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Abstract: In this paper, stability and bifurcation of piecewise affine systems is investigated. In the
stability analysis, stability of the origin and existence of limit cycles are investigated by means of
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1. INTRODUCTION

In this paper, stability and bifurcation of piecewise affine sys-
tems are investigated. Piecewise affine systems are applied as
a mathematical model to various kinds of phenomena in the
nature and our society (see, for example, Farcot et al. (2010),
Kashima et al. (2010), and Varela et al. (2008)). For instance, in
Farcot et al. (2010) and Kashima et al. (2010), periodic behavior
in the organism is modeled by piecewise affine systems, and
in Varela et al. (2008), piecewise affine systems are used to
express the oscillation of economical situation.

In this paper, we focus on planar piecewise affine systems
whose 2-dimentional state space is partitioned by conewise
domains from the origin. Stability problems of this type of
piecewise linear and affine systems have been attracting in
Johansson (2003) and Nishiyama et al. (2008). Furthermore,
bifurcation analysis of conewise linear and affine systems are
investigated in Biomond et al. (2009), Zou et al. (2005), and
Akhmet et al. (2009). Specifically, in Nishiyama et al. (2008), a
novel framework of determining stability of piecewise linear
systems is developed. Nishiyama et al. (2008) introduce the
integral of growth rate to determine the stability of piecewise
linear systems. The integral of radial growth rate is the function
which characterizes how far the trajectories move to radial
direction along the elapse of time. In the discussion of stability
and bifurcation of piecewise affine systems in this paper, the
integral of radial growth rate is used as a key function.

In the stability analysis of piecewise affine systems, we present
the way to check stability of the origin and the existence con-
dition of limit cycles. For stability of the origin, we config-
urate Lyapunov function by means of the integral of radial
growth rate. Furthermore, for the discussion of existence of
limit cycles, we apply the idea of Poincaré-Bendixson Theo-
rem described in Strogatz (2001) which is generally used for
nonlinear dynamical systems to check the existence of limit
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cycles. In this discussion, the integral of radial growth rate is
also used to determine the existence of invariant, bounded, and
closed set which is necessary for Poincaré-Bendixson Theorem
to guarantee the existence of limit cycles.

In the discussion of bifurcation of piecewise affine systems, we
investigate Hopf bifucation of the equilibrium point and saddle-
node bifurcation of the limit cycles. We observe the process of
bifurcation by means of the integral of radial growth rate which
characterizes a return map.

This paper is organized as follows. In Section 2, the definition
of the radial growth rate and its important property are given. In
Section 3, the definition of piecewise affine systems are given.
Furthermore, pieceweise linear and constant systems and their
radial growth rate are defined as a preparation of the stability
analysis of piecewise affine systems in the next section. In
Section 4, stability of the origin and existence of the limit
cycles of piecewise affine systems are discussed. In Section
5, bifurcation analysis with numerical example is conducted.
Finally, conclusion is stated in Section 6.

2. MATHEMATICAL PRELIMINARIES

In this section, we introduce notation, several definitions, and
some key results concerning planar nonlinear dynamical sys-
tems that are necessary for developing the main results of this
paper. Specifically, consider the planar nonlinear dynamical
system given by

ẋ(t) = f (x(t)), x(t) ∈ D , x(0) = x0, t ≥ 0, (1)

where x(t) = [x1(t),x2(t)]T ∈ R
2 is the state vector. Further-

more, consider the polar form (r,θ ) of the coordinate [x1,x2]
T,

where r is the distance from the origin and θ is the angle (phase)
from the positive x1-axis in the counter-clockwise direction.

2.1 Rotational Direction of Trajectories

The rotational direction of the trajectories of (1) at x can be
determined by examining the sign of dθ/dt; that is, dθ/dt > 0
(resp., dθ/dt < 0) implies that the trajectories of (1) is moving
in counter-clockwise (resp., clockwise) direction at x.
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Assume that the nonlinear dynamical systems (1) has the equi-
librium point at the origin, that is, f (0) = 0, and elsewhere
the state moves only in the counter-clockwise direction. Under
these assumptions, we can convert the nonlinear dynamical
system (1) to the polar form given by

{

ṙ(t) = fr(r(t),θ (t)), r(0) = r0, t ≥ 0,
θ̇ (t) = fθ (r(t),θ (t)), θ (0) = θ0.

(2)

Again, we assume that θ̇ (t)> 0, t ≥ 0, is satisfied.

2.2 Radial Growth Rate

Radial growth rate is in general the function of (r,θ ) defined
in Nishiyama et al. (2008) to characterize the stability of
piecewise linear systems. In this paper, we apply the radial
growth rate to the nonlinear dynamical system (1) and develop
a proposition in order to discuss stability and bifurcation of
piecewise affine systems.

Now, consider the polar form of the nonlinear dynamical sys-
tem (2). For this system, the radial growth rate is defined by

ρ(r,θ ),
1
r

dr
dθ

. (3)

Here, we consider the integral of the radial growth rate along
the trajectories of the system (2). Note that the position of
the trajectories at time t can be determined if initial value
[r0,θ0]

T is given. We describe the trajectories at time t with the
initial value [r0,θ0]

T as [r(t;r0,θ0), θ (t;r0,θ0)]
T. Furthermore,

the trajectories of the nonlinear dynamical system (2) always
move in counter-clockwise direction, so that the phase θ can
be uniquely determined according to time t and the initial value
[r0,θ0]

T. Therefore, r(t;r0,θ0) can be described as r(θ ;r0,θ0)
instead. Since r(t) can be determined from phase θ and the
initial value (r0,θ0), the radial growth rate ρ(r(t),θ (t)) can
also be given by θ and [r0,θ0]

T and hence, it can be described
as ρ(θ ;r0,θ0).

The integral of the radial growth rate from θ0 to θ0 + 2π is
defined as the function of [r0,θ0]

T by

Γ(r0,θ0),

∫ θ0+2π

θ0

ρ(θ ;r0,θ0)dθ . (4)

This function Γ(r0,θ0) represents how far the trajectory is
going from the origin when the state travels and make one round
from a point [r0,θ0]

T back to another point with the same phase
θ0. Now, we present the proposition about the property of the
integral of radial growth rate.

Proposition 1. Consider the nonlinear dynamical system (2).
Then the integral of the radial growth rate (4) satisfies

Γ(r0,θ0) = log
r(θ0 + 2π ;r0,θ0)

r0
, (5)

that is, the following statements hold:

• If Γ(r0,θ0)< 0, then r(θ0 + 2π ;r0,θ0)< r0;
• If Γ(r0,θ0) = 0, then r(θ0 + 2π ;r0,θ0) = r0 and the tra-

jectories of (2) are closed orbits;
• If Γ(r0,θ0)> 0, then r(θ0 + 2π ;r0,θ0)> r0.

Proof. The result is immediate from (4) and

Γ(r0,θ0) =
∫ θ0+2π

θ0

1
r(θ ;r0,θ0)

dr
dθ

dθ

=

∫ r(θ0+2π ;r0,θ0)

r0

dr
r

= log
r(θ0 + 2π ;r0,θ0)

r0
. (6)

2

Proposition 1 indicates that the integral of the radial growth rate
characterizes whether the trajectories of (2) are approaching
to the origin along the elapse of time. By plotting the value
of Γ(r0,θ0) versus r0, we can observe the behavior of the
trajectories of (2). For instance, if Γ(r0,θ0) crosses the line of
Γ(r0,θ0) = 0, we find the fixed point here, hence the limit cycle
exists on that point. In this way, the integral of radial growth
rate can be used as an return map. We discuss the bifurcation of
piecewise affine systems in Section 5 based on this idea.

3. PIECEWISE PLANAR AFFINE SYSTEMS

In this section, we introduce planar piecewise affine systems
and discuss stability by utilizing the radial growth rate.

First, consider the piecewise affine (PWA) system given by
ẋ(t) = Aix(t)+ bi, x(t) ∈ Di, x(0) = x0, t ≥ 0, (7)

where x(t) = [x1(t),x2(t)]T ∈ R
2 is the state vector, Ai ∈

R
2×2,bi ∈ R

2, i ∈ {0,1, . . . ,k} are a system matrix and a con-
stant vector, respectively, that we allowed to assign to the
domain Di, and k is the number of domains (modes) which
the state space is partitioned into. Here, the domains Di, i =
1, . . . ,k, are assumed to satisfy

k
⋃

i=0

Di = R
2, (8)

int(Di)∩ int(D j) = /0, i, j = 0, . . . ,k, i 6= j. (9)
In this paper, we also assume that the state space is partitioned
by semi-infinite straight lines originating from the origin such
that

Di , {cie(θi)+ die(θi+1) : ci,di ≥ 0},
i = 1, . . . ,k, (10)

D0 , {0}, (11)

where ci,di ∈ R, θi ∈ [0,2π),e(θi), [cosθi,sin θi]
T character-

izes the ith semi-infinite partitioning straight line. Furthermore,
we assume θk+1 = θ1 and Aix 6= 0, x ∈ Di, bi 6= 0, i = 1, . . . ,k.
In addition, to guarantee that the origin be a equilibrium point,
we assume that A0 = 0, b0 = 0 are satisfied at D0. Fig. 1 shows
an example of piecewise planar affine systems in case of k = 4.

Next, we define piecewise linear (PWL) systems and piecewise
constant (PWC) systems for the discussion in this paper given
by

ẋ(t) = Aix(t), x(t) ∈ Di, x(0) = x0, t ≥ 0, (12)
ẋ(t) = bi, x(t) ∈ Di, x(0) = x0, t ≥ 0, (13)

respectively. The integral of the radial growth rate of (12) and
(13) given in Section 3.2 are the key values in the discussion of
stability of the original PWA system (7).

3.1 Rotational Direction of PWA, PWL, and PWC Systems

In this paper, we assume that the trajectories of the PWA system
(7), the PWL system (12), and the PWC system (13) are always
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Fig. 1. Planar piecewise affine sys-
tems

in counter-clockwise direction: that is, for the PWA system (7),

θ̇ (t) =−eT(θ (t))GAie(θ (t))−
1

r(t)
eT(θ (t))Gbi > 0, t ≥ 0,

θ ∈ [θi,θi+1), i = 1, . . . ,k, (14)

is assumed. Specifically, for further discussion, we assume that
the parameters of the PWA system (7), the PWL system (12),
and the PWC system (13) satisfy the following statement.

Assumption 2. The PWA system (7) and the PWL system (12)
satisfy

eT(θ )GAie(θ )< 0, θ ∈ [θi,θi+1], i = 1, . . . ,k, (15)

and the PWA system (7) and the PWC system (13) satisfy

eT(θ )Gbi < 0, θ ∈ [θi,θi+1], i = 1, . . . ,k, (16)

where

e(θ ), [cosθ ,sinθ ]T, (17)

G ,

[

0 −1
1 0

]

. (18)

Under this assumption, we guarantee that the rotational direc-
tion of the trajectories is in the counter-clockwise direction so
that we avoid intricate issues concerning existence and unique-
ness of solutions of the PWA, the PWL, and the PWC systems.

3.2 Radial Growth Rate of PWL and PWC systems

To discuss the stability of the PWA system (7), the radial
growth rate of the PWL system (12) and the PWC system
(13) associated with (7) are introduced. From the discussion
in Nishiyama et al. (2008), the radial growth rate of the PWL
system

ρA(θ ),
1
r

dr
dθ

(19)

=−
eT(θ )Aie(θ )

eT(θ )GAie(θ )
, θ ∈ [θi,θi+1), i = 1, . . . ,k, (20)

depends solely on θ but r. Note that the function ρA(θ ) is
periodic of period 2π .

By integrating the radial growth rate given by (20) from θ0 to
θ0 + 2π , we obtain the integral of the radial growth rate for
the PWL system (12). Since (20) is a function of only θ , the
integral of the radial growth rate defined by

ΓA ,

∫ θ0+2π

θ0

ρA(θ )dθ =
∫ 2π

0
ρA(θ )dθ , (21)

is constant for any given [r0,θ0]
T. From this fact and Proposi-

tion 1, we present one of the ways to check whether the PWL
system (12) is stable as derived in Nishiyama et al. (2008).
Proposition 3. Consider the PWL system given by (12), and
the integral of the radial growth rate (21). Then the following
statements hold:

• If ΓA < 0, then (12) is globally asymptotically stable;
• If ΓA = 0, then (12) is marginally stable and trajectory of

(12) constitutes a closed orbit;
• If ΓA > 0, then (12) is unstable.

For the PWC systems (13), the radial growth rate can be
evaluated in the same way defined by

ρb(θ ),
1
r

dr
dθ

(22)

=−
eT(θ )bi

eT(θ )Gbi
, θ ∈ [θi,θi+1), i = 1, . . . ,k. (23)

Note that the radial growth rate of the PWC system (13)
depends also solely θ but r, so that we present the proposition
with the integral of the radial growth rate as well.
Proposition 4. Consider the PWC system given by (13), and
the integral of the radial growth rate from θ0 to θ0 + 2π ,

Γb ,

∫ θ0+2π

θ0

ρb(θ )dθ =
∫ 2π

0
ρb(θ )dθ . (24)

Then the following statements hold:

• If Γb < 0, then (13) is globally asymptotically stable;
• If Γb = 0, then (13) is marginally stable and trajectory of

(13) constitutes a closed orbit;
• If Γb > 0, then (13) is unstable.

4. STABIITY ANALYSIS OF PWA SYSTEMS

In this section, stability of the origin and existence of a limit
cycle is discussed. In this discussion, the integral of the radial
growth rate of the PWL system (21) and the PWC system (24)
are used.

4.1 Stability of the Origin

In the neighborhood of the origin, constant vector term bi of the
PWA system (7) is dominant to determine the behavior of the
trajectory since ‖x(t)‖ becomes small in the neighbourhood of
the origin. Therefore, Γb is used to characterize the stability of
the PWA system (7).

Now, we present the way to check the stability of the PWA
system (7).
Theorem 5. Consider the PWA system given by (7) which
satisfy Assumption 2. Then the following statements hold:

• If Γb < 0, then (7) is asymptotically stable;
• If Γb > 0, then (7) is unstable.

Furthermore, if
Γb ≤ 0, (25)

and

ρA(θ )−ρb(θ )>−
Γb

2π
, θ ∈ [0,2π), (26)

then (7) is globally asymptotically stable.

From Theorem 5, we can check stability of the PWA system by
calculating Γb. Generally, for the nonlinear dynamical system,
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stability is characterized by Jacobian of the system at the
equilibrium point. However, Jacobian of the PWA system (7)
cannot be defined due to the discontinuity at the switching lines.
Hence, Γb is used to characterize stability instead of Jacobian.

4.2 Existence of Limit Cycle

Next, we discuss existence of a limit cycles of the PWA system
(7). The PWA system (7) can have the limit cycles in spite of
its linearity of affine term, and this is one of the features of this
system.

Generally, to discuss existence of the limit cycles for the contin-
uous nonlinear system, Poincaré-Bendixson Theorem is used.
In this paper, extended Poincaré-Bendixson Theorem for the
PWA system (7) is presented.

Lemma 6. Consider the PWA system (7) with Assumption 2. If
the PWA system (7) satisfies the following statements:

• There exists an invariant, bounded, and closed set M ∈
R

2.
• There is no equilibrium point in M .

then the PWA system (7) has stable limit cycles.

From this lemma, if we can guarantee existence of the invariant,
bounded, and closed set, we obtain the condition of existence of
the limit cycles for the PWA system (7). To derive the condition
of existence of the invariant, bounded, and closed set, first we
present the condition of boundedness for the PWA system (7).

Lemma 7. Consider the PWA system given by (7) which satisfy
Assumption 2. Then if ΓA < 0, the PWA system (7) is bounded.

From this lemma and Theorem 5, we are finally ready to state
one of the main results of this paper.

Theorem 8. Consider the PWA system (7) with Assumption 2.
If the PWA system (7) satisfies ΓA < 0 and Γb > 0, then there
exist limit cycles for PWA system (7).

5. BIFURCATION OF PWA SYSTEMS

In this section, we discuss bifurcation of the PWA systems with
a bifurcation parameter. Specifically, consider the PWA system

ẋ(t) = Aix(t)+ bi(µ), x(t) ∈ Di, x(0) = x0, t ≥ 0, (27)

where µ ∈ [µ1,µ2], µ1,µ2 ∈ R, is bifurcation parameter. Fur-
thermore, assume that the trajectories of the PWA system sat-
isfy (15) and (16) for any µ ∈ [µ1,µ2] to guarantee that the state
moves in the counter-clockwise direction of the trajectories.

To observe the process of bifurcation of the system (27), the
integral of the radial growth rate is used. First, we derive
the radial growth rate of the PWA system (27). Note that the
dynamics of r(t) for the PWA system (27) is given by

ṙ(t) = r(t)eT(θ (t))Aie(θ (t))+ eT(θ (t))bi(µ),
θ ∈ [θi,θi+1), i = 1, . . . ,k. (28)

Then the radial growth rate of the PWA system (27) is defined
from (14) and (28) by

ρ(r,θ ) =λi(r,θ )ρA(θ )+ (1−λi(r,θ ))ρb(θ ,µ),
θ ∈ [0,2π), i = 1, . . . ,k, (29)

where

λi(r,θ ,µ),
reT(θ )GAie(θ )

reT(θ )GAie(θ )+ eT(θ )Gbi(µ)
. (30)

Finally, by integrating (29) from θ0 to θ0 + 2π along the
trajectory of (27), the integral of the radial growth rate for the
PWA system (27)

Γ(r0,θ0,µ) =
∫ θ0+2π

θ0

{

λi(θ ,µ ;ro,θ0)ρA(θ )

+ (1−λi(θ ,µ ;ro,θ0))ρb(θ ,µ)
}

dθ ,

θ ∈ [θi,θi+1), i = 1, . . . ,k, (31)

is derived.

5.1 Hopf Bifurcation

Now, consider the PWA system (27). If Γb(µ) is changed
from negative to positive (resp., positive to negative) along the
change of µ , stability of the PWA system also changes unsta-
ble (resp., stable), then stable limit cycle appears or unstable
limit cycle disappears (resp., unstable limit cycle appears or
stable limit cycle disappears) around the origin. Here, Hopf
bifurcation can be observed when the value of µ crosses 0.
In the following discussion, we present two examples of Hopf
bifurcation: supercritical Hopf bifurcation and degenerate Hopf
bifurcation.

First, we show the supercritical Hopf bifurcation. In this bifur-
cation, the stable equilibrium point becomes unstable and stable
limit cycle appears when the value of µ crosses a threshold.
Assume that we are given the system parameters

A1 = A5 =

[

−1 −5
1 0

]

, A2 = A6 =

[

0 −5
−1 −1

]

,

A3 = A7 =

[

0 −1
5 −1

]

, A4 = A8 =

[

−1 1
5 0

]

,

b1 = b8 =

[

µ
5

]

, b2 = b3 =

[

−5
µ

]

,

b4 = b5 =

[

µ
−5

]

, b6 = b7 =

[

5
−µ

]

,

where the partitioning angle is θi =
π
4 i, i = 1, . . . ,8. Fur-

thermore, note that the parameters yield trajectories mov-
ing counter-clockwise direction in µ ∈ [−5,5], and ΓA =
−8.01, Γb(−1) = −1.03, Γb(0) = 0, and Γb(1) = 1.03. Then
it follows from Theorems 5 and 8 that when µ changes positive
from negative, the stable origin bifurcates to be the unstable
origin and the stable limit cycle. Now, plot the trajectory of the
system as in Figs. 2, 4, 6 and the value of Γ(r0,0) versus r0 as in
Figs. 3, 5, 7. When µ =−1, the system is stable from Theorem
5. The trajectory shown in Fig 2 converges to the origin and
Γ(r0,0) is negative as in Fig. 3. When µ = 0, the trajectory of
the system is still converging to the origin as shown in Figs.
4 and 5. However, when µ = 1, the origin of the system is
unstable and the stable limit cycle appears around it. Existence
of the limit cycle is guarnteed by Theorem 8 since ΓA < 0 and
Γb(1) > 0. In Fig. 6, there exist an intersection of Γ(r0,0) and
r0-axis around r0 = 0.5. Furthermore, we find the trajectory
which converges to the closed orbit in Fig. 7.

Second, we show the degenerate Hopf bifurcation [Strogatz
(2001)]. Assume that we are given the system parameters

A1 = A3 = A5 = A7 =

[

2 −3
3 2

]

,

A2 = A4 = A6 = A8 =

[

−2 −3
3 −2

]

,
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b1 = b8 =

[

µ
5

]

, b2 = b3 =

[

−5
µ

]

,

b4 = b5 =

[

µ
−5

]

, b6 = b7 =

[

5
−µ

]

,

where the partitioning angle is θi =
π
4 i, i = 1, . . . ,8. Note that

ΓA = 0, Γb(−0.8) = −0.82, Γb(0) = 0, Γb(0.8) = 0.82. Now,
plot the trajectory of the system as in Figs. 8, 10, 12 and the
value of Γ(r0,0) versus r0 as in Figs. 9, 11, 13. When µ =−0.8,
the system is stable from Theorem 5. The trajectory shown in
Fig. 8 converges to the origin and Γ(r0,0) is negative as in Fig.
9. When µ = 0, trajectory of the system becomes closed orbit,
as shown in Fig 4. Furthermore, we also find that the origin
is marginally stable from Fig. 5. However, when µ = 0.8, the
origin of the system is unstable and the closed orbits disappear.
The trajectory shown in Fig. 12 is unstable and Γ(r0,0) is
positive as in Fig. 9.

5.2 Saddle-Node Bifurcation of PWA Systems

If the PWA system (27) has multiple limit cycles, saddle-node
bifurcation of the limit cycles can be observed. Now, assume
that we are given the parameters

A1 = A3 =

[

−1 −5
1 0

]

, A2 = A4 =

[

0 −10
−20 −10

]

,
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Fig. 13. Integral of radial growth rate
versus r0 (µ = 0.8)

b1 =−b3 = µ
[

−1
2

]

, b2 =−b4 =

[

−1
−4

]

,

where the partitioning angle is θi =
π
2 i, i = 1, . . . ,4. In this

case, when µ = 50, there exist two intersecting points between
Γ(r0,0) and r0-axis as in Fig. 14, so that we find two limit cycles
(inner one is unstable and the other is stable). As µ decreases,
we find that the two limit cycles are approaching each other and
finally they collide and one saddle-type limit cycle appears as
in Fig. 15. Furthermore, when µ continues to decrease, the limit
cycle disappears as in Fig. 16.

6. CONCLUSION

In this paper, we investigated stability of the PWA system (7).
In this discussion, we proposed how to check stability of the
origin and present the existence condition of the limit cycles.
To check stability of the origin, the integral of the radial growth
rate of the PWC system is used since the behavior of the PWA
system is dominated by constant term. Eexistence of the limit
cycles is discussed based on the idea of Poincaré Bendixson
theorem. In addition, existence of the invariant, bounded, and
closed set is guaranteed by the integral of the radial growth rate
of the PWC system and the PWL system.

Furthermore, we investigated bifurcation of the PWA system
(27). In particular, Hopf bifurcation of the origin and saddle-
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Fig. 16. Integral of radial
growth rate versus r0
(µ = 10)

node bifurcation of the limit cycles are observed by means of
the integral of the radial growth rate. The radial growth rate of
PWA systems is used for characterizing the return map in this
discussion.

Future extensions include applying more general class of piece-
wise smooth systems.
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