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Abstract: Many plug-in hybrid electric vehicles have predefined driving modes, e.g. electric
drive and charge sustaining mode. For a driver it is not a trivial task to select a fuel optimal
sequence of driving modes; a poor selection might even result in a severely degraded fuel
economy. The purpose of this paper is therefore to investigate optimal mode selection along
a well known commuter route. To obtain a predictable driving behaviour it is assumed that the
driving mode is only allowed to change at a limited number of decision points, located where
the driving conditions along the route changes. The optimal mode selection is computed using
the well known Dynamic Programming algorithm. However, the results show that the optimal
mode selection might be perceived as counterintuitive, as a mode is not necessarily optimal over
a connected set with respect to battery state of charge, at a given decision point. To mitigate
this type of behaviour a suboptimal algorithm is proposed, in which a mode is associated with
one unique interval of state of charge at any decision point along the route. The results indicate
that the proposed algorithm is only marginally suboptimal with respect to the optimal solution.
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1. INTRODUCTION

Driveability is an important concept for automotive man-
ufacturers, as it is very noticeable for the customer and the
overall driving experience. However, within the academic
community driveability has often been neglected since it
is a somewhat vague concept. Instead the focus has been
on optimal fuel economy and sophisticated energy man-
agement strategies have been developed. Often based on
optimal control methods such as the Pontryagin Minimum
Principle and Dynamic Programming (DP), see Sciarretta
and Guzzella (2007); Wirasingha and Emadi (2011) for
a review of different methods. Some authors have nev-
ertheless taken drivability into account when formulating
the optimal control problem. Pisu et al. (2005) suggests
a Linear Quadratic Regulator as a method to minimize
driveline vibrations and obtain smooth gear shifts. In
Opila et al. (2008, 2012) gear shifts and engine on/off
events are penalized by artificial costs in a Stochastic DP
formulation. Furthermore, in Johannesson et al. (2009) the
engine on/off decision is optimized using DP with respect
to a set of predicted scenarios that might occur during the
next few seconds of driving.

The aim of this paper is also related to drivability, but
the focus is slightly different compared to the previously
mentioned papers. The authors recognize that it is com-
mon practice within the automotive industry to predefine
different driving modes, e.g. Sport, Eco, Electric Drive,
Charge Sustaining etc. These driving modes are typically
defined by heuristic rules to satisfy perceived driveability
constraints defined by the manufacturer. The idea is that

the vehicle should behave consistently within each mode,
so that the driver can anticipate the behaviour reasonably
well. Typically, it is up to the driver to decide the driv-
ing mode; however, for a Plug-in Hybrid Electric Vehicle
(PHEV) it is not a trivial task to select a fuel optimal
sequence of driving modes, e.g. when to drive in Electric
Drive or in Charge Sustaining mode. Consequently, a poor
selection of driving modes can easily result in an increased
fuel consumption.

The main idea in the paper is therefore to consider a
PHEV with rule-based driving modes, deciding torque
split, gear selection and engine state, and instead optimize
the selection of driving modes along a frequently driven
commuter route. Moreover, to ensure some form of pre-
dictability for the driver, the driving mode is only allowed
to change at a limited number of decision points along the
route. The decision points are placed at positions along
the route where the driving conditions change, e.g. from
urban to highway driving or from uphill to downhill. With
this approach it is possible to obtain the best possible
fuel economy while using the rule-based modes, defined
by the vehicle manufacturer to ensure driveability and
predictability.

The methodology in the paper is to consider a simple
quasi-static model of a PHEV, having three different rule
based driving modes. A real world commuter route is inves-
tigated using several weeks of logged driving data; approx-
imately thirty decision points are identified for the 60 km
long route. DP is then used to precompute a look-up-table
for the optimal mode selection at the different decision
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points along the route. The mode selection obtained with
DP might, however, be experienced as counterintuitive for
a commuter driving along the route on a daily basis, as
the optimal mode at a specific decision point is not always
consistent with respect to the battery State of Charge
(SoC) level. Therefore a slightly sub-optimal mode selec-
tion algorithm is proposed; the algorithm ensures that the
mode selection is consistent with respect to battery SoC
level; something which is not guaranteed with conventional
DP.

Paper Outline: The paper is divided into seven sections.
After the introduction the vehicle model and the driving
modes are explained. The next section presents the inves-
tigated commuter route along with the identified decision
points. In the following section the optimal mode selection
problem is solved with Dynamic Programming and the
suboptimal mode selection algorithm is presented. The
paper is then ended with a simulation study and some
conclusions.

2. VEHICLE CONFIGURATION AND MODELLING

The vehicle configuration considered in this paper is a
simplified model of the Volvo V60 PHEV, which is a
parallel hybrid. The electric motor powers the rear axis
while the diesel engine powers the front axis. At high
speeds the motor can be declutched from the powertrain
to decrease the drag losses. Furthermore, the engine can
also be used to power the generator and thereby recharge
the battery. A schematic illustration of the configuration is
depicted in Figure 1, and the key powertrain components
are summarised in Table 1.

2.1 Powertrain Model

This section presents the mathematical model of the
powertrain and the key powertrain components.

Engine: At a given speed, ωice, the mass fuel rate, ṁf , of
the Internal Combustion Engine (ICE) is assumed affine
in torque

ṁf = (c0(ωice)Tice + c1(ωice))eon, (1)

where eon is the binary engine state. The coefficients
c0:1 are speed dependent and determined by linear least
squares from the brake specific fuel consumption map.
Electric Motor: The Electric Motor (EM) is placed at the
rear axis and is modelled jointly with the inverter; the
combined electrical power is assumed quadratic in motor
torque

Pem = d0(ωem)T 2
em + d1(ωem)Tem + d2(ωem). (2)

The coefficients d0:2 are speed dependent and are deter-
mined by linear least squares from the power loss maps of
the EM and the inverter. The torque is defined positive in
motoring mode and negative in generator mode.
Integrated Starter Generator: The generator (or Integrated
Starter Generator - ISG) is modelled jointly with its in-
verter; the combined electrical power is assumed quadratic
in generator torque

Pisg = e0(ωisg)T
2
isg + e1(ωisg)Tisg + e2(ωisg). (3)

The coefficients e0:2 are speed dependent and are deter-
mined by linear least squares from the power loss maps of
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Fig. 1. A schematic illustration of the vehicle model used
which is a simplified model of the Volvo V60 PHEV.

the ISG and the inverter. Furthermore, the ISG is assumed
to only operate in generator mode, i.e. Tisg ≤ 0.
Battery: The battery is modelled as an equivalent circuit
with a constant internal resistance in series with a voltage
source. The open circuit voltage is assumed to be affine in
the state x, i.e. SoC. The battery state dynamics are thus
given by

dx

dt
= − I

Q
= −

Voc(x)−
√
Voc(x)2 − 4RinPbat
2RinQ

, (4)

where Q denotes the cell capacity. The battery power is
given by

Pbat = Pem + Pisg + Paux, (5)

and the battery power limits are imposed as speed depen-
dent torque constraints on the EM and ISG.
Transmission Front Axis: The final drive has a gear with
fixed ratio rfw and a constant efficiency ηfw. The gearbox
has fixed gear ratios rgb,i, i = 1, ..., 6, with torque losses
that are given by a look-up-table, Tgb,loss(ωwh, rgb.i, eon).
Rear Axis: The final drive has a gear with fixed ratio rrw
and a constant efficiency ηrw. The mechanical drag losses
are given by a look-up table, Tdrag,rear(ωwh, crw), where
crw represents the clutch state at the rear axis.
ICE – ISG: A belt driven gear with a fixed ratio risg and
a constant efficiency ηisg.
Main Powertrain Equations: The forces acting on the
powertrain are calculated using an inverse simulation ap-
proach, meaning that the torque demanded at the wheels,
Td, to follow a given velocity and road slope trajectory is
determined by

Td = rω(0.5ρaCdAfv
2 +mg(fr cos θ + sin θ) +mea) (6)

where rw represents wheel radius, v velocity, a accelera-
tion, θ road slope, m vehicle mass and me equivalent vehi-
cle mass, i.e. including moments of inertia of the rotating
parts. Hence, the main torque equation is

Ttot = Td + Tgb,loss,i + Tdrag,rear =

ηrwrrwTem + ηfwrfwrgb,i(Tice +
risg
ηisg

Tisg).
(7)

If the ICE is on, the input torque to the transmission is
positive, i.e. Tice +

risg
ηisg

Tisg ≥ 0.

3. PHEV DRIVING MODES

In the Volvo V60 PHEV there are three principal driving
modes; Pure, Hybrid and Power. In addition it is possible
to activate Save which is not defined as a mode by the
manufacturer; it can, however, in an energy management
context also be considered as a mode. The Power mode is
not treated in this paper since it emphasises performance,
e.g. acceleration and vehicle dynamics, rather than fuel
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Table 1. The main vehicle data.

Chassis Data

Mass (m) 1930 kg

Transmission 6 Stepped Automatic

Auxiliary Load (Paux) 325 W

Battery Li-Ion

Capacity 11.2 kWh

Engine 5 Cyl. Diesel

Max Power/Torque 158 kW, 440 Nm

Electric Motor Permanent Magnet

Max Power/Torque 50 kW, 200 Nm

Generator (ISG) Permanent Magnet

Max Power ≈ 20 kW

economy. The driving modes considered in this paper are
by Volvo 1 described as follows:

Pure: “The diesel engine shuts off, letting the electric
motor do all the work, (...) so that you can drive in silence
with zero tailpipe emissions.”
Hybrid: “Both the engine and the electric motor work in
symbiosis for you. (...) Letting you appreciate the journey,
without unnecessary stops and interruptions.”
Save: “The diesel engine will recharge the battery to a
level where you will be able to drive up to 20 km on pure
electricity at a later occasion.”

3.1 Driving Mode Modelling

The modelling assumptions for the three modes are de-
scribed next. Note that these assumptions are made by
the authors and do not reflect the exact behaviour of the
actual modes in the Volvo V60 PHEV.
Pure Both the engine and the generator are declutched
and the electrical motor delivers all traction torque,

eon = 0 =⇒ Tice = 0, Tisg = 0

Tem =

{
Ttot

rrw
· 1
ηrw

if Ttot ≥ 0
Ttot

rrw
· ηrw if Ttot < 0.

(8)

If the EM cannot meet the torque request the mode is
automatically changed to Hybrid.
Hybrid The engine is started when the power request
exceeds a higher threshold value; the engine is then kept
on until the power request drops below a lower threshold
value. The engine state ejon, at a time sample j, is thus
given by,

ejon =


1 if Pd ≥ Pon(x)

1 if ej−1
on = 1 andPd ≥ Poff (x)

0 if Pd ≤ Poff (x)

0 if ej−1
on = 0 andPd ≤ Pon(x)

(9)

where Pd is the current power demand. Pon and Poff are
the power thresholds for turning the engine on and off, the
values are SoC dependent and are illustrated in Figure 2.
When the engine is on, ejon = 1, the operating points are:

Tisg =
0.2−min(max(x, 0.1), 0.2)

0.1
Tmin
isg

Tice =
Ttot − risg

ηisg
Tisg

ηfwrfwrgb,i
Tem = 0

(10)

1 See: www.volvocars.com.
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Fig. 2. Threshold values for engine on/off in Hybrid mode.

where Tmin
isg is the lower torque constraint of the ISG. Note

that the ISG will recharge the battery if the SoC drops
below 20 %, thus ensuring a charge sustaining behaviour
around the lower SoC limit. When the engine is off, ejon =
0, the operating points are:

Tisg = 0, Tice = 0

Tem =

{
Ttot

rrw
· 1
ηrw

if Ttot ≥ 0
Ttot

rrw
· ηrw if Ttot < 0.

(11)

Finally the EM is declutched for speeds above 120 km/h.
Save The EM is declutched at all times which decreases
drag losses at the rear axis but instead prohibits regener-
ation from braking and downhill driving. The operating
points are:

eon = 1, Tem = 0

Tice =
Ttot − risg

ηisg
Tisg

ηfwrfwrgb,i

Tisg =
0.4−min(max(x, 0.1), 0.4)

0.3
Tmin
isg .

(12)

Note that the ISG will recharge the battery if the SoC
drops below 40 %, this to ensure that up to 20 km of
electrical driving is possible once Save is de-activated.

4. A COMMUTER ROUTE WITH DECISION POINTS

For a driver it is desirable if the mode switches along a
route are both predictable and intuitive, in some sense.
Consider a commuter that drives along the same route
to work every day. One could argue that it would be
intuitive for the driver, if the driving mode changes only
at points along the route where the driving conditions
tends to change. For example, it would make sense to
stop electric driving and start the engine when entering
a steep uphill segment or when leaving a sub-urban area
to enter a highway. Hence, in this paper decision points are
defined at positions along the route where either the speed
profile or the road slope changes. More specifically, three
velocity and three road slope classifications are defined, as
indicated in Table 2.

In the paper, a specific commuter route in the western
part of Sweden is considered. The route is about 60 km
long and the driving conditions are very similar from day
to day, as the traffic intensity in Sweden is rather low.
The topographic profile and 10 logged speed profiles are
depicted in Figure 3, along with the 34 identified decision
points. The logged driving data is taken from the Swedish
Car Movement Database, see Karlsson (2013).
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Fig. 3. The commuter route; 10 logged speed profiles are
shown and the corresponding altitude profile. The
lower plot depicts the identified decision points.

Table 2. The route decision points are defined
by speed and road slope classifications.

Property Decision Point Classification Unit

Urban Highway Motorway
Velocity < 50 50 – 90 > 90 km/h

Downhill Flat Uphill
Road Slope < -1 -1 – 1 > 1 %

5. OPTIMAL DRIVING MODE SELECTION

Given a route with N decision points, the optimal mode
selection problem can be formulated as the following
optimization problem

J∗ = min
u1:N

S(x(tN+1)) +

N∑
k=1

L(t, uk) (13)

s.t. x(tk+1) = x(tk) +

∫ tk+1

tk

f
(
x(t), Pbat(t, uk)

)
dt

x(t1) = xinit
x ∈ [xmin, xmax]

uk ∈
{
Save,Hybrid, Pure

}
.

The fuel cost incurred over the route segment between two
consecutive decision points is given by

L(t, uk) = cf

∫ tk+1

tk

ṁf (t, uk) dt, (14)

where cf denotes fuel price. Note that L is completely
defined by the driving mode as the operating points of the
ICE, EM and ISG are decided by heuristic rules within
each mode. The final cost is given by S and penalizes low
final states and represents the cost to recharge the battery
at the end of the route. It is defined as

S(x) = max {a1x+ b1, a2x+ b2}. (15)

5.1 Solution with Dynamic Programming

The optimal control problem defined above is a sequential
problem with N steps, representing the decision points
along the route where it is allowed to change driving
mode. Furthermore, it is an integer decision problem, as
the control signal u is the choice of driving mode. The
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S
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Fig. 4. The optimal driving modes at the different decision
points along the route. The result is obtained with DP
for one of the logged speed profiles along the route.

well known Dynamic Programming algorithm is well suited
to solve this type of sequential problem formulation, see
Bertsekas (2000). To solve the problem with DP the SoC
state, x, is gridded into m points, x1, ..., xm, and the time
intervals between the decision points are time discretized
with a sampling time of one second.

Then starting at the end position of the route, k = N +
1, the cost-to-go matrix J is initialized with the final
cost S. The DP equation is thereafter solved recursively
backwards over the decision points and the gridded values
of the state,

Jk(xi) = (16)S(xi), k = N + 1

min
uk,i

{
L(uk,i) + Jk+1

(
xi + f̃k(xi, uk,i)

)}
, k ∈ [1, N ]

where i = 1, ...,m and f̃k(xi, uk,i) represents the change in
the state between two consecutive decision points. Thus,
at each decision point k the cost-to-go is represented by a
vector Jk, which is defined over the gridded values of the
SoC state, x1:m.

Figure 4 depicts the optimal driving mode at the different
decision points along the route, as obtained by

u∗k,i = arg min
uk,i

{
L(uk,i) + Jk+1

(
xi + f̃k(xi, uk,i)

)}
. (17)

The results show that a specific mode is not necessarily
optimal over a connected set with respect to the SoC state.
This behaviour is explained mainly by the final penalty
function S and the limited freedom in terms of control
decisions; i.e. the torque split decision is given by heuristic
rules and the number of decision points along the route is
limited. Thus, to avoid a too low final state and a high final
cost, the optimal mode selection might be quite intricate.

For a driver the optimal driving mode, as given by Eq.
(17), might be experienced as counterintuitive. For ex-
ample, consider a vehicle that is driven regularly along
a commuter route. Assume that, at some day, the vehicle
reaches a decision point at 50% SoC and Pure is selected as
the optimal mode, i.e. electric driving. The following day
the vehicle could reach the same decision point at a higher
SoC value and Save might be selected as the optimal
mode; thus meaning that the engine will be turned on at a
higher SoC than the previous day when electric driving
was selected. This would not be a predictable driving
behaviour, as most drivers would expect the engine to be
turned on, only if the SoC is lower than at the previous
day.
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5.2 A Suboptimal DP Algorithm

The solution obtained with conventional DP is not really
acceptable as it might be experienced as unpredictable by
a driver. Hence, to ensure some form of predictability a
slightly suboptimal mode selection algorithm is proposed.
The algorithm ensures that a driving mode is ”optimal”
over a connected set with respect to the SoC state, at
each decision point. Furthermore, the mode sequence with
respect to the state is fixed. Save at low SoC values,
Hybrid at intermediate values and Pure at high values;
i.e. use of the engine should be favoured as SoC decreases.
The opimization variables in the proposed algorithm are
the SoC threshold values where the optimal mode should
change, at a given decision point.

The algorithm is described by the following steps:

(1) At the end of the route initialize the cost-to-go with
the final cost S

ĴN+1(xi) = S(xi). i = 1, ...,m (18)

(2) For all decision points k = N,N − 1, , ..., 1 compute

J̄jk(xi) = L(uj) + Ĵk+1(xi + f̃k(xi, u
j)), (19)

i.e. Eq. (16) but without minimization with respect to
u; thus forming three intermediate cost-to-go vectors,
one for each mode j ∈ {Save,Hybrid, Pure}.

(3) The new cost-to-go vector, at a decision point k, is

obtained by concatenating three segments of the J̄jk ’s.
The concatenation points are given by

(â, b̂) = arg min
(a,b)

{ a∑
i=1

J̄Savek (xi)

+

b∑
i=a+1

J̄Hybridk (xi) +

m∑
b+1

J̄Purek (xi)
}
. (20)

This gives the cost-to-go vector as

Ĵ∗
k (xi) =


J̄Savek (xi), if xi ∈ [x1, xâ]

J̄Hybridk (xi), if xi ∈ [xâ+1, xb̂]

J̄Purek (xi), if xi ∈ [xb̂+1, xm].

(21)

The optimal driving mode at decision point k is thus
given by

û∗k(x) =


Save, if x ∈ [x1, xâ)

Hybrid, if x ∈ [xâ, xb̂)

Pure, if x ∈ [xb̂, xm].

(22)

The latter step, i.e. Eq. (20), can be interpreted as min-
imizing the area below a curve defined by three sepa-
rate segments; each corresponding to an interval in one
of the three intermediate cost-to-go vectors, J̄jk . This is
illustrated in Figure 5, where the three intermediate cost-
to-go vectors are depicted at a specific decision point. The
conventional DP algorithm, given by Eq. (16), is in this
case equivalent to minimizing the same area, but without
any restriction on the number of segments, as is seen in
Figure 4. However, despite the restrictions imposed on the
cost-to-go, the suboptimal DP algorithm only increases
the cost marginally, as seen in Fig. 6. This implies that
overall fuel cost should not be affected very much by the
suboptimal DP algorithm.
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0

0.1

0.2

0.3

Ĵ
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Ĵ J Diff.

Fig. 6. Optimal and sub-optimal cost-to-go at k = 1.

5 10 15 20 25 30

20

40

60

80

Decision Points [-]

S
o
C

[%
]

Optimal Operation Mode

Pure

Hybrid

Save

Fig. 7. Driving modes at the different decision points, as
determined by the suboptimal DP algorithm.

6. SIMULATION STUDY

The commuter route shown in Figure 3 is considered in the
simulation study and Figure 7 depicts the driving mode
along the route, as determined by the suboptimal DP
algorithm given by Eq. (18) - (22). The result is obtained
by computing the optimal mode selection for all the 10
logged speed profiles shown in Figure 3; at each decision
point k, the distribution of the optimal mode segments are
determined by averaging over the results obtained for the
individual speed profiles.

A different set consisting of 12 speed profiles, logged along
the same commuter route, is then used for validation in
the simulation study. The corresponding mode selection
and the simulated SoC-trajectories are shown in Figures 8
- 9. In the figures it can be seen that the mode sometimes
changes from Pure to Hybrid between two decision points;
this occurs if the power demand of the drive cycle cannot
be satisfied in Pure, i.e. the driving is more aggressive
than anticipated. Nevertheless, the mode selection is quite
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Table 3. Average fuel consumption and final
SoC for the simulations with the mode selec-
tion algorithm, as shown in Fig. 9, and the

CDCS strategy.

Strategy Fuel [kg] Final SoC [%]

CDCS 0.9760 20.57
Mode Selection 0.7741 20.22

(-20.7 %)

5 10 15 20 25 30

20

40

60

80

Decision Points [-]

S
o
C

[%
]

SoC Trajectories for Mode Selection and CDCS

Pure

Hybrid

Save

CDCS

Fig. 8. SoC trajectories for the mode selection algorithm
and the CDCS strategy for different inital SoC’s.

predictable, in the sense that a similar sequence of modes
is chosen along the route, provided that the starting SoC
is similar. At 25 out of 34 decision points the same mode is
selected for all simulations. Pure is by far the predominant
mode, since the fuel cost is minimized if the battery is
depleted at the end of the route. However, the Save mode is
favoured during high power demands, clearly seen around
decision point 20 (at 30-35 km), where there is uphill
driving at high speeds. The Hybrid mode is almost never
selected, implying that the heuristic used rule for engine
on/off is not optimal in terms of fuel economy.

To illustrate the benefit with a route optimized mode
selection, a comparison is made with the trivial Charge
Depleting Charge Sustaining (CDCS) discharge strategy.
The CDCS strategy is here implemented by the Pure mode
followed by the Hybrid mode, when SoC drops below
0.2 for the first time. Table 3 summarizes the average
fuel consumption and final SoC of the trips simulated
along the route. Clearly an optimal selection of driving
modes can decrease fuel consumption considerably, at least
compared to the trivial mode selection used by the CDCS
strategy. The absolute figures are, however, only of minor
importance, as the heuristic rules within the driving modes
are defined mainly for the sake of illustration.

7. CONCLUSION AND DISCUSSION

This paper has investigated the concept of optimal mode
selection for a PHEV with driving modes that are defined
by heuristic rules. A well known commuter route is con-
sidered and the driving mode is only allowed to change
at a limited number of decision points along the route.
The results indicate that an optimal mode selection can
improve fuel economy substantially compared to a trivial
mode selection strategy; the presented fuel savings are
nevertheless of minor importance, as the heuristic rules
in the paper are defined mainly to illustrate the concept.
The main result in the paper is that if conventional DP
is used to compute the optimal driving mode, it might
lead to a counterintuitive mode selection. As a mode is
not necessarily optimal over a connected set with respect
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Fig. 9. SoC trajectories for 12 simulations along the route.
The bar diagram illustrates the distribution of the
mode selections at every decision point.

to battery SoC-level, at a specific decision point. To avoid
such a solution a suboptimal DP algorithm is proposed,
in which a driving mode is constrained to be ”optimal”
over a connected set with respect to battery SoC-level. The
results indicate that the proposed algorithm is only slightly
suboptimal compared to the conventional DP algorithm.
Finally, it is worth to stress that optimal mode selection
along a route with specified decision points is not very
computationally demanding, even if DP is used. There
is typically only a few driving modes to consider and a
limited number of decision points.
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