) is asymptotically stable, and the system is stabilized
by the same feedback gain matrix K. 2

Theorem 2. If system (1) is stabilized by a feedback gain
matrix K ∈ Rm×n, and if the closed-loop eigenvalues
ξi = σi + jωi (1 ≤ i ≤ n) satisfy

σi < 0, T (σ2
i + ω2

i ) < −2σi (1 ≤ i ≤ n),

then this K also stabilizes system (2).

Proof. Let f1(ξ) and f2(λ) represent the characteristic
polynomials of feedback controlled systems (1) and (2),
respectively. Then with u = −Kx, we have

f1(ξ) = det [ξI − (A−BK)] ,
f2(λ) = det [λI − I − T (A−BK)]

= Tdet
[(

λ− 1
T

)
I − (A−BK)

]
.

Compare f1(ξ) and f2(λ), if we let ξ =
(

λ− 1
T

)
, then

the closed-loop eigenvalues λi (1 ≤ i ≤ n) of feedback
controlled system (2) are

λi = 1 + Tξi = (1 + Tσi) + jTωi (1 ≤ i ≤ n). (7)

With σi < 0 and T (σ2
i + ω2

i ) < −2σi, we have

|λi| =
√

1 + T [T (σ2
i + ω2

i ) + 2σi] < 1 (1 ≤ i ≤ n). (8)

This implies that all the closed-loop eigenvalues of feed-
back controlled system (2) are within the unit circle. Then,
this K also stabilizes system (2). 2

Corollary 1. If systems (1) and (2) are both stabilizable,
then they are stabilized by the same feedback gain matrix
K ∈ Rm×n if and only if K makes all the closed-loop
eigenvalues ξi = σi+jωi (1 ≤ i ≤ n) of feedback controlled
system (1) satisfy σi < 0, T (σ2

i + ω2
i ) < −2σi.

Proof. First, we discuss the necessity. Since K stabilizes
system (1), then all its closed-loop eigenvalues ξi = σi +
jωi (1 ≤ i ≤ n) should have negative real parts, i.e.
σi < 0. Since K also stabilizes system (2), all its closed-
loop eigenvalues should stay within the unit circle, i.e.
|λi[T (A−BK) + I]| < 1 (1 ≤ i ≤ n). By (7) and (8),
this means T (σ2

i +ω2
i ) < −2σi (1 ≤ i ≤ n). Therefore, the

necessity is established.

The sufficiency is implied by Theorem 2. 2

Theorem 3. The controllability of system (1) and the
controllability of system (2) are equivalent.

Proof. System (1) is completely controllable if and only
if Rank

{[
B,AB, . . . , An−1B

]}
= n. System (2) is com-

pletely controllable if and only if
Rank

{[
TB, (TA + I)TB, . . . , (TA + I)n−1TB

]}
= n.

Since T > 0 is a scalar,

Rank
{[

TB, (TA + I)TB, . . . , (TA + I)n−1TB
]}

= Rank
{[

B, (TA + I)B, . . . , (TA + I)n−1B
]}

= Rank
{[

B, TAB, . . . , (TA)n−1B
]}

= Rank





[
B, . . . , An−1B

]



Im · · · 0
...

. . .
...

0 · · · Tn−1Im








,

(9)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6936



where Im ∈ Rm×m is the identity matrix. Besides, since


Im · · · 0
...

. . .
...

0 · · · Tn−1Im


 ∈ Rmn×mn has full rank,

Rank
{[

TB, (TA + I)TB, . . . , (TA + I)n−1TB
]}

= Rank
{[

B, AB, . . . , An−1B
]}

.

Therefore, the controllability of system (1) and the con-
trollability of system (2) are equivalent. 2

Corollary 2. If either system (1) or system (2) is com-
pletely controllable, then there exists a feedback gain ma-
trix K ∈ Rm×n which stabilizes both systems (1) and (2).

Proof. By Theorem 3, if either system (1) or system (2)
is completely controllable, then they are both completely
controllable, and hence are both stabilizable.

Thus, we can arbitrarily set the closed-loop eigenvalues of
these two systems. If we design a feedback gain matrix
K ∈ Rm×n which can make all the closed-loop eigenvalues
ξi = σi + jωi (1 ≤ i ≤ n) of feedback controlled system (1)
satisfy σi < 0 and T (σ2

i + ω2
i ) < −2σi (1 ≤ i ≤ n), then

by Corollary 1, K stabilizes both systems (1) and (2). 2

Theorem 4. Suppose AT = A. If there exists a feedback
gain matrix K ∈ Rm×n that stabilizes system (3) and
if

[∫ T

0
eAτdτ(A−BK) + (A−BK)T

∫ T

0
eAτdτ

]
is a neg-

ative definite matrix, then K also stabilizes system (1).

Proof. Let f(A) =
∫ T

0
eAτdτ. With u = −Kx, feedback

controlled system (1) is
ẋ(t) = (A−BK)x(t), (10)

and feedback controlled system (3) is

x(k + 1) = eAT x(k)− f(A)BKx(k)
= [f(A)A + I] x(k)− f(A)BKx(k)
= [I + f(A)(A−BK)] x(k).

(11)

Let D = I + f(A)(A − BK). Then, the eigenvalues of D
are λi(D) = 1 + λi [f(A)(A−BK)] (1 ≤ i ≤ n). Since K
stabilizes system (3), |λi(D)| < 1 (1 ≤ i ≤ n). Such that
Re

{
λi

[
f(A)(A−BK)

]}
< 0 (1 ≤ i ≤ n).

Since AT = A, then f(A) =
∫ T

0
eAτdτ is a symmetric

positive definite matrix. For system (10), let V
(
x(t)

)
=

xT (t)f(A)x(t). V
(
x(t)

) ≥ 0 with equality if and only if
x(t) = 0. Since

[
f(A)(A−BK) + (A−BK)T f(A)

]
is a

negative definite matrix, then
V̇

(
x(t)

)
= xT (t)

[
f(A)(A−BK) + (A−BK)T f(A)

]
x(t)

≤ 0
with equality if and only if x(t) = 0.

Based on the Lyapunov stability theory, the equilibrium
point x = 0 of (10) is asymptotically stable. So, the same
feedback gain matrix K also stabilizes system (1). 2

In the above theorems, we provided the existence condi-
tions of the feedback gain matrix K ∈ Rm×n that can
stabilize either systems (1) and (2), or systems (1) and (3).
However, the existence conditions of K that stabilizes all

these three systems simultaneously are not clear. Besides,
we do not know how to design such a K in a general way.
In the next theorem, we will show that in some special
cases, one can use an explicit method to design K which
stabilizes all these three systems simultaneously.

Theorem 5. For systems (1), (2), and (3), if

1) m ≥ n and Rank[B] = n;

2) no eigenvalue of A equals j
2lπ

T
, where l 6= 0 is an

integer;
3) there is a real number 0 < α <

∥∥eAT
∥∥−1 (where ‖ · ‖

represents the spectral norm of a matrix), such that

the eigenvalues of Ā = A − (1 − α)
(∫ T

0
e−Aτdτ

)−1

,

λi(Ā) = σi + jωi (1 ≤ i ≤ n) satisfy σi < 0 and
T

(
σ2

i + ω2
i

)
< −2σi (1 ≤ i ≤ n);

then, the feedback gain matrix

K(T ) = (1− α)BT
[
BBT

]−1




T∫

0

e−Aτdτ



−1

stabilizes systems (1), (2), and (3) simultaneously.

Proof. Since Rank[B] = n and
n ≥ Rank

{ [
B, AB, . . . , An−1B

] } ≥ Rank[B],
system (1) is completely controllable. By Theorem 3,
system (2) is also completely controllable.

Let f(A) =
∫ T

0
eAτdτ, g(A) =

∫ T

0
e−Aτdτ. By Spectral

Mapping Theorem, σ[f(A)] =
{
f(λ) : λ ∈ σ(A)

}
, where

f(λ) =
∫ T

0
eλτdτ =

1
λ

(
eλT − 1

)
. Then, we can obtain

{
zeros of f(λ)

}
=

{
λ : eλT = 1, λ 6= 0

}

=
{

λ : λ = j
2lπ

T
, l 6= 0

}
.

From Condition 2), we can infer that{
zeros of f(λ)

} ∩ σ(A) = ∅, 0 /∈ σ[f(A)].

Therefore, f(A) is invertible. Similarly, g(A) is invertible.
As a consequence, Rank [f(A)B] = n and

Rank
{[

f(A)B, eAT f(A)B, . . . ,
(
eAT

)n−1
f(A)B

]}
= n.

Hence, system (3) is completely controllable. Thus, these
three systems are all stabilizable. In the following, we will
show that the feedback gain matrix K(T ) can stabilize all
these three systems simultaneously.

For system (1), let u(t) = −K(T )x(t). Then,
ẋ(t) = [A−BK(T )] x(t) (t ≥ 0). (12)

By Conditions 1) and 3),

A−BK(T ) = A−B(1− α)BT
[
BBT

]−1
g(A)−1

= A− (1− α)g(A)−1

= Ā.

By Condition 3), the eigenvalues of [A−BK(T )] satisfy
Re {λi [A−BK(T )]}= Re

{
λi(Ā)

}
= σi < 0 (1 ≤ i ≤ n).

Then, the origin x = 0 is asymptotically stable, and system
(1) is stabilized by K(T ).
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For system (3), with u(k) = −K(T )x(k),
x(k + 1) =

[
eAT − f(A)BK(T )

]
x(k) (k ≥ 0). (13)

With given conditions, we can obtain
eAT − f(A)BK(T )
= eAT − (1− α)f(A)g(A)−1

= eAT − (1− α)f(A)
[
e−AT eAT g(A)

]−1

= eAT − (1− α)f(A)




T∫

0

eA(T−τ)dτ



−1

eAT

= eAT − (1− α)f(A)f(A)−1eAT

= eAT − (1− α)eAT

= αeAT .

From Condition 3), we shall have∥∥eAT − f(A)BK(T )
∥∥ = α

∥∥eAT
∥∥

<
∥∥eAT

∥∥−1 ∥∥eAT
∥∥

= 1.

(14)

Then for system (13), for all k ≥ 0,∥∥x(k + 1)
∥∥ ≤

∥∥eAT − f(A)BK(T )
∥∥ ∥∥x(k)

∥∥ <
∥∥x(k)

∥∥.

So that lim
k→∞

∥∥x(k)
∥∥ = 0 and lim

k→∞
x(k) = 0. Then, the

origin x = 0 is asymptotically stable, and system (3) is
stabilized by K(T ).

On the other hand, with u(k) = −K(T )x(k), feedback
controlled system (2) is

x(k + 1) =
[
I + T

(
A−BK(T )

)]
x(k) (k ≥ 0). (15)

Since Ā = A−BK(T ),
λi

[
I + T

(
A−BK(T )

)]
=λi

(
I + TĀ

)
= 1 + T (σi + jωi).

Because T
(
σ2

i + ω2
i

)
< −2σi and σi < 0,

∣∣λi

[
I + T

(
A−BK(T )

)]∣∣ =
√

(1 + Tσi)
2 + (Tωi)

2

=
√

1 + T [T (σ2
i + ω2

i ) + 2σi]
< 1 (1 ≤ i ≤ n).

Then, the origin x = 0 is asymptotically stable, and system
(2) is stabilized by the same K(T ). 2

Note that, the conditions in Theorem 5 are sufficient for
K(T ) to exist, but they are not necessary. In addition,
since α ∈

(
0,

∥∥eAT
∥∥−1

)
, we may choose different values of

α, and thus there might be many K(T )’s designed using
the method introduced in Theorem 5, which can stabilize
systems (1), (2), and (3) simultaneously.

3. NUMERICAL EXAMPLES

In this section, we will give three examples to illustrate
our theorems. First, for Theorems 1, 2, and 3, as well as
Corollaries 1 and 2, we consider the following continuous-
time linear system:

ẋ(t) =
[

0 1
0 0

]
x(t) +

[
0
1

]
u(t) (t ≥ 0). (16)

In this example, we set T = 1s. Then, the Euler approxi-
mate discrete-time model is

x(k + 1) =
[

1 1
0 1

]
x(k) +

[
0
1

]
u(k) (k ≥ 0), (17)

and the exact discrete-time model is

x(k + 1) =
[

1 1
0 1

]
x(k) +

[
0.5
1

]
u(k) (k ≥ 0). (18)

Then, Rank
{
[B, AB]

}
= Rank

{
[TB, (TA + I)TB]

}
= 2.

Therefore, systems (16) and (17) are both completely
controllable, as stated in Theorem 3. The condition that
either system (16) or system (17) is completely controllable
in Corollary 2 is satisfied, and the condition that the
two systems are both stabilizable in Corollary 1 is also
satisfied.

Design K = [0.5, 1], and let u = −Kx. The closed-
loop eigenvalues of feedback controlled system (17) are
λ1 = 0.5 + 0.5j and λ2 = 0.5 − 0.5j. Then, |λi| =
0.7071 < 1 (i = 1, 2), and system (17) is stabilized
by K. The closed-loop eigenvalues of feedback controlled
system (16) are ξ1 = −0.5 + 0.5j and ξ2 = −0.5 − 0.5j.
Thus, Re(ξ1) = Re(ξ2) = −0.5 < 0, and system (16) is
also stabilized by K, as stated in Theorem 1. Besides,
since T

[
(−0.5)2 + (±0.5)2

]
= 0.5 < −2(−0.5) = 1, the

condition that σi < 0 and T
(
σ2

i + ω2
i

)
< −2σi (1 ≤ i ≤ n)

in Theorem 2 and Corollary 1 is satisfied.

Next, to illustrate Theorem 4, we consider the following
continuous-time linear system:

ẋ(t) =
[

0.5 0
0 −1

]
x(t) +

[
1
1

]
u(t) (t ≥ 0). (19)

Here, we choose a diagonal matrix A for the sake of simple
calculation, since there always exists a similarity trans-
formation to transform a symmetric matrix that is not
diagonal into a diagonal one. Therefore, the assumption
that A is symmetric in Theorem 4 is satisfied.

Set T = 1s. Then, eAT =
[

e0.5 0
0 e−1

]
and

∫ T

0
eAτdτ =

[
2

(
e0.5 − 1

)
0

0
(
1− e−1

)
]
. Such that, the exact discrete-

time model is
x(k + 1)

=
[

e0.5 0
0 e−1

]
x(k) +

[
2

(
e0.5 − 1

)
1− e−1

]
u(k) (k ≥ 0). (20)

We design K = [0.9, 0.4], and let u = −Kx. Then,



T∫

0

eAτdτ(A−BK) + (A−BK)T

T∫

0

eAτdτ




=
[ −1.038 −1.0879
−1.0879 −1.7699

]
,

which has eigenvalues −2.5517 and −0.2561. The assump-
tion that

[∫ T

0
eAτdτ(A−BK) + (A−BK)T

∫ T

0
eAτdτ

]
is

a symmetric negative definite matrix, is then satisfied.

The closed-loop eigenvalues of feedback controlled system
(20) are λ1 = 0.8714 and λ2 = −0.2753, which are both
within the unit circle; so system (20) is stabilized by K.
The closed-loop eigenvalues of feedback controlled system
in (19) are ξ1 = −0.119 < 0 and ξ2 = −1.681 < 0;
so system (19) is stabilized by the same K, as stated in
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Theorem 4.

Finally, to illustrate Theorem 5, we consider the following
continuous-time linear system:

ẋ(t) =
[

0 1
0 0

]
x(t) +

[
0.2 0
0 0.5

]
u(t) (t ≥ 0). (21)

Here, m = n = 2, Rank[B] = 2, and λ1(A) = λ2(A) = 0.
Thus, Conditions 1) and 2) of Theorem 5 are satisfied.

We still set T = 1s. Then, the Euler approximate discrete-
time model is

x(k + 1) =
[

1 1
0 1

]
x(k) +

[
0.2 0
0 0.5

]
u(k) (k ≥ 0), (22)

and the exact discrete-time model is

x(k + 1) =
[

1 1
0 1

]
x(k) +

[
0.2 0.25
0 0.5

]
u(k) (k ≥ 0).(23)

Then,
∥∥eAT

∥∥−1 = 0.618, and we choose α = 0.5. Such that

Ā = A− (1−α)
(∫ T

0
e−Aτdτ

)−1

=
[−0.5 0.75

0 −0.5

]
, whose

eigenvalues are λ1(Ā) = λ2(Ā) = −0.5. Since −0.5 < 0
and T

[
(−0.5)2 + 0

]
= 0.25 < −2(−0.5) = 1, Condition 3)

of Theorem 5 is satisfied.

Using the method introduced in Theorem 5, we shall have

K(T ) = (1− α)BT
[
BBT

]−1




T∫

0

e−Aτdτ



−1

= (1− 0.5)
[

5 0
0 2

] [
1 0.5
0 1

]

=
[

2.5 1.25
0 1

]
.

The closed-loop eigenvalues of feedback controlled system
(21) are ξ1 = ξ2 = −0.5 < 0. Therefore, the system is
stabilized by K(T ).

∣∣λi

[
I + T

(
A−BK(T )

)]∣∣ = 0.5 < 1

and
∣∣∣λi

[
eAT − ∫ T

0
eAτdτBK(T )

]∣∣∣ = 0.5 < 1 (i = 1, 2).
Therefore, systems (22) and (23) are both stabilized by
the same K(T ), as stated in Theorem 5.

4. CONCLUSION

In this paper, we studied a simultaneous stabilization
problem for continuous-time linear systems and their dis-
cretized models. These discretized models include the
Euler approximate discrete-time models and the exact
discrete-time models. We discussed whether there exists
a feedback gain matrix K ∈ Rm×n that can stabilize
all these three systems simultaneously, and studied the
related existence conditions. To design K, we presented
an explicit method, which, however, has some specific
conditions. We then gave three numerical examples to
illustrate our research results.

More specifically, in our work, Theorems 1 and 2, and
Corollaries 1 and 2 concern the simultaneous stabiliza-
tion conditions for continuous-time linear systems and
their Euler approximate discrete-time models. Theorem
4 studies the simultaneous stabilization conditions for

continuous-time linear systems and their exact discrete-
time models. In Theorem 5, we propose a method to
design K for some special systems. In addition, Theorem
3 shows that continuous-time linear systems and their
Euler approximate discrete-time models have the same
state controllability.

The contribution of our research is that we provide the
general conditions for this simultaneous stabilization prob-
lem, which is rarely mentioned in the previous work. How-
ever, there is still a disadvantage, that is, we have not
found a general method explicit enough to design this K.
In the future, we hope to study this problem and obtain
some results not so restrictive as in Theorems 4 and 5.
Also, we would like to expand the research scope to linear
time-varying systems as well as nonlinear systems.
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