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Abstract: Most results on distributed control design of large-scale interconnected systems assume a
central designer with global model knowledge. The wish for privacy of subsystem model data raises the
desire to find control design methods to determine an optimal control law without centralized model
knowledge, i.e. in a distributed fashion. In this paper we present a distributed control design method
with guaranteed stability to minimize an infinite horizon LQ cost functional. The introduction of adjoint
states allows to iteratively optimize the feedback matrix using a gradient descent method in a distributed
way, based on a finite horizon formulation. Inspired by ideas on stabilizing model predictive control,
a terminal cost term is used, which gives a bound on the infinite horizon cost functional and ensures
stability. A method is presented to determine that term in a distributed fashion. The results are validated
using numerical experiments.
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1. INTRODUCTION

Due to new technological challenges, like increasing system
sizes, or sharper efficiency requirements, the control of large-
scale interconnected dynamical systems has become an impor-
tant research direction. Practical applications include various
distribution systems, like water, power and gas, or transporta-
tion systems. Motivated by the advances in communication
technologies, distributed control has emerged as a crucial tool
for large-scale systems. Important results on distributed control,
e.g. [Rotkowitz and Lall 2006, Langbort et al. 2004], consider
the situation where a central designer with global model knowl-
edge designs a structured control law and then passes the sub-
controllers to the subsystems. In some situations, however, this
centralized design approach might not be feasible. An issue that
is becoming more and more important is privacy. Picture, for
instance, a situation with economical competitors in a physi-
cally interconnected system, e.g. an electrical power grid. In
such a scenario the individual subsystems naturally prefer to
keep model data to themselves as much as possible, and are not
willing to share their model and other information with a central
designer. Furthermore, a global, overall model of a large-scale
system becomes difficult to handle from a computational point
of view, and centralized methods are likely to scale worse than
distributed design methods [Martensson and Rantzer 2012b].
Hence, distributed design and analysis methods are required.

Therefore, from now on we will consider the problem of control
design with limited model information if no centralized entity
with global model knowledge exists. So far, there are only a
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few results available for the analysis and design of distributed
control systems with limited model information. The authors
in [Farokhi et al. 2012] investigate the best achievable perfor-
mance under structural constraints compared to a unstructured
control law for fully actuated discrete-time linear systems. They
give the optimal control law for the case that the subsystems
only know their own model, and they state bounds on the
achievable performance for more general cases. In [Alam et al.
2011] the authors present an approach for the specific system
structure of line graphs with an application to vehicle platoons
and describe a suboptimal control design method where each
system only knows its predecessor. A different approach to the
distributed control design with limited model information is
presented in [Martensson and Rantzer 2012a, Deroo et al. 2012]
which was extended to singular systems in [Deroo et al. 2013].
Their approach is based on the assumption that neighboring, i.e.
physically coupled systems, are allowed and willing to commu-
nicate. Based on the introduction of adjoint states, and using
simulated trajectories of the system, a linear state feedback
matrix is iteratively improved using a distributed gradient de-
scent method to minimize a finite-horizon LQR cost functional.
However, stability is not guaranteed from these results.

In this paper we present an approach to determine a stabiliz-
ing feedback control law where each subsystem uses model
knowledge and trajectory information only from neighboring
subsystems. The approach to achieve stability is inspired by re-
sults from the model predictive control (MPC) literature which
consider stability in combination with finite-horizon cost func-
tionals [Chen and Allgöwer 1998, Bitmead et al. 1990]. The
main challenge involves the determination of a suitable termi-
nal cost term that ensures stability. While this is usually done
in a centralized fashion, we present a method to determine it
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in a distributed fashion by distributedly solving a structured
LMI condition [Deroo et al. 2014]. Afterwards, the gradient
descent method from [Deroo et al. 2012] is used to determine
the actual feedback matrix. It should be stressed that there are
numerous results in the literature that solve structured optimal
control problems without the restriction to using only neighbor-
hood model knowledge, or approaches that repeatedly design
an open-loop input trajectory in an MPC-setting, see e.g. the
survey articles [Necoara et al. 2011, Scattolini 2009]. The limi-
tation on model knowledge and the design of a stabilizing static
feedback law, however, make the problem harder, and represent
the main contribution of this paper.

The remainder of the paper is organized as follows. In Sec-
tion 2, the problem formulation is presented. Section 3 shows
the necessary steps to distributedly determine an optimal con-
trol law with guaranteed stability. A numerical example is given
in Section 4, and the paper concludes with a summary in Sec-
tion 5.

Notation. A zero matrix of dimensions m × n is denoted
by 0m×n, an n × n-identity matrix is written as In×n. The
term A • B denotes the Frobenius inner product of two ma-
trices A and B, i.e. trace(ABT ). The set of symmetric n × n
matrices is denoted by Sn. The set of positive definite matrices
is denoted by Sn

++, positive semi-definite matrices by Sn
+. The

fact that a matrix X ∈ Sn
+ or X ∈ Sn

++ is also written as X � 0
or X ≻ 0, respectively. The column-wise vectorization of a
matrix A ∈ R

m×n is denoted by vec(A) ∈ R
mn

2. PROBLEM FORMULATION

In this paper we consider an interconnected system consisting
of N linear time-invariant subsystems. The dynamics of sub-
system i are

ẋi(t) = Aiixi(t)+

N∑

j=1
j 6=i

Aijxj(t)+Biui(t), xi(0) = xi,0, (1)

where xi ∈ R
ni is the state, ui ∈ R

mi is the input, Aij ∈
R

ni×nj and Bi ∈ R
ni×mi . The overall system is a concatena-

tion of the subsystem states and is compactly written as

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (2)

where x ∈ R
n, u ∈ R

m, n =
∑N

i=1 ni, m =
∑N

i=1 mi.

The interconnection structure of the overall system (2) is rep-
resented by a graph G(V, E). The vertex set V represents the
set of subsystems {1, . . . , N}, and an edge (j, i) ∈ E iff the
block Aij 6= 0ni×nj

. Hence, iff subsystem i is influenced by
subsystem j there is an edge (j, i) ∈ E . We define the following
subsets of the graph: Nout,i = {j|(i, j) ∈ E} are the nodes j
influenced by i, Nin,i = {j|(j, i) ∈ E} are the nodes j that
influence node i and we define the set of neighboring nodes as
the union of both as

Ni = {j|(i, j) ∈ E ∨ (j, i) ∈ E} = Nin,i ∪ Nout,i. (3)

In this paper, we design a stabilizing distributed feedback
matrix Kdist and therefore consider the following optimization
problem:

min
x,u

J∞(t, x, u) =

∫ ∞

t

xT (τ)Qx(τ) + uT (τ)Ru(τ)dτ.

(4a)

s.t. ẋ(τ) = Ax(τ) +Bu(τ) (4b)
u(τ) = −Kdistx(τ) (4c)
Kdist is stabilizing (4d)

The constraint (4d) is already implicitly included in (4a)-(4c)
because (4a) only has a finite value for a stable closed-loop
system, but we state it for clarity.

Before we proceed we make several assumptions.
Assumption 1. System (2) has a sparsity structure, i.e. no sub-
system is connected to every other subsystem.
Assumption 2. The weighting matrix Q ∈ Sn

+ has at most the
same neighborhood block sparsity structure as A, i.e. Qij = 0
whenever (i, j) /∈ Ni. Note that this is the maximal allowed
structure for Q meaning that Q can contain more zero blocks
than A. The weighting matrix R ∈ Sn

++ is block-diagonal. The
block sizes result from the subsystem dimensions.
Assumption 3. The feedback matrix Kdist is constrained to have
a sparse, distributed structure such that communication between
subsystems is only allowed among neighbors, i.e. Kdist,ij = 0
whenever j /∈ Ni.
Assumption 4. We require that also during the design phase,
agents have only access to model and trajectory information
from their neighborhood, i.e. agent i has no information about
agents that are not part of the set Ni.

Assumption 4 has the consequence that both the design and the
implementation of the control law u = −Kdistx is distributed.

3. CONTROL DESIGN WITH NEIGHBORHOOD
INFORMATION

In this section, we describe how we design a distributed control
law in a distributed fashion using only neighborhood informa-
tion. Afterwards, we explain how stability is guaranteed using
a terminal penalty term in the cost functional and how to deter-
mine this penalty term in a distributed way.

3.1 Adjoint states and gradient descent direction

In this section, we briefly describe how the gradient of the cost
functional with respect to the individual entries of the feedback
matrix can be computed using neighborhood information. This
is in parts a recapitulation of results from [Deroo et al. 2012;
2013, Martensson and Rantzer 2012a]. For more details, we
refer the reader to these papers.

We consider the interconnected LTI-system (2) and the finite
horizon LQR cost functional

J(t, x, u) = xT (t+ tf )Sx(t+ tf )

+

∫ t+tf

t

xT (τ)Qx(τ) + uT (τ)Ru(τ)dτ. (5)

Assumption 5. S ∈ Sn
+ satisfies the same sparsity structure

restrictions as Q from Assumption 2, i.e. Sij = 0 when-
ever (i, j) /∈ Ni.

Furthermore, we define AK = A − BKdist. The relationship
between J∞ from (4a) and J from (5) and why we consider the
finite horizon case for now will become clear soon as we will
see that an appropriate choice for S bounds J∞.
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We formulate the Lagrangian of the problem with objective (5)
and constraints (2) given by

L(t, x, u) =xT (t+ tf )Sx(t+ tf ) +

∫ t+tf

t

xT (τ)Qx(τ)

+ uT (τ)Ru(τ) + λT (τ)(ẋ(τ)−AKx(τ))dτ
+ µ(x(t)− xt) (6)

where xt is the initial condition of the state x for the time
interval [t, t + tf ]. Based on (6), we derive the dynamics of
the adjoint states λ(τ) by requiring ∂L

∂x
= 0 as

λ̇(τ) = −AT
Kλ(τ) + 2(Q+KT

distRKdist)x(τ),

λ(t+ tf ) = −2Sx(t+ tf ), µ = −λ(t), τ ∈ [t, t+ tf ]. (7)
Since µ is not necessary in the following, we disregard it but
it gives us the justification that λ(t) is free while λ(t + tf ) is
fixed. Given Assumptions 2 and 5, the dynamics of the adjoint
states (7) have the same neighborhood structure as the original
system (2).

Using these adjoint states it is possible to formulate the gradient
of the cost functional J with respect to the feedback matrix K.
Proposition 1. The gradient of the cost functional (5) with
respect to the control law blocks Kdist,ij is given by

(∇KdistJ)ij =

∫ t+tf

t

−2Riuix
T
j +BT

i λix
T
j dτ (8)

Proof. See [Deroo et al. 2012].

Using the proposed gradient descent direction, the following
algorithm is used to find a (possibly sub-)optimal control law.
The suboptimality may result from the fact that the problem is
non-convex.
Algorithm 1.

(1) Simulate the states xi,l(t) of System (2) for a finite hori-
zon T for every initial condition el with l = 1, ..., n.

(2) Simulate the adjoint states λi,l(t) for the same finite
horizon T in the backwards direction.

(3) Every agent calculates the respective entries of the gradi-
ent by

(∇KdistJ)ij =
1

n

(
n∑

l=1

∫ t+tf

t

−2Riui,lx
T
j,l

+BT
i λi,lx

T
j,ldτ

)

(9)

(4) For each neighboring agent j, update

K
(k+1)
dist,ij = K

(k)
dist,ij − γk(∇KdistJ)

(k)
ij . (10)

with a Barzilai-Borwein step length γk which satisfies the
Armijo rule [Deroo et al. 2012].

(5) If all ||(∇KdistJ)
(k)
ij || < ǫ, or if a different stopping

criterion is satisfied, stop. Otherwise, increase k and go
back to 1.

As the initializing feedback K0
dist every choice is possible that

satisfies the allowed structure of the control law. An obvious
choice would be the zero matrix of appropriate size.

The attentive reader will have noticed that Algorithm 1 does
not use the gradient formula from (8). The modified formula
in the algorithm serves an averaging purpose to get rid of
the dependence on the state initial condition x0 used in the
trajectory simulations. Naturally, this increases the design effort

(linearly) but generally leads to better results [Deroo et al.
2012].

Remark 1. In order for the subsystems to be able to simulate the
x−trajectories described by (1) and the λ-trajectories described
by (7), the subsystems need to know their respective rows and
columns of the matrix AK . That means that they need to know
how they are influenced by their neighbors, and in turn how
they influence their neighbors. In addition, the nodes need to
exchange the simulated trajectory data during the algorithm.
Because the approach is based on simulated trajectories, the
physical neighborhood topology described by the undirected
version of graph G is essentially the minimal required infor-
mation exchange topology in order for Algorithm 1 to work.
Given state trajectories from other subsystems that are not di-
rect neighbors, each subsystem could compute additional en-
tries of the feedback matrix up to the full matrix thus possibly
sacrificing privacy for improved performance.

So far we have designed a control law for a finite horizon
cost functional. In the next subsection we will see that an
appropriate choice of the terminal cost weighting matrix S
allows us to find a control law that gives an upper bound on the
infinite horizon cost functional J∞ and thus an upper bound on
the optimization problem (4).

3.2 Guaranteed stability

In this subsection, we describe how we use the terminal cost
weighting matrix S to guarantee stability of the solution of
Algorithm 1 by applying reasoning from MPC methods.

The principle of MPC is that an optimal control problem over
a finite time-horizon tf is solved, using recent state measure-
ments to obtain an optimal open-loop input trajectory u∗(·).
Then only the first part of the input trajectory is applied to the
system for the duration ∆t and is then re-optimized. In [Chen
and Allgöwer 1998] it is shown that using MPC, guaranteed
stability is achieved when the optimization problem contains a
terminal cost term of a specific form. The idea is to determine
the terminal cost term in such a way that it gives a bound on
the infinite horizon cost functional. Therefore, we combine the
method from the previous subsection with the terminal cost idea
from MPC in order to obtain a stabilizing distributed control
law obtained in a distributed fashion without centralized model
information. Note that since we do not consider any constraints
on the input or state, the optimization problem (4) is always
feasible. We adopt the notation from the MPC literature that
x̄(τ ;x(t), t) is the prediction of the state trajectory at time τ
using state information from time t, and x̄∗(τ ;x(t), t, t + tf )
is the optimal predicted state trajectory at time τ using state
information from time t with optimization horizon tf .

To achieve stability, we propose a two step algorithm inspired
by the results in [Chen and Allgöwer 1998] but instead of
a classical centralized viewpoint, we put emphasis on our
distributed setting for large-scale systems.

In the first step, the subsystems try to design a decentralized
(block-diagonal) control law Kdec which stabilizes the system,
using only local model data. To ensure that the system can be
stabilized using a decentralized feedback law we have to make
the following assumption.

Assumption 6. System (2) does not contain any decentralized
fixed modes.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4012



In a next step the agents determine a solution (P, δ) to the linear
matrix inequality

AT
Kdec

diag(P 1, . . . , PN )
︸ ︷︷ ︸

P

+diag(P 1, . . . , PN )AKdec

+γδ (Q+KT
decRKdec)

︸ ︷︷ ︸

QKdec

� 0, (11)

where AKdec = A − BKdec and γ > 0 is a pre-specified
constant.

Remark 2. Note that we restrict P and Kdec to be block-
diagonal. This limitation introduces a restriction on the so-
lution space and hence might involve conservativeness. If P
is not block-diagonal, then PAKdec has a different structure
than the original system, if Kdec is not block-diagonal, the
term KT

decRKdec would violate the pattern. The sparsity struc-
ture is not strictly necessary to find a solution to (11), because
without it the LMI just takes the form of the centralized case
in [Chen and Allgöwer 1998]. The structure is, however, the
key to the distributed solution of (11) which is shown in the next
subsection. If one is able find a sparsity pattern for P and Kdec
that is not block-diagonal but still retains the neighborhood
structure of the original system, these choices still allow the
distributed solution.

If the solution of the LMI is a positive definite P and positive δ,
the decentralized control law is stabilizing, otherwise it needs
to be redesigned to achieve stability. The solution is used in the
following lemma.

Lemma 1. Given a solution (P, δ) to the LMI (11), a stabilizing
decentralized feedback u(τ) = −Kdecx(τ) and by setting S =
P
γδ

, the infinite horizon cost functional J∞(t, x, u) is bounded
from above by the terminal cost term as

x(t1)
TSx(t1) ≥

∫ ∞

t1

xT (τ)Qx(τ) + uT (τ)Ru(τ)dτ. (12)

Proof. By differentiating xTSx along a trajectory of sys-
tem (2) and using (11), we get

V̇ =
d
dt
xTSx = xT (AT

Kdec
S + SAKdec)x ≤ −xTQKdecx < 0.

(13)
Integrating both sides from t1 to ∞ and knowing that Kdec is
stabilizing gives the result from (12).

After having obtained the terminal cost term, in a second
step the systems design a distributed control law Kdist using
Algorithm 1 where S = P

δγ
is used in the terminal cost term.

Next, we show that with this feedback control law the optimal
value function is non-increasing.

Lemma 2. For τ ∈ (t, t + ∆t] the optimal value function
satisfies

J∗(x(τ), τ, τ + tf ) ≤ J∗(x(t), t, t+ tf )

−

∫ τ

t

xT (s)Qx(s) + uT (s)Ru(s)ds. (14)

Proof. At time t, the optimal feedback input ū∗(·;x(t), t, t +
tf ) is computed as ū∗ = −Kdistx̄

∗ and we additionally have
the optimal predicted state trajectory x̄∗(·;x(t), t, t + tf ) on
[t, t+ tf ]. Then, the value of the optimal value function is

J∗(x(t), t, t+ tf )

=

∫ t+tf

t

x̄∗T

(s;x(t), t, t+ tf )Qx̄∗(s;x(t), t, t+ tf )

+ ū∗T

(s;x(t), t, t+ tf )Rū∗(s;x(t), t, t+ tf )ds

+ x̄∗T

(t+ tf ;x(t), t, t+ tf )Sx̄
∗(t+ tf ;x(t), t, t+ tf ).

(15)
For τ in the current control time interval (t, t+∆t], the control
input is determined through Kdist and the state trajectory is
identical to the predicted trajectory, i.e. x(s) = x̄∗(s;x(t), t, t+
tf ) for any s ∈ [t, τ ]. Assuming the suboptimal feedback

u(t) =

{
−Kdistx(t), 0 ≤ t ≤ tf
−Kdecx(t), t > tf .

is applied to the system, the generated trajectories are the same
as the ones from the optimization time t, except for the shifted
part in the time interval [t + tf , τ + tf ], so we have that
x̄(s;x(τ), τ) = x̄∗(s;x(t), t, t+ tf ) for all s ∈ [τ, t+ tf ].

In order to determine the value of the cost function for τ ∈
(t, t + ∆t] we have to compute the cost generated in the new
part of the optimization interval, namely [t+tf , τ+tf ]. With the
chosen input we know that in that time interval (13) is satisfied.
Integrating (13) in the interval of interest [t,+tf , τ + tf ] gives

x̄(τ + tf ;x(τ), τ)
TSx̄(τ + tf ;x(τ), τ)

+

∫ τ+tf

t+tf

x̄(s;x(τ), τ)TQKdec x̄(s;x(τ), τ)ds

≤ x̄∗(t+ tf ;x(t), t, t+ tf )
TSx̄∗(t+ tf ;x(t), t, t+ tf ).

Using that, we can bound the value of the cost functional
for τ ∈ (t, t+∆t] as
J̄(x(τ), τ, τ + tf ) ≤
∫ t+tf

τ

x̄∗(s;x(t), t, t+ tf )
TQKdist x̄

∗(s;x(t), t, t+ tf )ds

+ x̄∗(t+ tf ;x(t), t, t+ tf )
TSx̄∗(t+ tf ;x(t), t, t+ tf ),

where QKdist = Q+KT
distRKdist. Combining this with (15) and

knowing that J∗ is optimal, we get for τ ∈ (t, t+∆t]

J∗(x(τ), τ, τ + tf ) ≤ J̄(x(τ), τ, τ + tf )

≤ J∗(x(t), t, t+ tf )

−

∫ τ

t

x(s)TQKdistx(s)ds. (16)

With Q � 0 and R ≻ 0, this means that the value function is
always non-increasing.

Note that the proof follows [Chen and Allgöwer 1998] closely
but is adapted to the feedback input of this paper.

With that result we finally formulate the following theorem.
Theorem 1. Given Assumptions 2, 3, 5 and 6, the closed-loop
of system (2) with an MPC implementation of the input u(t) =
−Kdistx(t) resulting from Algorithm 1 with S = P

γδ
from (11)

is asymptotically stable.

Proof. We define the function V (x) = J∗(x, t, t + tf ). The
function has the properties:

• V (0) = 0, V (x) > 0 for x 6= 0,
• along the trajectory of the closed-loop system, there is for
0 ≤ t1 < t2 ≤ ∞

V (x(t2))− V (x(t1)) ≤ −

∫ t2

t1

xT (t)Qx(t)dt, (17)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4013



where Lemma 2 is used. We now show asymptotic stability, i.e.
for every ǫ > 0, there is η(ǫ) > 0 such that ||x(0)|| < η(ǫ)
implies ||x(t)|| < ǫ for all t ≥ 0 [Khalil 2002]. From (17), we
get

V (x(∞)) ≤ V (x(0))−

∫ ∞

0

xT (t)Qx(t)dt.

Because V (x(∞)) ≥ 0 and V (x(0)) ≤ β > 0, the integral
must exist and it is bounded. Clearly the closed loop system
given by (2) with feedback u = −Kdistx is uniformly con-
tinuous. Hence, we can apply Barbalat’s lemma and conclude
that ||x(t)|| → 0 as t → 0, which implies asymptotic stability.

Again, note that the proof follows [Chen and Allgöwer 1998]
but is adapted to our needs.

We have thus proven stability of an MPC-implementation of the
feedback control law u = −Kdistx. Because the design of the
feedback law with Algorithm 1 is independent of current state
measurements no repeated re-optimization of Kdist is necessary
for an MPC-implementation, and we can continuously apply
the feedback law for all times. Note that this result resembles
the centralized, full-information control case [Bitmead et al.
1990] where the optimal MPC control law corresponds to a
static state-feedback. We would like to stress again that the
presented control scheme is not technically a model predictive
method, but a static feedback law. However, the reasoning from
the MPC literature is required to prove stability.

3.3 Distributed computation of terminal cost term

In the previous subsection we have shown how we determine a
stabilizing feedback control law u = −Kdistx using a terminal
cost term which involves the solution (P, δ) of (11). Because
Algorithm 1 runs using only information from neighbors it
would be undesirable if more than neighborhood information
would be necessary to determine a solution of (11). Hence, in
this subsection we apply a method developed in [Deroo et al.
2014] to find (P, δ) using only neighborhood information.

Because of the block-diagonal structures of P and Kdec, the
problem of solving (11) clearly has a sparsity structure re-
lated to the structure of the matrix A. We denote by Ā a
matrix where all zero entries of blocks Aij with j ∈ Ni are
set to arbitrary nonzero values. Then the structure of (11) is
given by the binarization of the symmetric part of Ā, denoted
by Asym = Bin(|Ā|+ |Ā|T ), where |Ā| denotes the component-
wise norm of Ā. The structure is also described by the undi-
rected graph Gu = (Vu, Eu), where (j, i) ∈ Eu iff Asym

ij 6= 0.
Note that unlike in the graph G, here an edge signifies the
presence of an individual entry in the matrix instead of a matrix
block. In [Kim et al. 2011] the authors show how to decompose
an LMI-condition using the so-called range-space conversion
method. The method, however, works only when the sparsity
structure of the problem corresponds to a chordal graph. Hence,
we have to make the following assumption.

Assumption 7. Gu is a chordal graph.

A chordal graph is defined to be a graph where every induced
cycle has length less than 4. In other words, every cycle of
length ≥ 4 has a chord, i.e. an edge joining non-consecutive
vertices of the cycle [Gross and Yellen 2004]. Examples of
graphs that are chordal graphs include line and star graphs as
well as trees. If Gu does not satisfy this assumption and is not a
chordal graph by itself, local communication with neighbors

is not sufficient for the presented method of solving (11).
However, it is possible to extend the communication topology
of the network such that Assumption 7 is satisfied.

The principle approach here is to formulate an optimization
problem that includes (11) as a constraint, to decompose the
constraint [Kim et al. 2011] and then to apply distributed
optimization methods [Meinel et al. 2014]. It turns out that
for the solution of the optimization problem only neighborhood
information is necessary.

First, we formulate the following optimization problem:

min
δ∈R,P l∈Snl

− δ +
σδ

2
δ2 +

N∑

l=1

σP l

2
‖ P l ‖2F (18a)

s.t. (11), (18b)

P l − δInl
� 0 for l = 1, . . . , N, (18c)

where the convexity parameter σδ and σP l have to be chosen
a priori. It can be shown that (11) has a feasible solution if and
only if the optimal objective function value of problem (18) is
negative (which then also implies δ > 0). For details, we refer
to [Deroo et al. 2014].

In order to decompose the LMI (11), it is necessary to ex-
press it in a basis of Sn. Let N = {1, . . . , n} and de-
note by Eij the n × n symmetric matrix whose compo-
nents (i, j) and (j, i) are 1 and all others are 0. Note that the
set {Eij : (i, j) ∈ N ×N , i ≤ j} forms a basis of Sn. Also,
we define the indices of the lth subsystem block as

Il =

{
l−1∑

i=1

ni + 1, . . . ,
l∑

i=1

ni

}

×

{
l−1∑

i=1

ni + 1, . . . ,
l∑

i=1

ni

}

,

where l = 1, . . . , N .

Next, for l = 1, . . . , N and (i, j) ∈ Il we define

F 0 = −γQKdec ,

F l
ij =







1

2

(
−AT

Kdec
Eij − EijAKdec

)
if i < j,

1

2

(
−AT

Kdec
Eji − EjiAKdec

)
if i > j,

−AT
Kdec

Eij − EijAKdec if i = j.

With il = i−
∑l−1

s=1 ns it follows that (11) is equivalent to

F (P, δ) := F 0δ +

N∑

l=1

∑

(i,j)∈Il

F l
ijP

l
iljl

� 0,

and it follows that problem (18) is equivalent to

min
δ∈R,P l∈Snl

− δ +
σδ

2
δ2 +

N∑

l=1

σP l

2
‖ P l ‖2F (19a)

s.t. F (P, δ) � 0, (19b)

P l − δInl
� 0 for l = 1, . . . , N. (19c)

Definition 1. We define [Kim et al. 2011]:
SC = {X ∈ Sn : Xij = 0 if (i, j) /∈ C × C} ∀C ⊆ N ,

SC
+ =

{
X ∈ SC : X � 0

}
∀C ⊆ N ,

J(C) = {(i, j) ∈ C × C : 1 ≤ i ≤ j ≤ n} ∀C ⊆ N .

The cliques C of the graph are subsets where each node is
adjacent to all the other nodes of the subset. Given the maximal
cliques (cliques that are no subsets of other cliques) C1, . . . , Cp

of Gu, define
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J =

p
⋃

s=1

J(Cs),

Γ(i, j) = {s : i ∈ Cs, j ∈ Cs} ∀(i, j) ∈ J.

Then the LMI (19b) can be decomposed in the following
way [Kim et al. 2011])

Eij •
∑

s∈Γ(i,j)

Y s − Eij • F (P, δ) = 0

for (i, j) ∈ J and Y s ∈ SCs

+ for s = 1, . . . , p.

With this it follows that problem (19) is equivalent to

min
δ∈R,P l∈Snl

−δ +
σδ

2
δ2 +

N∑

l=1

σP l

2
‖ P l ‖2F (20a)

s.t. δInl
− P l � 0 for l = 1, . . . , N, (20b)

Eij •
∑

s∈Γ(i,j)

Y s − Eij • F (P, δ) = 0 for (i, j) ∈ J, (20c)

Y s ∈ SCs

+ for s = 1, . . . , p. (20d)
To solve problem (20) in parallel we apply the distributed prox-
imal center algorithm (DPCA) [Meinel et al. 2014, Necoara and
Suykens 2008]. This optimization method uses dual decompo-
sition to distribute the computation. As the objective function
of (20) is not strictly convex, the differentiability of the gradient
of the dual objective function cannot be guaranteed and thus
a strictly convex regularization of the dual function would be
necessary in order to apply the DPCA. To remedy this drawback
we consider the following optimization problem

min
δ∈R,P l∈Snl

−δ +
σδ

2
δ2 +

N∑

l=1

σP l

2
‖P l‖2F +

p
∑

s=1

σY s

2
‖Y s‖2F

(21a)

s.t. δInl
− P l � 0 for l = 1, . . . , N, (21b)

Eij •
∑

s∈Γ(i,j)

Y s − Eij • F (P, δ) = 0 for (i, j) ∈ J, (21c)

Y s ∈ SCs

+ for s = 1, . . . , p. (21d)
As before it can be shown that (11) has a feasible solution if

and only if the optimal objective function value of problem (21)
is negative [Deroo et al. 2014].

In order to formulate the dual problem of problem (21) consider
the corresponding Lagrangian with dual multipliers Λ and M

L(δ, P, Y,Λ,M)

= −δ +
σδ

2
δ2 +

N∑

l=1

σP l

2
‖P l‖2F +

p
∑

s=1

σY s

2
‖Y s‖2F

+

N∑

l=1

M l •
(
δInl

− P l
)

+
∑

(i,j)∈J

Λij



Eij •
∑

s∈Γ(i,j)

Y s − Eij • F (P, δ)





= −xδδ +
σδ

2
δ2 +

N∑

l=1

(

−X l
P • P l +

σP l

2
‖P l‖2F

)

+

p
∑

s=1

(

−Xs
Y • Y s +

σY s

2
‖Y s‖2F

)

.

where

xδ =
∑

(i,j)∈J

ΛijEij • F
0 + 1−

N∑

l=1

M l • Inl
,

Xs
Y =

∑

(i,j)∈J(Cs)

−ΛijEij ,

X l
P iljl

=
∑

(a,b)∈J

ΛabEab • F
l
ij +M l

iljl
for (i, j) ∈ Il.

As the Lagrangian L is separable in δ, P 1, . . . , PN , and
Y 1, . . . , Y p, the corresponding dual objective function

f(Λ,M) =min
δ∈R

{

−xδδ +
σδ

2
δ2
}

+

N∑

l=1

min
P l∈Snl

{

−X l
P • P l +

σP l

2
‖ P l ‖2F

}

+

p
∑

s=1

min
Y s∈S

Cs
+

{

−Xs
Y • Y s +

σY s

2
‖ Y s ‖2F

}

,

can be evaluated in parallel and is continuously differentiable
due to the uniqueness of the solutions δ(Λ,M), P l(Λ,M),
and Y s(Λ,M). Furthermore its gradient, given by

∇Λij
f(Λ,M) = Eij •

∑

s∈Γ(i,j)

Y s(Λ,M)

− Eij •



F 0δ(Λ,M) +
N∑

l=1

∑

(i,j)∈Il

F l
ijP

l
iljl

(Λ,M)



 ,

∇M lf(Λ,M) = δ(Λ,M)Inl
− P l(Λ,M)

for (i, j) ∈ J and l = 1, . . . , N , is Lipschitz continuous with
Lipschitz constant

L =

p
∑

s=1

‖ECs
‖2/σW s +

NC∑

l=1

(

‖F̂ l‖2 + 1
)

/σP l+

∑

(i,j)∈J

(
Eij • F

0
)2

/σδ + n/σδ,

where ECs
∈ R

|J(Cs)|×n2

is the matrix that contains the
rows Eij(:)

T for (i, j) ∈ J(Cs) and F̂ l ∈ R
(|J|)×n2

l is the
matrix that contains rows (Eab • F l

i1j1 , . . . , Eab • F l
i|Il|j|Il|

)

for (a, b) ∈ J [Deroo et al. 2014].

Having obtained the smooth dual function we apply the DPCA
to maximize it in parallel.
Algorithm 2. (Distributed solution of (11)). For k ≥ 0 do

(1) Given M l,k and components Λk
ij , the agents compute in

parallel

δk+1 = argmin
δ∈R

{

−xδδ +
σδ

2
δ2
}

,

P l,k+1 = argmin
P l∈Snl

{

−X l
P • P l +

σP l

2
‖P l‖2F

}

,

Y s,k+1 = argmin
Y s∈SCs

+

{

−Xs
Y • Y s +

σY s

2
‖Y s‖2F

}

,

for l = 1, . . . , N and s = 1, . . . , p. Moreover, they send
δk+1, P l,k+1, and Y s,k+1 to the agents that require them
to update their dual iterate.

For (i, j) ∈ J and l = 1, . . . , N , the agents do in parallel

(2) Given δk+1, P l,k+1, and Y s,k+1 compute
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∇Λij
f(Λk,Mk) = Eij •

∑

s∈Γ(i,j)

Y s,k+1

− Eij •



F 0δk+1 +
N∑

l=1

∑

(i,j)∈Il

F l
ijP

l,k+1
iljl



 ,

∇M lf(Λk,Mk) = δk+1Inl
− P l,k+1.

(3) Find

Y k
ij = argmax

Yij∈R

{

−
L

2

(
Yij − Λk

ij

)2

+∇Λij
f(Λk,Mk)Yij

}

,

H l,k = argmax
Hl∈S

nl
+

{

−
L

2
‖H l −M l,k‖2F

+∇M lf(Λk,Mk) •H l

}

.

(4) Find

Zk
ij = argmax

Zij∈R

{

−
L

2
Z2
ij

+
k∑

j=0

j + 1

2
∇Λij

f(Λj ,M j)Zij

}

,

T l,k = argmax
T l∈S

nl
+

{

−
L

2
‖T l‖2F

+

k∑

j=0

j + 1

2
∇M lf(Λj ,M j) • Tl

}

.

(5) Set

Λk+1
ij =

k + 1

k + 3
Y k
ij +

2

k + 3
Zk
ij , (22)

M l,k+1 =
k + 1

k + 3
H l,k +

2

k + 3
T l,k. (23)

(6) Send Λk
ij and M l,k to the neighboring agents.

While some of the subproblems in Algorithm 2 may look
challenging at first glance, there are actually small-scale closed
form solutions for all of them. For instance, the solution for
Y s,k+1 in step 1 is determined as follows [Deroo et al. 2014]:
Consider the spectral decomposition of the symmetric matrix
Xs

Y given by

Xs
Y = QΣQT = (Q+, Q−)

(
Σ+ 0
0 Σ−

)(
QT

+

QT
−

)

,

where Σ+ contains the non-negative eigenvalues of Xs
Y . Then

the optimal solution Y s,k+1 is the projection on the positive
semidefinite part of Xs

Y , i.e.

Y s,k+1 =
Q+Σ+Q

T
+

σY s

. (24)

Identically, we get solutions for H l,k and T l,k.

Note that Algorithm 2 only leads to an approximate solution
because it is based on dual decomposition. However, the con-
vergence of the above Algorithm follows with Theorem 3 in
[Deroo et al. 2014] where it is shown that the number of nec-

essary iterations to achieve a desired accuracy ε of the approx-
imate solution of problem (21) can be computed in advance.

Remark 3. Note that several adaptations to the algorithm are
possible. One is to implement the algorithm using event-based
communication [Meinel et al. 2014].

Remark 4. Note that all steps in Algorithm 2 require only
neighborhood information except the computation of δ. How-
ever, the variable δ can be computed distributedly through a
consensus if the size of the system is known.

4. NUMERICAL INVESTIGATIONS

In this section, we demonstrate numerically that the feedback
law obtained with Algorithm 1 where S = P

γδ
is obtained

through (11) is stabilizing. For this purpose, we randomly cre-
ate 100 unstable test systems, each with 20 subsystems, and
every subsystem has two states. The systems are created in such
a way such that the subsystems can stabilize the system with
decentralized LQR control laws designed with only their own
decoupled model (Q = Ini×ni

, R = 100Imi×mi
). Afterwards,

we determine solutions to (11) both with Yalmip [Löfberg
2004] (SY ) and with Algorithm 2 (Sdist). Then, we determine
distributed control laws Kdist with Algorithm 1 for four sce-
narios: (1) tf = 1 and S = SY , (2) tf = 1 and S = Sdist,
(3) tf = 1 and S = 0n×n, (4) tf = 10 and S = 0n×n.
The other weighting matrices are Q = In×n and R = Im×m.
The first two scenarios are chosen to compare the results of
the distributed algorithm 2 with the results from Yalmip. The
third one is used to see if the additional terminal cost term even
has an effect, while (4) investigates the influence of a longer
optimization horizon on stability.

The results are summarized as follows: For scenarios (1), (2)
and (4) all 100 systems are stabilized with the distributed
control law. For scenario (3) only 46 systems, so less than half,
are stabilized without the terminal cost term. This demonstrates
that the terminal cost term leads to a stabilizing control law.
Note that the terminal cost term leads to an increase of iterations
in Algorithm 1. The results are summarized in Table 1. The
principle behavior of Algorithm 1 is shown in Figure 1a where
we plot the average of the achieved cost over the iterations.

We also see that if the horizon tf is sufficiently long and no S is
used, we can achieve stability as well. However, the comparison
of scenarios (4) and (3) – in both cases S = 0 – shows that it
is difficult and in no way obvious without global knowledge
which horizon is “long enough” to guarantee stability. The
tuning of the horizon to achieve stability without giving guar-
antees can then turn into a “playing of games” [Bitmead et al.
1990] and makes clear why the presented approach involving
the terminal cost term is preferable.

Additionally as a comparison of the results of Yalmip with the
distributed Algorithm 2 we compare the costs of the resulting
control laws obtained with SY and Sdist and the maximum
relative difference is less than 0.25%. This indicates that the
distributed algorithm gives results that are very close to the
centralized results even though only neighborhood information
is used, and demonstrates the applicability of the distributed
approach. To illustrate the behavior Algorithm 2, the interesting
end part of a typical cost evolution for different values of the
accuracy parameter ε is shown in Figure 1b.
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(a) Average cost evolution for distributed gradient descent in Algo-
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(b) Cost evolution of Algorithm 2 for different values of accuracy
parameter ε. Optimal value in black (dashed) is −0.0204

Fig. 1. Illustration of behaviors of Algorithms 1 and 2.

5. CONCLUSION

In this paper we present a distributed control design method
with guaranteed stability that only requires information ex-
change with neighboring subsystems. Stability is achieved by
introducing a terminal penalty term into the finite-horizon LQ
cost functional. A method is shown how to determine the
penalty term in a distributed fashion using distributed optimiza-
tion methods. Subsequently, the feedback matrix is computed
using an iterative gradient-descent method. Because the only
global information that has to be known is the system size,
privacy of the subsystems is maintained in the sense that sub-
systems need to share their dynamic model only with a limited
number of agents. The effectiveness of the approach is validated
through numerical investigations.

Table 1. Comparison of the approach involving the new
terminal cost term and without the new terminal cost term

with S S = 0n×n

# stabilized systems out of 100 100 46
Average # iterations for Algorithm 1 15.5 9.8
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