
Fast Discrete Consensus Based on Gossip
for Makespan Optimization

in Networked Systems

Mauro Franceschelli†, Alessandro Giua†‡, Carla Seatzu†.

† DIEE, University of Cagliari, Cagliari, Italy
‡ LSIS, University of Aix-Marseille, Marseille, France

Abstract: In this paper we propose a novel algorithm to solve the discrete consensus problem,
i.e., the problem of distributing evenly a set of tokens of arbitrary weight among the nodes of a
networked system. Tokens are tasks to be executed by the nodes and the proposed distributed
algorithm optimizes monotonically the makespan of the assigned tasks. The algorithm is based
on gossip-like asynchronous local interactions between the nodes. The convergence time of
the proposed algorithm is superior with respect to the state of the art and grows at worst
quadratically with respect to the number of nodes.

1. INTRODUCTION

The problem of quantized consensus consists in the design
of a decentralized algorithm to steer a set of quantized
state variables toward a common value. One of the early
formulations of the quantized consensus problem was in
Kashyap et al. (2007) where the issue of quantization to
implement consensus algorithms was brought to attention
and a solution inspired by distributed load balancing of
quantized indivisible tasks was proposed inspired by sim-
ilar approaches by Cybenko (1989); Ghosh and Muthukr-
ishnan (1996); Herlihy and Tirthapura (2005); Houle et al.
(1999). Since then, several approaches were developed to
study the issues of quantization for the consensus prob-
lem. See, e.g., Cai and Ishii (2011); Carli et al. (2010);
J. Lavaei and Murray (2012); Zhu and Mart́ınez (2011);
Franceschelli et al. (2010, 2011).

In Franceschelli et al. (2010) it is proposed a generaliza-
tion of the quantized consensus problem called discrete
consensus, i.e., the problem of distributing evenly a set
of indivisible tokens of different weight. Thus, quantized
consensus is a special case of discrete consensus where all
tokens are of equal weight. An extended version of the
discrete consensus algorithm characterized by an improved
convergence time is proposed in Franceschelli et al. (2011)
where the existence of a known Hamiltonian cycle in the
network is required. The key idea of these algorithms
consists in swapping the current task assignment between
nodes which can not further optimize locally their current
task assignment. This simple operation has shown to bring
great benefits to the performance of these algorithms.
⋆ M. Franceschelli, A. Giua, C. Seatzu are with the
Dept. of Electrical and Electronic Engineering, University
of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy. Email:
{mauro.franceschelli,giua,seatzu}@diee.unica.it. A. Giua is also
with LSIS, University of Aix-Marseille, Marseille, France. The
research leading to these results has received funding from the
European Union Seventh Framework Programme [FP7/2007-2013]
under grant agreement n 257462 HYCON2 Network of excellence
and by Region Sardinia, LR 7/2007 (call 2010) under project SIAR
(CRP-24709).

In Fanti et al. (2012) the problem of distributed task
assignment is formalized as a distributed consensus algo-
rithm. The authors consider tasks of different cost and
type which can be executed only by subsets of nodes in
the network.

In Cai and Ishii (2011) a quantized consensus algorithm
for networks described by directed graphs is proposed.

In Carli et al. (2010) the quantized consensus problem is
formulated with nodes with continuous states but capable
of transmitting only a finite number of symbols. The
authors study algorithms in the framework of randomized
gossip algorithms developed by Boyd et al. (2006) applying
deterministic and probabilistic uniform quantizers with a
combination of three local state update rules defined as
partially quantized, totally quantized and compensating.

In this paper we propose a novel decentralized algorithm
based on gossip to solve the discrete consensus problem.
The proposed algorithm converges in linear time with re-
spect to the number of nodes for graphs of given diameter.

This paper extends our results in Franceschelli et al. (2011)
in that existence of an Hamiltonian cycle in the network
is no longer required.

Several approaches to the study of the convergence time
of quantized consensus problems investigated by Kashyap
et al. (2007); J. Lavaei and Murray (2012); Zhu and
Mart́ınez (2011) are based on the computation of the
average meeting time between two random walks in the
graph that represents the network topology. In this paper,
we propose an alternative approach to analyze the conver-
gence time based on the computation of the expected time
it takes for an edge selection process to select all edges in
the graph. This analysis allows to include in a simple way
the inherent parallelism of asynchronous state updates in
the computation of the convergence time.

Summarizing, the contributions of this paper are the
following.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 7418



• A novel algorithm to solve the discrete and quantized
consensus algorithm is proposed.

• The algorithm converges almost surely in finite time,
the expected convergence time grows at best linearly
and at worst quadratically with respect to the number
of nodes depending on the graph topology.

• With respect to Franceschelli et al. (2011), we both
improve the convergence time and remove the as-
sumption that there exists a known Hamiltonian cycle
in the network.

• Simulations are provided to compare the theoretical
upper bound to the convergence time with the sim-
ulated convergence time for networks with increasing
number of nodes.

2. PROBLEM STATEMENT

Consider a network of n nodes whose connections can be
described by an undirected connected graph G = (V, E),
where V = {1, . . . , n} is the set of nodes and E ⊆ {V ×
V} is the set of edges that represent the existence of
a communication link. We consider K indivisible tokens
to be assigned to the nodes, and a weight cj ∈ N+,
j = 1, . . . ,K, is associated with each token. We define a
weight vector c ∈ NK whose j-th component is equal to cj
and n binary vectors yi ∈ {0, 1}K such that yi,j = 1 if the
j-th token is assigned to node i, yi,j = 0 otherwise. Finally,
cmax = maxj=1,...,K cj . To each node i ∈ V is allocated a
load xi = cT yi consisting in the sum of the weight of tokens
assigned to node i. Denoting Y (t) = [y1(t) y2(t) . . . yn(t)]
the state of the network at time t, we want to achieve a
network state that belongs to the set

Y = {Y = [y1 y2 . . . yn] |
∣∣cT yi − cT yj

∣∣ ≤ cmax,

∀i, j ∈ V} (1)

under the constraint of constant total load. Let x =
[x1 x2 . . . xn]

T
= Y T c, it holds 1Tx(t) = 1Tx(0) for any

t ≥ 0, where x(0) represents the initial load configuration.
We say that discrete consensus is achieved when the state
of all nodes in the network satisfy condition (1).

3. PRELIMINARIES

In this section we introduce some notation and some
local interaction rules that are exploited by the Fast
Discrete Consensus Algorithm 1 whose statement and
characterization of convergence properties are the main
contribution of this paper.

We denote an arbitrary node as the sink node and without
loss of generality we assume that it is the node with id
i = 1. In this paper we consider the following working
assumpion.

Assumption 3.1. Any node i ∈ V knows its distance hi

from the sink node, i.e., the length of the shortest path from
node i to node 1. �

Note that h1 = 0 and hi > 0 for i > 1. We point
out that the estimation of the information required by
Assumption 3.1 without any a priori knowledge on the
network topology and with a sink node with label unknown
to all the other agents can be performed easily in a
distributed and asynchronous way with simple message
passing between the nodes. Due to space constraints we

do not discuss this known approach in this paper, it will
be presented in a future work.

Definition 3.2. Given a graph G = (V, E) we call depth
of the graph with respect to the sink node, or shortly depth,
the length of the greatest distance hi from any node i and
the sink node, i.e., d(G) = maxi∈V hi. �

Obviously, for any choice of the sink node the depth is
always smaller than or equal to the diameter of G. To each
node i ∈ V at any time instant t we associate two state
variables: xi(t) is equal to the load associated with the i-th
node at time t; zi(t) is equal to the local estimation of the
sink load at time t of node i. Clearly, the sink node always
estimates correctly its own load and it holds z1(t) = x1(t)
for all t ≥ 0.

Let Ki(t) be the set of indices of tokens assigned to node

i at time t. We denote K̂ij(t) = Ki(t) ∪ Kj(t) the set
of tokens present in nodes i and j at time t. We define
ĉ(t) = c ↑ K̂ij(t) the projection of c on K̂ij(t), namely
a vector whose elements are the weights of the tokens
present in nodes i and j at time t. Using the same notation
we define two binary vectors ŷi(t) = yi(t) ↑ K̂ij(t) and

ŷj(t) = yj(t) ↑ K̂ij(t), in other words each vector has a
number of elements equal to the number of tokens locally
present in the nodes.

We now introduce a local state update rule to average
the load of two nodes incident on the selected edge. The
rule computes a new token assignment Ki(tk+1), Kj(tk+1)
given the token assignment Ki(tk), Kj(tk) at t = tk. This
local state update rule between nodes i and j involves a
heuristic that was presented in Franceschelli et al. (2007).
This heuristic can be summarized as follows.

Rule 3.3. (Balancing rule).

(1) Let K = Ki ∪ Kj .
(2) Let K′

i := ∅ and K′
j := ∅ (we define new temporary

sets, both initialized to the empty set, including the
indices of tokens in the selected nodes).

(3) While K ̸= ∅, do
• let δ := argmaxj∈Kcj ;

• if
∑
r∈K′

i

cr ≤
∑
r∈K′

j

cr, then let K′
i := K′

i ∪

{δ}, K′
j := K′

j ; (if the load of the i-th node is
smaller than or equal to that of the j-th node,
then assign the current token to node i)
else let K′

i := K′
i, K′

j := K′
j ∪ {δ}.

• K := K \ {δ}
endwhile

(4) if

∣∣∣∣∣∣
∑
j∈K′

i

cj −
∑
j∈K′

j

cj

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
r∈Ki

cr −
∑
r∈Kj

cr

∣∣∣∣∣∣ ,
and K′

i ̸= Ki(tk) or K′
j ̸= Kj (we find a solution that

is neither worse nor equal to the previous one) then
let Ki := K′

i, Kj := K′
j . �

This balancing rule can be completed in |K| steps, thus
with linear complexity with respect to the number of
tokens contained in node i and j. The resulting load
configuration reduces the maximum load by making the
load difference surely less than or equal to |cmax − cmin|

2

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7419



as in Franceschelli et al. (2007). It can be shown that the
proposed heuristic provides an assignment with absolute
performance guarantee of error less than cmax with respect
to the optimal solution of the corresponding optimization
problem.

Let us now introduce an elaborate local state update
rule which exploits Rule 3.3 to locally balance the tokens
between pairs of nodes. In the following we denote xi(tk) =
cT yi(tk) the sum of the costs of tasks assigned to node i
at time tk.

Rule 3.4. (Local State Update Rule).

(1) Let r = argmini,j{hi, hj} and s ∈ {i, j} with s ̸= r.
(2) If |xi(tk)−xj(tk)| > cmax then apply theBalancing

Rule 3.3.
endif.
Assign the largest load to the node closest to the

sink according to
p = argmaxi,j{xi, xj};
q = argmini,j{xi, xj};
Kr = Kp

Ks = Kq

(2)

(3) If r = 1 (sink node) then{
zr(tk+1) = xr,

zs(tk+1) = xr.
(3)

else {
zr(tk+1) = zr(tk),

zs(tk+1) = zr(tk).
(4)

endif.

�

In simple words, Step 2 balances the load of the two
given nodes, when possible, and assigns the largest load
to the node r closest to the sink node. In Step 3 the
node s furthest from the sink node updates its estimate by
adopting the estimate of node r closest to it. Node r keeps
its estimate of the sink load unaltered. If the sink node
itself is involved, then both nodes update their estimation
with the actual load of the sink node.

Next we define a further local state update rule that
consists only in swapping the current task assignment
between two nodes.

Rule 3.5. (Swap). Let Ki(tk) and Kj(tk) be the set of
tasks assigned to nodes i and j and time tk. A swap is
a local state update that exchanges both sets of tasks as
follows {Ki(tk+1) = Kj(tk)

Kj(tk+1) = Ki(tk)
(5)

�

The aim of the swap operation is to ensure that the case
when no node can balance its load with any of its neighbors
may happen only if the network has reached the discrete
consensus state.

4. PROPOSED ALGORITHM

In this section we state the main contribution of this paper,
namely the Fast Discrete Consensus (FDC) algorithm.

Algorithm 1. (Fast Discrete Consensus).

(1) Let k = 0, tk = 0, xi(tk) = cT yi(tk), z1(tk) = x1(tk)
and zi(tk) = 0 for i = 2, . . . , n.

(2) Select an edge (i, j) according to an edge selection
process.

(3) Apply the Local State Update Rule 3.4.
(4) Let s be the index of the node furthest from the sink

node.
If zs − xs > cmax, then execute a Swap of the

updated states according to Rule 3.5
(5) Let k = k + 1 and go back to Step 2.

�

Due to space constraints we do not discuss a stop cri-
terion for Algorithm 1. However, it can be shown that
after discrete consensus has been achieved there exists
a maximum interval of time after which no more load
exchanges between nodes may happen.

We now briefly explain the main steps of Algorithm 1. At
Step 3 the local state update rule balances the loads of the
nodes whenever possible and makes sure that the largest
load is assigned to the node closest to the sink. Moreover
it updates the estimation of the sink load.

Then, at Step 4 if the node furthest from the sink has
a load sufficiently small such that a balancing is possible
with the sink node according to its estimation, then loads
are swaped between the nodes. This is to ensure that loads
that can be balanced with the sink node are moved closer
to it at each iteration.

Note that the above algorithm iterates on the number
of selected edges. This implies that several edges may
perform the state update rule simultaneously with the
only exception of two edges incident on the same node.
Moreover, Algorithm 1 exploits only locally available in-
formation at each step.

Next we show an example of execution of Algorithm 1 to
further clarify its functioning.

Example 4.1. Consider the network of 4 nodes depicted
in Fig. 1. Nodes are labeled from 1 to 4. The sink node is
node 1. Thus, node 2 has distance 1 with respect to the
sink node, node 3 has distance 2 and node 4 has distance
3. In this example for sake of clarity we consider tokens of
unitary weight cj = 1 for j = 1, . . . ,K, thus representing a
standard quantized consensus problem. The initial state of
the network is at t = t0: x1(t0) = 2, x2(t0) = 8, x3(t0) = 4,
x4(t0) = 3. All variables containing the estimation of the
sink load are initialized to zero except for the sink node,
thus z1(t0) = 2, z2(t0) = z3(t0) = z4(t0) = 0. In this
example we consider an arbitrary edge selection sequence
for sake of clarity.

(1) At t0 edge (1, 2) is selected. Since |x1 − x2| > cmax,
the nodes balance their load leading to x1 = x2 = 5.
Then they update their estimations of the sink load
that are set to z1 = z2 = 5.

(2) At t1 edge (2, 3) is selected. Since |x2 − x3| ≤ cmax

and the largest load is already in the node closest to
the sink, then the nodes update only the sink load
estimate to z2 = 5 and z3 = 5.

3

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7420



2 

Sink node 
Node 1 

 
Node 2 

 
Node 3 

 
Node 4 

t0 

t1 

t3 

t4 

t2 

2 8 0 4 0 3 0 

5 5 5 5 4 0 3 0 

5 5 5 5 4 5 3 0 

5 5 5 5 3 5 4 5 

5 5 4 5 4 5 4 5 

x1      z1 

Update 

Update 

Update and Swap 

Update 

x2      z2 x3      z3 x4      z4 

Fig. 1. Example of execution of Algorithm 1 described in
Example 4.1.

(3) At t2 edge (3, 4) is selected. Since |x3 − x4| ≤ cmax

no balancing occurs but estimations are updated as
z3 = 5 and z4 = 5. Furthermore, since z4−x4 > cmax

a swap is executed.
(4) At t3 edge (2, 3) is selected. Since |x2 − x3| > cmax

the nodes balance their load.
(5) At t4 the discrete consensus condition (1) is reached

and the state of the network can not change anymore
by the execution of Algorithm 1.

5. CONVERGENCE PROPERTIES

In this section we study the convergence properties of
Algorithm 1 in the case in which nodes interact according
to an edge selection process. In particular, we now formally
define a stochastically persistent edge selection process.

Definition 5.1. (Edge Selection Process). An edge selec-
tion process e : R+ × E → {0, 1} is a function e that
associates with each time instant t ∈ R+ and each edge
(i, j) ∈ E a binary value: if e(t, (i, j)) = 1 then edge (i, j)
is active at time t, not active otherwise.

We denote as

Ê(t, t+ T ) = {(i, j) ∈ E : e(τ, (i, j)) = 1

for some τ ∈ [t, t+ T ]}
the set of edges selected at least once during the time
interval [t, t+ T ]. �

We now recall a definition that has been used in
Franceschelli et al. (2013) to prove almost sure finite time
stability in gossip based vehicle routing problems.

Definition 5.2. (Stochastic persistence). An edge selec-
tion process e : R+×E → {0, 1} is said to be stochastically
persistent if ∀t ≥ 0 there exists a finite T > 0 and a
probability p ∈ (0, 1) such that

Pr(Ê(t, t+ T ) ≡ E) ≥ p (6)

where Pr(·) denotes a probability. �

Stochastic persistence implies that, if we consider a finite
but sufficiently large time interval, then each edge has a

probability greater than or equal to a finite value p of being
selected during such an interval. For instance, any Markov
process is stochastically persistent.

Definition 5.3. Given a stochastically persistent edge
selection process we define a continuous random variable
τ that represents the smallest interval of time in which
Ê(t, t+ τ) ≡ E, independently from the initial time t. �

The expected value E [τ ] of the random variable τ can be
computed directly from the Definition 5.2 of stochastically
persistent edge selection process as E [τ ] ≤

∑∞
i=1 iTp(1−

p)i−1.

Let us now introduce two preliminary results. First, we
consider the case in which the load of the sink node does
not change for some time. Proposition 5.4 characterizes in
what interval of time the generic node estimates correctly
the load of the sink node under such assumption.

Proposition 5.4. Consider a stochastically persistent edge
selection process e. Let τi, i = 1, . . . , d(G), be d(G) re-
alizations of the continuous random variable τ defined
as in Definition 5.3, which represents the time such that
Ê(Ti−1, Ti) ≡ E, where Ti = Ti−1 + τi for i = 1, . . . , d(G).
Let Td(G) =

∑d(G)
i=1 τi. If x1(t) = x1 for t ∈ [t1, t2] with

t2 − t1 ≥ Td(G), then

zi(t) = x1 ∀t ∈
[
t1 + Td(G), t2

]
, ∀i ∈ V.

Proof: Due to space constraints we do not include a
complete proof in this preliminary manuscript. �

The following proposition guarantees that if the number
of nodes whose load is maximum in the network remains
constant for a sufficiently long time, then the sink node
within a given time interval is guaranteed to hold the
maximum load in the network.

Proposition 5.5. Consider a stochastically persistent edge
selection process e. Let τi, i = 1, . . . , 2d(G), be 2d(G)
occurrences of the continuous random variable τ defined
as in Definition 5.3, namely such that Ê(Ti−1, Ti) ≡ E,

where Ti = Ti−1 + τi. Let T2d(G) =
∑2d(G)

i=1 τi. If in a time
interval [t1, t2] with t2 − t1 ≥ T2d(G), both the maximum
load and the number of nodes with the maximum load
remain constant, then

x1(t) = max
i∈V

xi(t) ∀t ∈
[
t1 + T2d(G), t2

]
.

Proof: Due to space constraints we do not include a
complete proof in this preliminary manuscript. �

We now prove that, in the case of a stochastically persis-
tent edge selection process, Algorithm 1 converges almost
surely in finite time to discrete consensus.

Theorem 5.6. Consider a network G of n nodes that
executes Algorithm 1. If the edge selection process e is
stochastically persistent, then

Pr
(
∃Tconv ∈ R+ : ∀t ≥ Tconv, Y (t) ∈ Y

)
= 1

where Y is defined as (1) and Pr (·) denotes a probability.

Proof: We define a Lyapunov-like function

V (t) = ∥cTY (t)∥∞ = ∥x(t)∥∞ (7)

The proof is based on three main arguments.

(1) First, we prove that ∀tk ≥ 0 it holds V (tk+1) ≤ V (tk).
4

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7421



If there is only one node with the maximum load
and such a node is one of the two selected nodes, as
soon as the local state update rule in Definition 3.4
is applied, it holds V (tk+1)≤V (tk).
If none of the selected nodes has the maximum

load, it holds V (tk+1) = V (tk). The same occurs when
one of the selected nodes has the maximum load but
there also exist other nodes with the maximum load.

(2) Whenever V (tk+1) < V (tk), the local maximum must
decrease of at least 1 being cj ∈ N for all j = 1, . . . ,K,
thus V (tk+1) ≤ V (tk)− 1.

(3) We now prove that if at a given time instant tk it is

max
i,j∈V

|xi(tk)− xj(tk)| > cmax (8)

then, after a number of iterations of Algorithm 1
at most equal to ∆ = 4(n − 1)d(G)T it is V (tk +
∆) < V (tk), where T > 0 is the length of a finite

time interval such that Ê(t, t+ T ) ≡ E ∀t ≥ 0.
By Proposition 5.5 if the maximum load and the

number of nodes with the maximum load remain
constant, then if the edge selection process is stochas-

tically persistent there exists Td(G) =
∑d(G)

i=1 τi such
that after 2Td(G) units of time the sink node has the
maximum load.
Moreover, by Proposition 5.5 if the maximum load

and the number of nodes with the maximum load
remain constant, then the value of the sink node
remains constant as well. By Proposition 5.4 after a
further time equal to Td(G) all nodes have an exact
estimation of the sink load. If inequality (8) holds,
then there exists at least one node whose load is
smaller than the maximum load of a quantity larger
than cmax. After further Td(G) units of time the
execution of swaps reduce surely by at least one unit
the distance between a load that can balance with
the sink node and the sink node itself. The distance
of such a node is at most equal to the depth d(G), then
after further Td(G) units of time such a node balances
with the sink node, thus reducing the number of
nodes verifying inequality (8). The same reasoning
can be repeated until there exists some node verifying
inequality (8). Since such a number may be at most
equal to n − 1, then inequality (8) cannot hold for a
time larger than (n− 1)T4d(G).

According to Definition 5.2 ∀t ≥ 0 there exists a finite
T > 0 and a probability p ∈ (0, 1) such that

Pr(Ê(t, t+ T ) ≡ E) ≥ p. (9)

therefore, the probability that the event Ê(t, t + T ) ≡ E
occurred in disjoint time intervals at least (n − 1)4d(G)
times in an interval of time of length kT is at least

Pr( Ê(ti, ti + T ) ≡ E, i = 1, . . . (n− 1)4d(G),
with t(n−1)4d(G) ≤ (n− 1)T4d(G)) ≥ p(n−1)4d(G).

(10)

Therefore, since the probability of occurrence of the above
event over a finite interval of time is strictly positive, it
directly follows that

lim
i→∞

Pr(Ê(ti, ti+T ) ≡ E, at least (n−1)4d(G) times) = 1.

Since the condition |xi(t) − xj(t)| ≤ cmax ∀i, j ∈ V is
achieved with a finite number of occurrences of the event
Ê(ti, ti + T ) ≡ E it follows that with probability one
(almost surely), ∃Tconv ∈ R+ such that ∀t ≥ Tconv, and
∀i, j ∈ V, it is |xi(t) − xj(t)| ≤ cmax, thus proving the
statement of the Theorem. �

6. EXPECTED CONVERGENCE TIME

In this section we determine the expected convergence time
of Algorithm 1 when edges are selected according to a
stochastically persistent process.

Proposition 6.1. Let τ be the continuous random vari-
able introduced in Definition 5.3. If the edge selection
process e is stochastically persistent, then

E [Tconv] ≤ 4(M −m)(n− 1)d(G)E [τ ] , (11)

where

M = ∥x(0)∥∞, m =
1Tx(0)

n
, (12)

and E [·] denotes the expected value.

Proof:

The proof is carried out in three steps.

(a) Using the same arguments as in item 3 of Theorem 5.6
the time between two consecutive improvements of

V (t) is at most equal to Tconv ≤
∑4N(n−1)d(G)

i=1 τ ,
where N is the maximum number of improvements
of V (t) defined as in (7), needed by any realization
of Algorithm 1 to reach the set Y, starting from any
initial token assignment.

(b) We prove that N ≤ M −m.
By definition M − m is the difference between

the maximum load and the average load at the
initial configuration. Therefore, since the smallest
decrement of V (t) is equal to one, the maximum
number of decrements of V (t) is less or equal to
M −m.

(c) Finally, if edges are selected by a independent and
identical stochastic processes, the expected conver-
gence time depends on the expected value of Tconv

which can be bounded as E
[
Td(G)

]
≤ 4(M −m)(n−

1)d(G)E [τ ]. �

Since Algorithm 1 consists only of local and asynchronous
state updates between nodes, we now consider the case
where there exists an independent stochastic process for
each edge in the network that in parallel governs the
activation of each edge.

Proposition 6.2. Let τe be a random variable that repre-
sents the time interval between two consecutive selections
of a given edge by its own stochastic process. If edges are
selected according to independent and identical stochasti-
cally persistent processes, then

E [Tconv] ≤ 4(M −m)(n− 1)d(G)E [τe] , (13)

where

M = ∥x(0)∥∞, m =
1Tx(0)

n
, (14)

and E [·] denotes the expected value.
5

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7422



Proof: The proof follows from Proposition 6.1 and the
fact that we are considering independent and identical
stochastically persistent processes to activate each edge.
This implies that the average time for the selection of all
edges is equal to the average interval of time for activation
of any given edge, i.e., the expected value of random
variable τe corresponds to the expected value of random
variable τ in Definition 5.3. �

We now consider as an example the case where edges
are chosen according to Poisson stochastic processes with
parameter λe, which is a stochastically persistent process.

The probability that a given edge e ∈ E is selected k times
in the unit of time is

P [k] = e−λe
λk
e

k!
, k = 0, 1, . . . .

As a consequence the continuous random variable τe
defining the waiting time among two consecutive selections
of the same edge follows an exponential distribution and
its expected value is E [τe] =

1
λe
.

Summarizing, the expected convergence time of Algo-
rithm 1 if edges are selected according to a Poisson process
with parameter λe is upper bounded by

E [Tconv] ≤ 4(M −m)(n− 1)
d(G)
λe

≈ O (n) d(G). (15)

7. NUMERICAL SIMULATIONS

A series of numerical simulations have been carried out
to compare the convergence time of Algorithm 1 resulting
from numerical simulations with the upper bound defined
in equation (13). Results of such a comparison are shown
in Fig. 2 where the continuous blue line represents the
average value of the convergence time over 100 executions
of Algorithm 1 over networks randomly generated with an
increasing number of nodes and a constant value of the
depth equal to 4. The dashed black curve represents the
upper bound defined in equation (13). As it can be noted
the upper bound is much larger than the convergence time
resulting from simulations and their difference increases as
the number of nodes increases. The considered convergence
time is computed as the number of times that all edges are
selected at least once, in particular we choose T = 1. This
means that if the network has a large number of nodes,
then more parallel state updates may to occur during the
same time period T . This is in line with the fact that
Algorithm 1 iterates over the number of selected edges,
thus allowing parallel executions of the state update rules.

8. CONCLUSIONS

In this paper we have presented a novel decentralized
algorithm that solves the discrete and quantized consensus
problem. It has been shown that the proposed algorithm
has improved convergence time with respect to other algo-
rithms in the literature. Simulations have been provided
to compare the theoretical upper bound to the expected
convergence time with the simulated convergence time for
networks with increasing number of nodes.

10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

10
5

Number of nodes

C
on

ve
rg

en
ce

 ti
m

e 

Fig. 2. Comparison between simulated convergence time
and the upper bound defined in equation (13).

REFERENCES

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Random-
ized gossip algorithms. IEEE Trans. on Information
Theory, 52(6):2508–2530, 2006.

Kai Cai and H. Ishii. Quantized consensus and averaging
on gossip digraphs. IEEE Transactions on Automatic
Control,, 56(9):2087 –2100, 2011.

R. Carli, F. Fagnani, P. Frasca, and S. Zampieri. Gos-
sip consensus algorithms via quantized communication.
Automatica, 46(1):70–80, 2010.

G. Cybenko. Dynamic load balancing for distributed
memory multiprocessors. J. of Parallel and Distributed
Computing, 7:279–301, 1989.

M.P. Fanti, A.M. Mangini, and W. Ukovich. A quantized
consensus algorithm for distributed task assignment.
Proceedings of the IEEE Conference on Decision and
Control, pages 2040–2045, 2012.

M. Franceschelli, A. Giua, and C. Seatzu. Load balancing
on networks with gossip-based distributed algorithms.
Proceedings of the IEEE Conference on Decision and
Control, pages 500–505, 2007.

M. Franceschelli, A. Giua, and C. Seatzu. A gossip-based
algorithm for discrete consensus over heterogeneous
networks. IEEE Transactions on Automatic Control,,
55(5):1244 –1249, 2010.

M. Franceschelli, A. Giua, and C. Seatzu. Quantized
consensus in Hamiltonian graphs. Automatica, 47(11):
2495 – 2503, 2011.

M. Franceschelli, D. Rosa, C. Seatzu, and F. Bullo. Gos-
sip algorithms for heterogeneous multi-vehicle routing
problems. Nonlinear Analysis: Hybrid Systems, 10(1):
156–174, 2013.

B. Ghosh and S. Muthukrishnan. Dynamic load balancing
by random matchings. J. of Computer and Systems
Sciences, 53(3):357–370, 1996.

M. Herlihy and S. Tirthapura. Self-stabilizing smoothing
and balancing networks. Distributed Computing, 2005.

M.E. Houle, E. Tempero, and G. Turner. Optimal di-
mension exchange token distribution on complete binary
trees. Theoretical Computer Science, 220:363–377, 1999.

R.M. J. Lavaei and Murray. Quantized consensus by means
of gossip algorithm. IEEE Transactions on Automatic
Control, 57(1):19 –32, 2012.

A. Kashyap, T. Başar, and R. Srikant. Quantized consen-
sus. Automatica, 43(7):1192–1203, 2007.

M. Zhu and S. Mart́ınez. On the convergence time of asyn-
chronous distributed quantized averaging algorithms.
IEEE Transactions on Automatic Control, 56:386–390,
2011.

6

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7423


