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Abstract: The optimal control and lap time optimization of vehicles such as racing cars
and motorcycle is a challenging problem, in particular the approach adopted in the problem
formulation has a great impact on the actual possibility of solving such problem by using
numerical techniques. This paper illustrates a methodology which combines some modelling
technique which have been found to be numerically efficient. The methodology is based on the
3D curvilinear coordinates technique for the road modelling, the moving frame approach for the
derivation of the vehicle equations of motion, the replacement of the time with the position along
the track as new independent variable and the formulation and the solution of the minimum
lap time problem by means of the indirect approach. The case study of a GT car is presented
and simulation examples are given and discussed.
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1. INTRODUCTION

The solution of minimum lap time problem is an important
step of analysis in the racing industry. The problem is
quite challenging due to the vehicle model complexity
and the need to enforce path inequality constraints which
yield a highly non linear system. In particular the path
constraints that force the vehicle to run within the road
boundaries have a great impact on the minimum lap
time problem formulation complexity and consequently
on the convergence rate. This is even more important
when the elevation and road banking cannot be neglected.
The present paper introduces a effective formulation in
curvilinear coordinates for 3D roads which involves both
road and vehicle modelling and allows fast and robust
solution of optimal control problems like minimum lap
time. Many different road modelling approaches have been
proposed according to the type of simulation required. For
off-road vehicle dynamic analysis a 3D mesh is commonly
used to accurately model the terrain unevenness in a finite
element method fashion. However, the calculation of the
tyre contact point is time consuming Blundell and Harty
(2004) despite the algorithms efficiency. In the past decade,
it became more popular to define the road geometrical
characteristics (i.e. curvature, elevation bank angle, fric-
tion coefficient) in tabular form by specifying the road
centerline interpolated with piecewise functions between
different data points Blundell and Harty (2004). This
method is used by most software packages that are specific
to vehicle analysis with slight differences. Nevertheless the
curvilinear approach is only used to ease the road geometry
description but it does not affect the equations describing
the position and attitude of the vehicle with respect to
the road which are still expressed in cartesian coordinates.

This is the approach also used in many optimal control
formulations for minimum lap time problem as described
in Kirches et al. (2010), Braghin et al. (2008), Gerdts
(2003) and Kelly and Sharp (2010). The cartesian co-
ordinates approach involves quite complex equations to
compute if a point is within the road boundaries. On the
other hand in Cossalter et al. (1999) , Bertolazzi et al.
(2005) for motorcycle dynamics and in Bertolazzi et al.
(2007) , Kehrle et al. (2011) for four wheel vehicles it was
proposed a model transformation from time-dependent to
a 2D spatial/space road independent dynamics.
In this work the optimal control formulation is extended to
a fully 3D road model which describes the vehicle dynamics
with a moving frame (known also as Darboux frame Cui
and Dai (2010)) with respect to a reference line located
on a spatial surface. The vehicle equations of motions,
described with respect to this frame, are symbolically
derived and therefore linearization of small variables are
possible when convenient. The overall system of equations
is relatively simple and the vehicle position and orientation
are fully described in term of road coordinates. The main
advantage of the proposed formulation it is the natural
implementation of road related path constraints which are
also locally convex.

2. ROAD MODELLING

Real roads are similar to strips: they are long and narrow.
Moreover, their extension in the ground horizontal plane
is much greater than their vertical variations. According
to these considerations, Fig. 1 illustrates a string-shaped
road, which is defined by specifying the middle line C, the
direction of the lateral extension −→n and the associated
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width w. The middle line C is defined by its cartesian
coordinates w.r.t the inertial reference frame T0 as a
function of the parameter s:

C = {x(s), y(s), z(s)}T (1)

Assuming that coordinate functions are normalized as
follows:

x′(s)2 + y′(s)2 + z′(s)2 = 1 (2)

where the apex ′ indicates the derivation with respect to s,
the parameter s now assumes the meaning of curvilinear
abscissa and corresponds to the length of the curve. The
banking angle, i.e the angle between −→n and the horizontal
plane passing through C, complete the road definition.
Let us now define a cartesian triad Tc with origin C, axis
xc aligned with the unit vector −→s tangent to C and axis yc
aligned with −→n . The orientation of Tc may be conveniently
described by using a 3 × 3 rotation matrix Meirovitch
(2010) defined by a sequence of rotations as follows:

Rc = Rz(θ)Ry(σ)Rx(β) (3)

where Ra is the rotation operator with respect to a carte-
sian axis a ∈ {x, y, z}. Angles θ, σ and β represent the
road heading (i.e. the direction of travelling), slope (i.e.
travelling up hill or down hill) and banking (i.e. the road
leaning) respectively. For actual roads it is reasonable to
assume that the banking and slope angles σ, β are infinites-
imal 1 , consequently the rotation matrix Rc becomes:

Rc =

[
cos(θ) − sin(θ) cos(θ)σ + sin(θ)β
sin(θ) cos(θ) sin(θ)σ − cos(θ)β
−σ β 1

]
(4)

The columns of the rotation matrix correspond to the
unit vectors along the cartesian axis Meirovitch (2010), in
particular the first column corresponds to the unit vector−→s . But −→s also corresponds to the gradient of C, therefore:

x′ = cos(θ) (5a)

y′ = sin(θ) (5b)

z′ = −σ (5c)

The above differential equations are used to define the
curve C not more by the triple of functions x(s), y(s),
z(s) constrained to equation (2), but with the couple of
arbitrary functions θ(s), σ(s) and initial conditions x(0),
y(0), z(0). The banking angle β(s) and strip width w(s, n)
complete the road description (the reader may note that
the strip width can vary with s but also between left and
right side). The road description is further improved by
considering the skew symmetric tensor 2 Meirovitch (2010)

1 This assumption may be removed if necessary with an additional
complexity of the obtained equations
2 In the time domain this relation gives the well known velocity
matrix W = ṘRT

Fig. 1. Coordinates system of the strip-road model

Fig. 2. Moving frame

Wc which describes the variation of the orientation of Tc
as follows:

Wc = R′cR
T
c =

[
0 −κ υ
κ 0 −τ
−υ τ 0

]
(6)

where κ and υ correspond to the curvature of C in the
transversal plane xcyc and sagittal plane xczc respectively,
while τ represent the torsion of the string. By substituting
expression (4) into equation (6) and by rearranging terms,
one obtains the above differential equations:

θ′ = κ (7a)

σ′ = υ − βκ (7b)

β′ = κσ + τ (7c)

which are used to replace angles functions by curvature
functions in the definition of the road. In conclusion, the
strip may be fully described by means of curvatures triple
κ(s), υ(s), σ(s), initial coordinate x(0), y(0), z(0), initial
orientation θ(0), σ(0), β(0) and width w(s).

3. VEHICLE MODELLING

To derive the equations of motion it is convenient to define
a moving reference frame TV as follows: the origin V is
located at road level just below the vehicle center of mass,
the axis zv is orthogonal to the road surface, while the
axis xv is the intersection between the sagittal plane of the
vehicle and the plane tangent to road surface, Fig. 2. The
position of the point V on the road surface is defined by
means of the curvilinear abscissa s (i.e. the position along
the road) and lateral coordinate n, finally the relative yaw
angle α defines the orientation of the xv axis and complete
the definition of the reference frame Tv. According to
this definition, the components of the velocity of point V
expressed w.r.t. the reference frame TV are:

u = [1− nκ(s)]ṡ cosα+ ṅ sinα (8a)

v = −[1− nκ(s)]ṡ sinα+ ṅ cosα (8b)

w = nτ(s)ṡ (8c)

Moreover, the components of the angular velocity of TV

w.r.t. itself axes are:

ωx = [τ(s) cosα+ υ(s) sinα]ṡ (9a)

ωy = [−τ(s) sinα+ υ(s) cosα]ṡ (9b)

ωz = κ(s)ṡ+ α̇ (9c)

Since the road torsion τ(s) and sagittal curvature υ(s)
have been assumed to be infinitesimal, according to equa-
tion (9a) and (9b) angular speeds ωx, ωy will be assumed
infinitesimal too.
We extended the equations of motion of the well known
2D single track model Abe (2009) (Fig. 3) taking into
account the front/rear load transfer and the road geometry
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Fig. 3. Single track model with load transfer

above defined. Assuming that the road is locally flat and
the steering angle δ is small, the translation Newton’s
equations w.r.t the moving frame TV are:

M(u̇+ ωyw − ωzv) +Mg[σ(s) cosα− β(s) sinα]

+Mh(−ωxωz − ω̇y) = Sr + Sf − Ffδ − FD(u)
(10a)

M(v̇ − ωxw + ωzu)−Mg[β(s) cosα+ σ(s) sinα]

+Mh(ω̇x − ωyωz) = Fr + Ff − Sfδ
(10b)

M(ẇ − ωyu+ ωxv) = Mg − FL(u)−Nr −Nf (10c)

where M is the vehicle mass, N,S, F are respectively the
vertical, longitudinal and lateral force of tires, where the
suffixes r, f indicate respectively the rear and front axles,
FD and FL are respectively the aerodynamic drag and lift
forces, which depend on the speed u according to the well
know relations:

FD =
1

2
ρACDu

2, FL =
1

2
ρACLu

2 (11a)

where ρ is the air density, A is the drag area, while CD
and CL are respectively the drag and lift coefficients. It
may be observed that gravity force terms in equations (10)
depend on the road banking and slope, moreover banking
and slope variations generate the acceleration terms which
depend on ωx, ωy.
The following pitch and yaw equations complete the
model:

Iyyω̇y + (Ixx − Izz)ωxωz − Ixzω2
z =

= aNf − bNr + h(Sr + Sf − Ffδ)
(12a)

Izzω̇z = −bFr + a(Ff − Sfδ) (12b)

where Iij are the element of the vehicle inertia tensor
(Ixy = Iyz = 0 for symmetry, while second order terms
ωyωx are neglected).

According to Hans B. (2005) each tire lateral force F has
been assumed to be proportional to the sideslip angle λ
and tire load N as follows:

Fr = KrλrNr = Kr
v − bωz

u
Nr (13a)

Ff = KfλrNf = Kf

[
δ

(
1 +

a2ω2
z

u2

)
− v + aωz

u

]
Nf

(13b)

where Kr and Kf are respectively the rear and front
sideslip cornering stiffness. It is worth pointing out that
tire saturation will be included in the model afterwards as

a constraint of the minimum lap time problem. Longitudi-
nal forces are assumed to be control variables: the overall
longitudinal force S is completely applied on the the rear
axle in traction condition (S > 0), while it is split between
the front and rear axles in braking conditions (S < 0) as
follows:

Sf = min(%S, 0) , Sr = S − Sf (14)

where % is the constant braking bias. At this point, the
longitudinal force S (mainly) control the longitudinal dy-
namics, while the steering angle δ (mainly)control the
lateral dynamics. We also consider that human drivers
have limited rate of change of control variables and ex-
perimental results show that humans optimise their driv-
ing actions minimising the longitudinal and lateral jerks
Viviani and Flash (1995),Bosetti et al. (2013),Biral et al.
(2005). For this reason, it is assumed that longitudinal
force and steering angle are not controlled directly, but
via their time derivative, as follows:

Ṡ = Mju , δ̇ = ωδ (15)

where ju is the longitudinal jerk and ωδ is the steering
speed, which is approximately related to the lateral jerk.
Summarizing, the vehicle vehicle dynamics is described by
means of a set of 13 state variables:

x = {s, n, α, u, v, w, ωx, ωy, ωz, Nr, Nf , S, δ}T (16)

and as many implicit first order differential equations,
respectively (8), (9), (10), (12) and (15), which may be
abbreviated to:

Âẋ = B̂(x,u) (17)

where u are the inputs of the system:

u = {ωδ, ju}T (18)

Equations (17) cannot be converted into the explicit form

ẋ = Â
−1
B̂(x,u, t) because the matrix Â is singular, in

other words equations (17) constitute a set of differential-
algebraic equations (DAE) with index 1. Indeed, tire
loads Nr, Nf are present into equations only as algebraic
variables and they could be made explicit and eliminated
from equations. However, this is not convenient because
the remaining equations of motion would become much
more complicated and computationally inefficient too. An
alternative solution to the problem is to relax tire loads,
i.e. to replace the algebraic variable with a differential form
missing reference N → τnṄ + N and rewrite (10c) and
(12a) as follows:

M(ẇ − ωyu+ ωxv) = Mg + FL(u)

−(τnṄr +Nr)− (τnṄf +Nf )
(19a)

Iyyω̇y + (Ixx − Izz)ωxωz − Ixzω2
z = h(S − Ffδ)

+a(τnṄf +Nf )− b(τnṄr +Nr)
(19b)

According to these new equations, the load transfer be-
tween rear and front axle is not more instantaneous with
the variation of the longitudinal force S, but has some lag
which is proportional to the time constant τn. The relax-
ation of tire loads in not just an expedient used to reduce
the equations DAE order, but it is also an approximation
of the transfer load lag sue to the suspensions properties
and the pitch inertia of the vehicle.

There are still other algebraic equations in the model,
indeed (8) and (9) may be rewritten as follows:
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ṡ =
u cosα− v sinα

1− nκ(s)
(20a)

ṅ = u sinα+ v cosα (20b)

α̇ = ωz − κ(s)
u cosα− v sinα

1− nκ(s)
(20c)

w = nτ(s)
u cosα− v sinα

1− nκ(s)
(21a)

ωx = [τ(s) cosα+ υ(s) sinα]
u cosα− v sinα

1− nκ(s)
(21b)

ωy = [−τ(s) sinα+ υ(s) cosα]
u cosα− v sinα

1− nκ(s)
(21c)

Equations (20) give the vehicle position and orientation
s, n, α by integration of vehicle speeds u, v, ωz, while (21)
give algebraic explicit expressions of w,ωx, ωy that could
be used to eliminate such variables from the other equa-
tions. Once again, variables elimination is not convenient
from the computational point of view thus it is prefer-
able to transform algebraic equations (21) into differential
ones by relaxing speeds w,ωx, ωy with the substitution
w → τvẇ + w,ωx → τvω̇x + ωx, ωy → τvω̇y + ωy. In this
case there is no physical justification for the velocity delay,
therefore the relaxation time τv should be chosen as small
as possible as trade off between numerical solution conver-
gence robustness and solution accuracy. In conclusion, the
system is described by means of equations (10), (12) and
(20) which may be abbreviated to:

Ãẋ = B̃(x,u) (22)

where Ã is now invertible. It is worth pointing out that
only (10) and (12) are related to a specific vehicle model
(the single track one), on the contrary (20) as well as their
equivalent formulation (8), (9), (21), are only related to
the road model and may be used in conjunction with any
vehicle model.

4. OPTIMAL CONTROL PROBLEM

4.1 Vehicle dynamics in curvilinear abscissa domain

The minimum lap time problem consists in finding the
vehicle control inputs that minimize the time T necessary
to move the vehicle along the track from the starting line
to the finish one, in other words the curvilinear abscissa
s varies between fixed initial point s = 0 and end point
s = L, while the final value T of the time variable t is
unknown. For this reason, it is convenient to change the
the independent variable from t to s in the equations of
motion (22). Such variable change is based on the following
derivation rule:

ẋ =
dx

dt
=
dx

ds

ds

dt
x′ṡ = x′ν (23)

Time domain equations (22) are then transformed in the
space domain as follows:

νÃx′ = B̃(x,u) (24)

The first equation of (24) is algebraic and explicit the
condition ν = ṡ given by (20a), therefore such equation
must be eliminated, at the same time the variable s must
be eliminated from the state vector x. At this point the
variable t is not more present in the mathematical model,

however it can be obtained integrating the following equa-
tion:

dt

ds
= t′ =

1

ν
=

1− nκ(s)

u cosα− v sinα
(25)

Summarizing, the s-domain state space model has 13 state
variables:

y = {n, α, u, v, w, ωx, ωy, ωz, Nr, Nf , S, δ}T (26)

and 2 inputs:

u = {ju, ωδ}T (27)

while model equations may be summarized as a set of
implicit differential equations:

νAy′ = B(y,u, s) (28)

Equations (28) are not singular only and if only ν > 0, i.e.
the s-domain formulation cannot be used if the vehicle has
to stop or revert the direction of travel on the track.

4.2 The Minimum Lap Time problem

The minimum lap time problem consists in finding the
vehicle control inputs that move the vehicle from the
starting line s = 0 to the finish one s = L in the minimum
time T = t(L), while satisfying the mechanical equations
of motion as well as other inequality constraints (tires
adherence, max power, track width, etc.) Such optimal
control problem (OCP) may be formulated as follows:

find: min
u∈U

t(L) (29a)

subject to: νAy′ = f (y,u, s) (29b)

ψ (y,u, s) ≤ 0 (29c)

b (y(0),y(L)) = 0 (29d)

where y and u are respectively the state variables and
inputs vector, (29b) is the state space model in the s
domain, (29c) are algebraic inequalities that may bound
both the state variables and control inputs and (29d) is
the set of boundary conditions used to (partially) specify
the vehicle state at the beginning and at the end of the
maneuver.

4.3 Inequality constraints and boundary conditions

Inequalities (29c) are used to keep the vehicle inside the
admissible range of operating conditions. First of all, the
vehicle must remain inside the track, i.e.:

−WL(s) + c ≤ n ≤WR(s)− c (30)

where 2c is the vehicle width, WL,WR are the distance
of the left and right border from the track reference line,
that possibly vary along the track. Additionally, tire forces
must remain inside their ellipses of adherence:

F 2
r + S2

r ≤ (µNr)
2 (31a)

F 2
f + S2

f ≤ (µNf )2 (31b)

where µ is the tires adherence coefficient and the vertical
loads cannot become negative (i.e. no wheel lift from
ground).

Nr ≥ 0, Nf ≥ 0 (32)

The traction is limited by the maximum power Pmax as
follows:

Su ≤ Pmax (33)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7562



The engine map can be introduced in the model but it is
out of the scope of this work. Finally, the control inputs
are bounded as follows:

−ju,max ≤ ju ≤ ju,max (34a)

−ωδ,max ≤ ωδ ≤ ωδ,max (34b)

Equations (30), (31), (33), (34) form a set of m = 9 uni-
lateral constraints of type (29c). To complete the problem
definition it is necessary to specify boundary conditions
(29d). As the optimization is made on a closed loop track,
it is natural to impose cyclic boundary conditions for all
state variables y(s), except for the time t - where t(0)=0
while t(L) is free and under optimization.

4.4 Solution of the OCP problem

The OCP formulation(29) is general and the problem may
be solved by using different approaches Bryson (1999) such
as non-linear programming, dynamic programming, and
Pontryagin’s indirect method, which is the one that has
been used in the present research. The OCP problem is
particularly complicated due to the presence of inequality
constraints (29c). However, it is possible to convert the
constrained OCP problem into an unconstrained one by
converting inequality constraints into penalty terms Berto-
lazzi et al. (2007), Bertolazzi et al. (2005) to be included in
the optimality criterion (29a). Each penalty term should
be very small (ideally null) when a constraint is satis-
fied and suddenly should become large as the constraint
limit is approached and possibly reached. Therefore, the
functional under minimization (29a) is replaced by the
following one:

J = t(L) +

m∑
j=1

∫ L

0

wj (ψj (y,u, s)) ds (35)

where penalties have been expressed in term of wall
functions wj . Equalities constraints (29b) are still present
in the minimization problem, they may be eliminated by
using the Lagrange’s multipliers technique. More in detail,
by defining the Hamiltonian function as follows:

H =

n∑
i=1

λiBi (x,u, s)+

m∑
j=1

wj (ψj (y,u, s)) = λTB+w(ψ)

(36)
the constrained OCP problem (29) is converted into the
unconstrained minimization of the functional:

J ′ (x,u,λ, s) = t(L) +

∫ L

0

w(ψ) + λT (B − νAy′) ds

(37)
According to variational first-principle, a necessary condi-
tion to minimize the functional J ′(·) is the stationarity of
the Hamiltonian (36), condition that leads to the following
Two Point Boundary Value Problem (BVP):

νAy′ = B (y,u, s) (38a)

Ny′ −ATλ′ = −∂TxH (y,u,λ, s) (38b)

0 = b (y(0),y(L)) (38c)

0 = ∂Ty0
b+A (y(0), s)

T
λ(0) (38d)

0 = 1 + ∂TyL
b−A (y(L), s)

T
λ(L) (38e)

0 = ∂TuH (y,u,λ, s) (38f)

where N =
(
∂y(ATλ)− ∂λ(ATλ)

)T
. Equations (38c),

(38d), (38e) are the set of boundary conditions on state
variables and Lagrange multipliers. The equations change
depending on the condition set for the state variables
(i.e. on b [y(0),y(L)]). Equations (38b) are the co-state
equations and (38f) the equations for the optimal con-
trols. Within Maple ©, the OCP problem is formulated
according to equations (29) and then the BVP equations
(38) are symbolically derived and discretized with a finite
difference scheme. Finally the corresponding C++ code is
automatically generated ready to be compiled and numer-
ically solved using XOPtima a specialised solver for the
highly non linear system of equations deriving from the
dicretized BVP problem Bertolazzi et al. (2007).

5. SIMULATION EXAMPLES

To prove the effectiveness of the proposed formulation, the
minimum time manoeuvres of a sport vehicle running on
2D and 3D road models are here compared on three dif-
ferent type of road sections. The geometrical and inertial
parameters of a Ferrari F430 has been used for simulations
and reported in Table 1 (parameters which are not of
public domain have been assumed consistently with the
typical values of such car category). In the simulations to
maximise the effect of the 3D road characteristics on the
tyre vertical forces.
In the first example a straight road with a change in ele-
vation of 5m down and then up is considered (see bottom
plot of Figure 4) and to better analyse the influence of
road slope on the axles’ vertical loads the aerodynamic
lift force is neglected CL = 0. The vehicle is asked to
accelerate from an initial velocity of 10m/s and run along
the 600m straight in the minimum time ending with the
same initial velocity. If the elevation is neglected the ver-
tical loads show the usual load transfer to the rear, in
the acceleration phase, and to the from in the braking
phase. The slope change significantly affects the vertical
loads as clearly expressed by relation (19a): the large
load transfer due to the negative slope (see second plot
from bottom of Figure 4) forces the optimal manoeuvre
to slow down before entering in the down-hill and when
”jumping” back on the flat straight in order to avoid to
’take off’ (ie. reach zero vertical loads). Consequently the

Table 1. Vehicle characteristics

parameter symbol value

mass M 1440 kg
CoG horizontal position a 1.482 m

wheelbase a+ b 2.600 m
CoG height h 0.42 m
roll inertia Ixx 590 kgm2

pitch inertia Iyy 50 kgm2

yaw inertia Izz 1730 kgm2

cross inertia Ixz 1950 kgm2

width c 1.760 m
power Pmax 440 kW

adherence coefficient µ 1.2
rear cornering slip Kr 29 rad−1

front cornering slip Kr 29 rad−1

tire load relaxation time τn 0.12 s
speed relaxation time τn 0.01 s

aerodynamic drag 1/2ρACD 0.39 Nm−2s2

aerodynamic lift 1/2ρACL 0.432 Nm−2s2
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Fig. 4. Comparison between manoeuvres on flat straight
and 3D straight (a down and up hill of 5m of el-
evation). Minimum time manoeuvre is 15.225s and
14.884s respectively for 3D and 2D road model (SAE
convention, i.e z points downwards)

overall forward velocity is lower for the 3D case compared
to the 2D as shown by second chart from top of Figure 4)
and the manoeuvre time difference is 0.341s.
The second example considers a U curve of 50m curvature
radius, with positive banking of maximum 10◦ in the mid-
dle of the corner (see top plot of Figure 5) to analyse the
effect of banking on maximum lateral acceleration (CL = 0
also in this case). Similarly to the first example, the vehicle
is asked to accelerate from an initial velocity of 10m/s and
run along the 350m straight in the minimum time ending
with the same initial velocity. As expected the positive
banking allows to achieve higher lateral accelerations and
velocities in the middle part of the curve (see middle and
bottom plots of Figure 5). The manoeuvre time difference
is 0.748s. Additionally, the first and second charts of the
Figure 5 shows that the use of road width is quite different
between 2D and 3D.
The final example simulates a minimum lap time time with
cyclic conditions on velocity, lateral position and forces
(final conditions are equal to initial). The circuit geometry
and elevation where derived from the information available
at the circuit official website (http://www.mugellocircuit.it).
Figure 6 top plot shows the trajectory for the 3D Mugello
circuit with the color bar for the forward velocity in km/h.
The bottom plot displays the circuit elevation and the mid-
dle plot compares the lateral accelerations The minimum
time obtained with the flat mugello circuit is 1m 1s 160ms
and for the 3D circuit is 1m 2s 160ms. The lap time prob-
lem consists of about 100000 nonlinear equations (solved

Fig. 5. Comparison between manoeuvres on flat and 3D U
curve with internal banking. Minimum time manoeu-
vre is 13.660s and 14.039s respectively for 3D and
2D road model. Top chart compares trajectories (2D
trajectory was projected on 3D road surface).

with a tolerance of 1e − 09) and the calculation time is
of about 15s on a computer with a Intel Core i7 2.66GHz
processor.

6. CONCLUSIONS

The optimal control and lap time optimization of vehi-
cles such as racing cars and motorcycle is a challenging
problem, the contribution of this paper is to provide a
methodology which originally combines some modelling
techniques for a numerically efficient problem formulation.
First, the 3D road geometry is defined by using a minimum
set of independent curvilinear coordinates which have the
advantage that the vehicle position and orientation on
the road is described in terms of state variables, without
the need of additional tracking algorithm. Second, the
equations of motion of the vehicle are derived with respect
to a moving frame, yielding to equations which are simpler
than the one derived in a fixed frame approach. Third, the
time independent variable has been replaced by the road
curvilinear abscissa, i.e. the equations of motion have been
translated into the s position domain. This choice makes
much more easier to numerically find the solution of the
problem: working with a fixed mesh of time implies that a
variation of the solution at the begin of the track must be
propagated along the whole track, this problem is totally
avoided by using a mesh fixed in space. Additionally, since
time becomes a state variable and it turns out easier to
formulate the minimum time problem. Fourth, an indirect
method combined with a penalty formulation has been
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Fig. 6. Comparison between manoeuvres on flat and 3D
Mugello circuit. Top plot shows trajectory and local
velocity. Middle plot shows lateral acceleration nor-
malized and bottom plot the circuit elevation.

used to convert the constrained minimization problem into
un unconstrained one. Fifth, the Two Point Boundary
Value problem generated by the indirect method, is first
discretized with a finite different scheme and the large
non-linear system of equations is solved with a custom
developed library. The methods allows to solve a full cir-
cuit minimum lap time problem in less than one minute of
cpu-computational time for complex vehicle models. The
main drawback of the proposed method is probably due
to the necessity of formulating equations of motion (38a)
at symbolic level and to manipulate them to derive model
co-equations (38b). However, the utilization of computer
algebra tools, like MBSymba Lot and Lio (2004), makes
this task affordable also for more realistic, complex ve-
hicle models such as motorycles Cossalter et al. (1999)
and Cossalter et al. (2013), rally cars Tavernini et al.
(2013) 1999-Brysonand hybrid electric vehicles Lot and
Evangelou (2013).
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