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Abstract: When dealing with networked systems, the concept of controllability refers to the
possibility of controlling the overall state of a group of agents by providing an external input only
to a subset of them, that are referred to as leaders. On the same lines, the concept of observability
is related to the possibility of observing the whole state of the networked system from only a
subset of the agents. In this paper we introduce a decentralized interaction rule that ensures
preservation of the controllability and observability properties of a networked system. The
proposed strategy is based on the fact that these properties are strongly related to the topology
of the underlying communication graph. We will show that connectivity maintenance and a
random choice of the edge–weights are key concepts to ensure controllability and observability
preservation for a networked system.

Keywords: Control of networks; Cooperative systems; Multi-agent systems; Networks of
sensors and actuators; Networked robotic systems; Distributed control and estimation.

1. INTRODUCTION

This paper introduces a control strategy to ensure the
preservation of the controllability and observability prop-
erties for a networked system, in a completely decentral-
ized manner.

The idea of interacting with a networked system has been
increasingly investigated in the last few years [Liu et al.,
2011, Cocetti et al., 2013, Sabattini et al., 2014]. The main
idea is that of controlling the overall state of a multi–
agent system by directly interacting with only a subset
of the agents, which are commonly referred to as the
leaders. In order to obtain this objective, a communication
and interaction network among the agents is exploited:
clearly, the topology of the network strongly influences
the possibility of obtaining this objective [Egerstedt et al.,
2012].

To the best of the authors’ knowledge, one of the first
attempts to apply the classical concepts of controllability
and observability to networked systems can be found in
[Tanner, 2004]. In this work, the multi–agent system is
partitioned between leaders and followers, and the overall
networked system is represented as a standard LTI system:
this representation lets the author apply the classical
concept of controllability.

Based on these ideas, several strategies for the analysis
of the controllability property of networked systems have
recently appeared in the literature. Sufficient conditions
are derived in [Ji and Egersted, 2007, Rahmani et al.,
2009] from a graph–theoretic perspective, that guarantee
controllability of a networked system: given the topology
of the communication graph, it is possible to understand

if the corresponding networked system is controllable from
a given set of leaders. On the same lines, a strategy
to verify the controllability is presented in [Franceschelli
et al., 2010], and is based on decentralized estimation of
the spectrum of the Laplacian matrix.

Considering a linear system defined by a generic structure,
and a set of variable parameters, the concept of structural
controllability [Lin, 1974, Shields and Pearson, 1976] refers
to LTI systems for which controllability is verified for
a particular choice of the entries of the matrices that
define the systems themselves. This concept has been
recently applied to networked systems [Liu et al., 2009,
Sundaram and Hadjicostis, 2013, Sorrentino, 2007, Tan
et al., 2010, Zamani and Lin, 2009] interconnected by
means of an edge–weighted graph. Specifically, structural
controllability of a weighted graph identifies networked
systems that can be made controllable with an opportune
choice of the edge–weights.

Hence, while the analysis of the controllability property
for networked systems has been deeply investigated in the
literature, the synthesis problem has not been thoroughly
addressed yet. For this reason, in this paper we propose a
methodology that, in a completely decentralized manner,
leads a group of networked agents to create a weighted
communication graph in such a way that the overall system
is both controllable and observable. The proposed method-
ology is based on a decentralized strategy first presented
in [Sabattini et al., 2013a,b] for the maintenance of the
connectivity of the communication graph in a networked
system, that will be here exploited for guaranteeing struc-
tural controllability. Subsequently we will show that, given
a structurally controllable networked system, a random
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choice of the edge–weights ensures controllability almost
surely. Duality principle is invoked to guarantee that, if
controllability is ensured, than observability is ensured as
well.

The structure of the paper is as follows. Section 2 summa-
rizes background notions on graph theory, that will be ex-
ploited throughout the paper. The model of the networked
system is described as well, and the concept of structural
controllability is introduced. A decentralized strategy for
the preservation of the structural controllability property
is introduced in Section 3. Then, Section 4 introduces
the concept of almost sure controllability, and describes
a decentralized methodology to ensure this property. Sim-
ulation results are presented in Section 5, for validation
purposes. Concluding remarks are then given in Section 6.

2. PRELIMINARIES

2.1 Background on graph theory

In this section we summarize some of the main notions
on graph theory used in the paper. Further details can be
found for instance in [Godsil and Royle, 2001].

Let G indicate a generic undirected graph: throughout the
paper we will always refer to undirected graphs, unless
otherwise specified. Let V (G ) and E (G ) be the vertex set
and the edge set of the graph G , respectively. Moreover, let
N be the cardinality of V (G ) (i.e. the number of vertices,
or nodes, of the graph), and let M be the cardinality of
E (G ) (i.e. the number of edges, or link, of the graph).
Clearly, E ⊆ V × V.

Let vi, vj ∈ V (G ) be the i–th and the j–th vertices of
the graph, respectively. Then, vi and vj are neighbors
if (vi, vj) ∈ E (G ). Given an undirected graph, (vi, vj) ∈
E (G ) if and only if (vj , vi) ∈ E (G ).

Define then an indexing of the edges of the graph, namely:

E = {e1, . . . , eM} (1)

Defining then an arbitrary orientation of each edge, the
incidence matrix I (G ) ∈ R

N×M can be defined as a matrix
whose (i, k)–th element ιik is [Ji and Egersted, 2007]:

ιik =

{

−1 if vi is the head of ek
1 if vi is the tail of ek
0 otherwise

(2)

The (unweighted) Laplacian matrix L (G ) is then defined
as follows:

L (G ) = I (G ) IT (G ) (3)

In an edge–weighted graph, a positive number (the
weight) is associated to each edge of the graph. Let
wk > 0 be the weight associated with the k–th edge,
and let w = [w1, . . . , wM ] ∈ R

M . Then, the weight matrix
W (G ) ∈ R

M×M is defined as W (G ) = diag (w).

The (weighted) Laplacian matrix LW (G ) of the graph
G , associated with the weight matrix W (G ) can then be
defined as follows:

LW (G ) = I (G )W (G ) IT (G ) (4)

The (weighted or unweighted) Laplacian matrix exhibits
some remarkable properties:

(1) Let 1 be the column vector of all ones. Then,
L (G )1 = 0.

(2) Let λi (L (G )), i = 1, . . . , N be the eigenvalues of the
Laplacian matrix.
• The eigenvalues can be ordered such that

0 = λ1 (L (G )) ≤ λ2 (L (G )) ≤ . . . ≤ λN (L (G ))
(5)

• λ2 (L (G )) > 0 if and only if the graph is con-
nected: then, λ2 (L (G )) is defined as the alge-
braic connectivity of the graph.

2.2 Model of the system

Consider a group of N agents, namely mobile robots,
sensors or other entities, interconnected by means of a
graph G . Let xi ∈ R

m be the state of the i–th agent:
without loss of generality, we will hereafter consider the
case where the state corresponds to each agent’s position.
Then, let the agents be interconnected according to the
well known (weighted) consensus protocol [Olfati–Saber
et al., 2007]:

ẋi = −
∑

j∈Ni

wij (xi − xj) (6)

where wij > 0 is the edge weight, and Ni ⊆ V (G ) is the
neighborhood of the i–th agent, defined as the set of the
agents that are interconnected to the i–th one, namely:

Ni = {j ∈ V (G ) such that (vi, vj) ∈ E (G )} (7)

Without loss of generality, we will hereafter refer to the
scalar case, namely xi ∈ R. It is however possible to extend
all the results to the multi–dimensional case, considering
each component independently.

Hence, let x = [x1, . . . , xN ]
T

∈ R
N be the state of

the multi–agent system. As is well known [Olfati–Saber
et al., 2007], the interaction rule defined in Eq. (6) can be
rewritten as follows:

ẋ = −LW (G )x (8)

Under the consensus protocol, the states of the agents
converge to a common value. Assume now that the goal
is to control the states of the networked agents: for this
purpose, define a few leader agents, to whom it is possible
to inject a control action. The state of the other agents,
referred to as the followers, evolves according to the
consensus protocol.

More specifically, let VL (G ) ⊂ V (G ) be the set of the
leader agents, and let VF (G ) = V (G ) − VL (G ) be the
set of the follower agents. Then, as shown in [Egerstedt
et al., 2012] for unweighted graphs, the interaction rule
introduced in Eq. (6) is modified as follows:







ẋi = −
∑

j∈Ni

wij (xi − xj) if vi ∈ VF (G )

xi = ui if vi ∈ VL (G )
(9)

where ui = ui (t) ∈ R is a control input. We suppose that
both ui and u̇i are bounded, namely

∃uL ∈ R such that ‖ui‖ ≤ uL, ‖u̇i‖ ≤ uL ∀i = 1, . . . , N
(10)

Let NL be the number of leaders. It is always possible
to index the agents such that the last NL agents are the
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leaders, and the first NF = N − NL are the followers.
Then, as shown in [Egerstedt et al., 2012], it is possible to
decompose the Laplacian matrix LW (G ) as follows:

LW (G ) = −





A B

BT E



 (11)

where A = AT ∈ R
NF×NF represents the interconnec-

tion among the followers, B ∈ R
NF×NL represents the

interconnection among leaders and followers, and E =
ET ∈ R

NL×NL represents the interconnections among the
leaders.

Define now xF ∈ R
NF as the state vector of the followers,

namely xF = [x1, . . . , xNF
]
T
. Define also u ∈ R

NL as the

input vector, namely u = [uNF+1, . . . , uN ]
T
. Moreover, let

y ∈ R
NL be the output vector, that is the vector containing

the state variables that are measurable by the leaders: it is
reasonable to assume that each leader is able to measure
the state of its neighbors.

We assume that the leader nodes are able to directly
exchange information among each other. Namely, the
following assumption is made:

Assumption 1. A complete communication graph exists
among the leader nodes.

Under this assumption, each leader can broadcast its
measured output to all the other leaders: therefore, it is
possible to assume that each leader has access to the entire
output vector y. Hence, the dynamics of the networked
system can be rewritten as a standard LTI system as
follows:

{

ẋF = AxF + Bu
y = BTxF

(12)

Hence, the classical notion of controllability can be applied
to solve the problem of controlling the state of the multi–
agent system through the leaders. The controllability
property is related to the matrices A and B. Namely, the
controllability matrix R is defined as follows:

R =
[

B |AB |A2B | . . . | ANF−1B
]

(13)

As is well known from the classical control theory, a LTI
system is controllable if and only if its controllability
matrix has full rank.

Duality principle can be invoked to show that a networked
system is controllable if and only if it is observable. In fact,
according to Eq. (12), the observability matrix O is given
by:

O = RT (14)

A LTI system is controllable if and only if its controllability
matrix has full rank, and it is observable if and only
if its observability matrix has full rank. According to
the definition of the LTI representation of the networked
system given in Eq. (12), and as shown in Eq. (14),
a networked system is controllable if and only if it is
observable.

Therefore, without loss of generality, we will hereafter
refer only to the controllability property. However, all the
proposed results can be exploited to ensure observability
as well.

As stated in the Introduction, several works have recently
appeared in the literature to study the influence of the
network topology on the controllability property [Egerst-
edt et al., 2012]. In this paper we will show how to exploit
edge weights to ensure the controllability in a decentral-
ized manner. For this purpose, we exploit the concept of
structural controllability, that has been introduced in [Lin,
1974, Shields and Pearson, 1976, Zamani and Lin, 2009,
Lou and Hong, 2012], and that is referred to as weight
controllability in [Goldin and Raisch, 2013]. The structural
controllability property is defined as follows:

Definition 1. (Structural controllability).
A networked system is said to be structurally controllable
if and only if it is controllable for almost any choice of the
edge weights.

In [Zamani and Lin, 2009, Lou and Hong, 2012, Goldin and
Raisch, 2013] it was shown that structural controllability
is strongly related to the connectivity of the underlying
graph. Specifically, the following Property was derived:

Property 1. A networked system is structurally control-
lable if and only if the underlying graph is connected.

3. STRUCTURAL CONTROLLABILITY
PRESERVATION

In this section we introduce a decentralized strategy to
ensure the preservation of the structural controllability
property for the networked system.

The proposed strategy relies on Property 1: specifically, we
will exploit a connectivity maintenance control strategy, in
order to ensure structural controllability preservation.

Let C (G ) ∈ R
M×M be the communication edge weight

matrix. This matrix is defined as C (G ) = diag (c), where
c ∈ R

M will be defined subsequently as a vector of weights
related to the communication constraints in the networked
system.

Consider then the weighed Laplacian matrix LC (G ). In
[Sabattini et al., 2013a,b], the following kinematic model
was considered:

ẋi = uC
i (15)

with the control law uC
i defined as follows:

uC
i = −

∂V (λ2 (LC (G )))

∂xi
(16)

where the energy function V (λ2 (LC (G ))) will be defined
hereafter. The aim of this control law is to ensure that,
given a desired threshold ǫ > 0, then the value of the
algebraic connectivity does never go below this threshold,
as the system evolves. For this purpose, the energy func-
tion V (λ2 (LC (G ))) is chosen according to the following
definition.

Definition 2. (Energy Function).
A function V (λ2 (·)) : R+ 7→ R

+ is defined as an energy
function if the following properties hold:

(P1) It is continuously differentiable ∀λ2 (·) > ǫ.
(P2) It is non–negative.
(P3) It is non–increasing with respect to λ2 (·), ∀λ2 (·) ≥ ǫ.
(P4) It approaches a constant value, as λ2 (·) increases.
(P5) lim

λ2(·)7→ǫ
V (λ2 (·)) = ∞

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1839



(P6) lim
λ2(·) 7→ǫ

∥

∥

∥

∥

∂V (λ2 (·))

∂λ2 (·)

∥

∥

∥

∥

= ∞

In [Sabattini et al., 2013a], the energy function was defined
as follows:

V (λ2 (LC (G ))) = coth (λ2 (LC (G ))− ǫ) (17)

Let R be the maximum communication range for each
agent, i.e. the j–th agent is inside Ni if ‖xi − xj‖ ≤ R.
Then, the vector c is defined as the collection of the edge–
weights cij , defined as follows:

cij =

{

e−(‖xi−xj‖
2)/(2κ2) if ‖xi − xj‖ ≤ R

0 otherwise
(18)

The scalar parameter κ is chosen to satisfy the threshold

condition e−(R
2)/(2κ2) = ∆, where ∆ is a small predefined

threshold.

This definition of the edge–weights is motivated by the
fact that λ2 (·) is a non–increasing function of each edge–
weight [Godsil and Royle, 2001]: hence, as two connected
robots increase their distance, the value of λ2 (·) decreases,
until they disconnect.

It is worth noting that, even though the algebraic con-
nectivity of the communication graph is a global quan-
tity, the connectivity maintenance control action can be
implemented exploiting an estimate of λ2 (·). Specifically,
a bounded–error decentralized estimation procedure was
introduced in [Sabattini et al., 2013a] for the estimation
of λ2 (·).

The dynamics of the networked system introduced in
Eq. (9) can then be extended as follows:







ẋi = −
∑

j∈Ni

wij (xi − xj) + uC
i if vi ∈ VF (G )

ẋi = u̇i + uC
i if vi ∈ VL (G )

(19)

with the control law uC
i defined according to Eq. (16),

∀vi ∈ V (G ), and the control law ui is defined as in Eq. (9).

Theorem 1. Consider the dynamical system described in
Eq. (19), and let the networked system be structurally
controllable at time t = 0. Then, the control strategy
in Eq. (16) ensures the preservation of the structural
controllability property.

Proof. According to Property 1, if the system is struc-
turally controllable at time t = 0, then the underlying
communication graph is connected.

Inspired by [Sabattini et al., 2013a,b], we will then show
that the control strategy in Eq. (16) guarantees that, if a
graph is initially connected, then it will stay connected as
the system evolves.

Consider an energy function V (·) : R
+ 7→ R

+ defined
according to Definition 2. We will now show that this
function does not decrease, as the system evolves.

The dynamical system described in Eq. (19) can be rewrit-
ten as follows:

ẋi = uC
i + uE

i ∀i = 1, . . . , N (20)

where the external input uE
i is bounded, namely

∃uM ∈ R such that
∥

∥uE
i

∥

∥ ≤ uM , ∀i = 1, . . . , N (21)

It is worth noting that, according to Eq. (10), this con-
straint holds for the leader inputs, namely ui, as well.

The time derivative of the energy function can be com-
puted as follows:

V̇ (·) = ∇xV (·)
T
ẋ =

N
∑

i=1

∂V (·)

∂xi

T

ẋi (22)

Considering Eqs. (20) and (16), the time derivative of the
energy function can be rewritten as follows:

V̇ (·) =

N
∑

i=1

∂V (·)

∂xi

T (

−
∂V (·)

∂xi
+ uE

i

)

(23)

According to Eq. (21), and considering that

∂V (·)

∂xi
=

∂V (·)

∂λ2 (·)

∂λ2 (·)

∂xi

the following inequality can be computed:

V̇ (·) ≤ −

∥

∥

∥

∥

∂V (·)

∂λ2 (·)

∥

∥

∥

∥

2 N
∑

i=1

∥

∥

∥

∥

∂λ2 (·)

∂xi

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∂V (·)

∂λ2 (·)

∥

∥

∥

∥

uM

N
∑

i=1

∥

∥

∥

∥

∂λ2 (·)

∂xi

∥

∥

∥

∥

(24)

Then, it is possible to conclude that V̇ (·) ≤ 0 if the
following inequality holds:

∥

∥

∥

∥

∂V (·)

∂λ2 (·)

∥

∥

∥

∥

N
∑

i=1

∥

∥

∥

∥

∂λ2 (·)

∂xi

∥

∥

∥

∥

2

≥ uM

N
∑

i=1

∥

∥

∥

∥

∂λ2 (·)

∂xi

∥

∥

∥

∥

(25)

Assuming that the following condition holds:

N
∑

i=1

∥

∥

∥

∥

∂λ2 (·)

∂xi

∥

∥

∥

∥

2

6= 0 (26)

then the inequality in Eq. (25) can be rewritten as follows:

∥

∥

∥

∥

∂V (·)

∂λ2 (·)

∥

∥

∥

∥

≥ uM

N
∑

i=1

∥

∥

∥

∥

∂λ2 (·)

∂xi

∥

∥

∥

∥

N
∑

i=1

∥

∥

∥

∥

∂λ2 (·)

∂xi

∥

∥

∥

∥

2 < ∞ (27)

According to the Property (P6) in Definition 2, ∃λ̄ > ǫ
such that, ∀λ2 (·) ≤ λ̄, the inequality in Eq. (27) holds.
This implies that the value of λ2 (·) is always bounded
away from ǫ > 0.

In case the condition in Eq. (26) does not hold, then

λ̇2 (·) = 0. Hence, λ2 (·) does not change its value, and
then remains greater than ǫ > 0.

It is then possible to conclude that the control strategy in
Eq. (16) guarantees that, if a graph is initially connected,
then it will stay connected as the system evolves.

According to Property 1, this guarantees also preservation
of the structural controllability property. ✷

It is worth remarking that, according to the Property (P4)
in Definition 2, the control action uC

i vanishes at steady
state, namely when the algebraic connectivity of the graph
is sufficiently big. For this reason, we will hereafter con-
sider the dynamics of the system described in Eqs. (9)
and (12), assuming that the control action uC

i becomes
non–negligible only when, due to the relative displace-
ments of the agents, it becomes necessary to enforce the
structural controllability property.
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4. DECENTRALIZED CONTROLLABILITY OF THE
NETWORK

In Section 3 we defined a control strategy that ensures
preservation of the structural controllability property. Ac-
cording to Definition 1, given a structurally controllable
graph, a choice of edge weights exists such that the corre-
sponding weighted graph is controllable.

Hence, assuming that the graph is structurally control-
lable, in this section we will define a completely decen-
tralized strategy to define the edge weights in order to
ensure the controllability of the graph, while maintaining
the graph undirected.

For this purpose, we introduce the following definition of
almost sure controllability :

Definition 3. (Almost sure controllability).
A LTI system is almost surely controllable if it is control-
lable with probability one.

Almost sure controllability can be ensured modifying the
control law in Eq. (19) as follows:














ẋi = −
∑

j∈Ni

(wi + wj) (xi − xj) + uC
i if vi ∈ VF (G )

ẋi = u̇i + uC
i if vi ∈ VL (G )

wi ∈ G, wi > 0 ∀vi ∈ V

(28)
Specifically, each agent i computes the Gaussian random
variable wi ∈ G. Subsequently, the edge weight wij is
computed as

wij = wi + wj (29)

which can be computed in a decentralized manner by each
agent, exploiting only information from the neighbors.

Since, according to Eq. (29), wij = wji, ∀vi, vj ∈ VF , then
the weighted graph is guaranteed to be undirected.

According to Theorem 1, the control term uC
i ensures

preservation of the structural controllability property.
Therefore, assigning randomly chosen edge weights, almost
sure controllability is guaranteed.

5. SIMULATIONS

Repeated Matlab simulations were performed, to validate
the proposed strategy to ensure controllability of a net-
worked system.

5.1 Controllability of random graphs

The results described in Sections 3 and 4 were validated
on random graphs, defined with the following parameters:

• N : randomly chosen between 3 and 15.

• M : randomly chosen between N − 1 and
N (N − 1)

2
.

We randomly generated 3000 connected graphs. Then, for
each graph:

• We considered the presence of a single leader and,
without loss of generality, we considered node N as
the leader node.

• We then computed matrices A and B from the Lapla-
cian matrix of the graph L (G ), as in Eq. (11).

• We computed the rank of the corresponding control-
lability matrix.

• When the controllability matrix did not have full rank
(i.e. the system was not controllable), then random
edge–weights were computed.

• Matrices A and B were then extracted again, from
the weighted Laplacian matrix LW (G ).

• We then computed the rank of the corresponding
controllability matrix.

The results of the simulations are summarized in Table 1.
As expected, introducing random edge–weights always
ensures the controllability of the networked system.

Table 1. Simulation results

Number of nodes N 3 → 15

Number of edges M (N − 1) →
N (N − 1)

2

Number of generated
connected graphs 3000

Number of uncontrollable
graphs (unweighted) 1487

Number of uncontrollable graphs
with random weights 0

5.2 Preservation of the controllability

In order to validate the results provided in Theorem 1,
several Matlab simulations were performed. Considering
point agents moving in a two–dimensional environment,
the topology of the communication graph was based on
the R–disk model, namely:

Ni = {vj ∈ V such that ‖xi − xj‖ ≤ R} (30)

where R > 0 is the communication radius, and xi, xj ∈ R
2.

Hence, the control law in Eq. (19) was applied to a group
of N agents, with N varying between N = 3 and N = 15,
and with edge weights wij defined as in Eqs. (28) and (29).
The communication radius was set to R = 0.5m, and the
initial position of each agent was randomly selected within
a circle of radius 3m, chosen in order to guarantee an
initially connected topology. Without loss of generality, the
N–th agent was supposed to be the leader, and different
control inputs uN (t) ∈ R

2 were implemented.

In order to evaluate the performance of the proposed
controllability preservation algorithm, the value of the de-
terminant of the controllability matrix R was monitored.
The results of two typical simulation runs are represented
in Fig. 1, with the control input uN (t) ∈ R

2 defined as
follows:

uN (t) =

[

t
sin (t)

]

(31)

As expected, the determinant of the controllablility matrix
is always different from zero, which implies controllability
of the corresponding networked system.

6. CONCLUSIONS

This paper introduces a decentralized control strategy
that ensures preservation of the controllability and observ-
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Fig. 1. Determinant (absolute value) of the controllabil-
ity matrix with random weights: simulations imple-
mented with 6 and 10 agents, respectively

ability properties of a networked system. The proposed
strategy is based on duality principle, and on the fact
that these properties are strongly related to the topology
of the underlying communication graph. Specifically, we
introduced a decentralized strategy to ensure structural
controllability of the networked system. Subsequently, we
demonstrated that a random choice of the edge–weights
guarantees almost sure controllability. Invoking duality,
observability is guaranteed as well.

From an implementation point of view, it is important
to remark that this result holds only if it is possible to
define the random edge–weights with infinite precision.
In fact, as shown in [Sundaram and Hadjicostis, 2013], if
the values of the edge–weights are chosen on a finite field
F, then the probability of having a controllable graph is
related to the size of the field F. A precise characterization
of the probability of having a controllable graph will be
investigated in future works.
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