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Abstract: Power resources on board autonomous systems are limited but power requirements
on these systems are increasing due to rapid technology growth. Today’s methods for controlling
these resources either use expensive and conservative strategies (e.g. reactive control), or employ
pre-defined power schedules that heighten the risk of operation failure in a dynamic environment.
An intelligent Power Management System (PMS) is required to improve, or maintain, system
capability. The strategies proposed in this paper aim to contribute towards an intelligent PMS.
Using optimization methods, an adaptive and flexible PMS, capable of constructing the best
executable power schedules while satisfying real-time requirements, is presented. A three-level
optimization strategy is introduced. Due to the feasibility requirement of the solutions produced,
the first level uses a constraint satisfaction approach. Then, the solution is quickly improved
using a local search algorithm and, next, a global search algorithm is used in the remaining
execution time to explore the possibility of further improvement in the solution. The efficiency
of the last two levels is enhanced by use of convex programming techniques. Using a case study,
we demonstrate that the proposed PMS is capable of rapidly producing a feasible solution, and
subsequently optimizing this solution to provide an improved solution. The proposed PMS is
capable of adapting to a dynamic environment, by coping with any change in problem description
and problem constraints, and constructing a new best executable solution, while satisfying real-
time requirements.

Keywords: Autonomous control, autonomous systems, power management systems,
safety-critical systems, optimization.

1. INTRODUCTION

Autonomous systems, such as autonomous vehicles, have
become a key area of research. These systems are often
deployed to execute tasks which are deemed too danger-
ous, dull, or dirty for humans to perform. Examples of
applications of autonomous systems include remote sens-
ing, surveillance, search and rescue, transportation, and
payload delivery (Siciliano and Khatib [2008]). In recent
years, the work done in this area has grown significantly,
introducing more complex and advanced technologies. As
a result, these systems are facing both limited energy
resources and increased power demands. Optimal manage-
ment of available resources is essential to support tech-
nological advancements on autonomous systems and to
improve overall system capability. Optimal power man-
agement is also necessary to achieve reduced operational
risks and costs while simultaneously increasing endurance
and flexibility.

Today’s typical Power Management System (PMS) for
autonomous systems regulates the power supply and de-
livery of the vehicle based on a conservative pre-defined
power schedule, or by reactive control, which ensures

power is available for the worst-case sustained peak power
requirement (Morley and Wall [2010]). This approach is
robust in the event of unprecedented changes within an
expected range. However, the power inefficiency and equip-
ment costs are high. Additionally, unnecessary pollutant
emissions arise as a result of excess power generated. The
power inefficiency implies that the operational capability
of the system could be extended, if the power usage is
improved. Increasingly, longer operation times are a key
product feature for autonomous systems. Improved power
management is a key enabling technology that offers an ef-
ficient way of achieving these requirements (Karunarathne
et al. [2011]). Note that power management in this context
includes electrical, propulsive, hydraulic, pneumatic, and
thermal power.

The system environment, equipment health, and operation
objectives are subject to dynamic change throughout oper-
ation. These factors increase the potential risk of operation
failure. A human controller may communicate an updated
power schedule. However, this often requires a significant
amount of time and a reliable communication network,
both of which are not always available. An update of the
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power schedules based on real-time dynamical changes is
required. Recent technology strategies by industries and
governments also aim to encourage development of systems
with a higher level of autonomy. These factors necessitate
an on-board PMS with autonomous operation capabil-
ity. As a result, an improved integrated PMS capable of
constructing optimal, or good quality, power supply and
delivery plans, on-board and in-operation, is required as
part of the technology growth in autonomous systems.
Thus, an intelligent PMS, as proposed in Morley and Wall
[2010], aims to meet these goals.

Evidence of research in the development of solutions to
some of the issues involved in implementing intelligent
PMSs within autonomous systems have already been ad-
dressed. Mei et al. [2005] proposed a novel strategy to
improve power management using dynamic power man-
agement and a real-time scheduler. However, it was un-
clear what specific rules or conditions were applied to en-
able real-time decision-making mechanisms. Ogawa et al.
[2006] proposed a component for electric power control
(CEPC) to minimise the power consumption of a small
robot architecture. The underlying strategy leads to ef-
ficient use of batteries and executing alternative tasks
which consume less power, where possible. However, this
raises a question of how well the strategy will perform if
there is no alternative set of tasks; the potential of this
strategy is limited. Zhang et al. [2009] suggested that the
power consumption on-board small mobile robots could
be reduced by controlling the power sinks, exploiting the
behaviour of these sinks. Zhang et al. guarantee optimality
if a set of conditions are met and claim that the pro-
posed method outperforms heuristic methods. However,
the methods proposed by Zhang et al. focussed on specific
components of the system for a specific type of robot; the
wider applicability is unclear.

Khare and Singh [2011] proposed a method to manage
and optimize the power generation on board hybrid un-
manned surface vehicles by utilising an optimization strat-
egy based on priority and cost optimization. However, it
is implied that their solution may not be globally optimal
and the real-time applicability of this strategy is unknown.
Karunarathne et al. [2011] proposed a power and energy
management system for a small fuel cell unmanned aerial
vehicle. Although initially the study mentions PMS, a
power electronic interface, and energy management sys-
tem, most of the report discusses the energy management
system strategy. The power management itself was rather
simple. It was assumed that the payload was constant
and, should the demands exceed the fuel cell rating, the
battery will compensate. The study did not mention or
acknowledge any uncertainties that may be present and
while deriving the models of required power, efficiencies of
many components were assumed constant. Other related
studies include Harmon et al. [2005], Styler et al. [2011],
Kermani et al. [2012].

In summary, these studies do not fully meet the goals of an
intelligent PMS. Although a cross-platform PMS (control
of power sources, sinks, and connections) is required to
achieve an improved PMS as proposed, this area has
not been addressed in detail by the academic literature.
Most studies focus on the control of only part of the
PMS platform. Many reports also propose strategies for

improved power management limited to smaller systems
which are not easily transferable to larger, more complex
autonomous systems, with multi-power source multi-power
sink. In some cases, the techniques used are too problem-
specific. There are also other mismatches in research goals
in terms of real-time application of the proposed solution
(robustness and restricted computing time and power) and
capability of adapting to dynamic environments.

Optimization strategies capable of improving today’s
PMSs and contributing to the development of intelligent
PMSs is required. In this paper, we propose a flexible and
adaptive PMS, capable of constructing the best executable
power schedules while satisfying real-time requirements.
Best executable solutions here refer to the best solutions, in
terms of pre-determined objective(s) and feasibility, found
within the allocated time and resources. This PMS adapts
to its dynamic environment by updating the problem de-
scription and problem constraints as new events occur,
and solves the problem using a three-level optimization
strategy. Due to the importance of safety in autonomous
systems, the proposed PMS constructs a feasible solution
using a constraint satisfaction approach in the first in-
stance. Then, the proposed PMS optimizes this solution
using a local search algorithm followed by a global search
algorithm to explore the search space for an improved so-
lution. In order to improve the efficiency of the algorithms
in the last two levels, the problem is reformulated using
convex programming concepts.

In Section 2, briefly contextualises the proposed strategies.
The problem formulation is discussed in Section 3. A
solution is proposed in Section 4. A case study specifying a
power configuration where the proposed PMS is applied is
presented in Section 5. Sections 6 analyses the case study
results and Section 7 is the conclusion.

2. AN INTEGRATED POWER MANAGEMENT
SYSTEM

In our approach to contribute towards an intelligent PMS,
considerations are not limited to power, but also infor-
mation from other subsystems such as advice on system
equipment health. The envisaged application highlights
safety as an important attribute and typical goals or
objectives would be to optimize the efficiency, costs, per-
formance of operation, and life expectancy of the compo-
nents. Some of these objectives overlap with one another
and are complementary, while some are conflicting.

The power supply and delivery from each power source
to each power sink is required to be determined subject
to a set of requirements, which are treated as constraints.
The constraints of the problem are system constraints (e.g.
maximum capability of power sources), equipment health
constraints (e.g. degradation of components), and task
constraints (e.g. required power to be supplied to ensure
task completion).

The proposed integrated PMS is targeted for any multi-
source, multi-sink power system with special attention to
systems intended for autonomous operation. Of course,
adjustments are likely to be required for different appli-
cations but this is necessary only for the outer layer of the
overall strategy.
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Fig. 1. Example connections between i power sources and
j power sinks.

3. PROBLEM FORMULATION

Consider a safety-related system which is operating in a
dynamic environment. The power supply and demands
across this system change based on tasks at hand, and
due to internal and external factors, which may result in
infeasibility of the existing power schedule. The integrated
PMS aims to update the infeasible power schedule by
searching for the best executable power schedule based
on pre-defined information and updated information using
optimization techniques. This is executed during operation
while adhering to time and computational constraints.

We aim to develop strategies suitable for any multi-source,
multi-sink system. For illustration purposes, consider a
case where there are S power sources available to ser-
vice the demands of D electrical power sinks. The power
schedule for the entire operation time, T , is presented
using a series of time intervals, t. The decision variables,
xijt, are the power delivered from each power source, i, to
each power sink, j, for each time interval, t. A schematic
diagram of the connections is shown in Fig. 1. Each power
source has a corresponding rated power output which lim-
its the power available to supply the power sink demands.
The new power schedule is expected to be constructed
within an allocated run time, e.g. four minutes, while
restricted to limited computing resources. While allocating
the power delivery between the power sources and power
sinks, it is desirable to optimize the fuel consumption. Fuel
consumption, the objective for this case, depends on power
generation, which is a function of the efficiency of each
power source and the decision variables for a particular
time interval, xijt. The power schedule is optimized based
on fuel consumption while satisfying system and environ-
mental constraints. To summarise, we wish to:

minimise
S∑

i=1

xijt
feff(xijt)

, for j = 1, 2, ..D (1)

with respect to xijt, subject to:

0 ≤
D∑

j=1

xijt ≤ sit, for i = 1, 2, ..S (2)

djt − δljt ≤
S∑

i=1

xijt ≤ djt + δujt, for j = 1, 2, ..D (3)

where feff(xijt) is an efficiency function in terms of xijt.
sit is the maximum available power supply for source

i at interval t and djt is the power demand for sink
j at interval t. S and D are the number of available
sources and sinks respectively, and t represents the time
intervals. The variables δujt and δljt are the upper and lower
tolerances of the power demands, respectively, which are
task dependent. The formulation described by (1-3) forms
the default problem setting.

A power schedule for the entire operation time, T , is
required. However, this causes the problem dimension to
expand considerably if solved simultaneously. A divide-
and-conquer approach is used in which the problem is
decomposed into subproblems by separating the whole op-
eration time into NT time intervals representing different
operating phases. These operation phases, or subproblems,
are optimized over their corresponding single time inter-
val separately. At the end of the analyses, the solutions
to every subproblem are combined to form one solution.
This solution is checked to ensure the overall feasibility
of the system. There are shortcomings in the sense that,
since this non-separable problem is converted to a set of
separable problems, the estimated optimal solution may
be sub-optimal overall. Arguably, the sub-optimality of
the problem is already inevitable due to the real-time
requirements of the PMS and the nonconvexity of the
overall problem. The advantage of this approach is that it
limits the number of decision variables per run, rendering
the problem more tractable and allows for an accelerated
search for solutions. The decomposition of the problem
into subproblems also allows the objective function to be
modified at each operation phase according to the system’s
dynamic environment, thereby increasing the fidelity of the
models and system utility.

Change of events during operation introduces the require-
ment to update the default problem setting described
above. This may incur changes in (1-3) or introduce new
constraints (event specific constraints) to be satisfied. For
example, for cases where there is a severed connection
between the ith power source and the jth power sink at
the tth time interval, the following additional constraint
must be satisfied:

xijt = 0. (4)

4. OPTIMIZATION STRATEGY

Based on the problem description above, the optimiza-
tion problem may be categorised as a single-objective
non-linear constrained optimization problem with contin-
uous decision variables and a combinatorial component.
Another key feature of the problem due to the safety-
related nature of the application is the requirement to
guarantee feasible solutions within a short time frame e.g.
four minutes. Also, the methods selected are required to
demonstrate determinacy, transparency, and tractability
due to safety requirements. Analytical methods may suit
the criteria for safety requirements better than heuristic
methods. Nonetheless, the solutions obtained by using
heuristic methods may be closer to the true optimal so-
lution. In order to achieve the desired attributes of the
improved PMS (e.g. accuracy, speed and determinacy),
a compromise of these attributes and hybridisation of
methods may be necessary.
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Fig. 2. Three-level approach.

4.1 Optimization solver

A three-level approach is proposed (Fig. 2). First, a con-
straint satisfaction approach is used to rapidly find a fea-
sible solution based on the available information. Then, a
local search algorithm improves the solution obtained in a
relatively small amount of time, providing an intermediate
solution. Finally, the remaining time is invested in a global
search algorithm which searches for the best executable
power schedule for the specified problem. Improving the
solution in stages enables the best solution during a PMS
run to be updated. This is particularly useful if the PMS
execution time is reduced during execution, where a solu-
tion must be available and ready to be enacted.

Level 1 - Constraint satisfaction: guaranteeing feasibility
In Level 1, power demand constraints (3) are assumed

to exclude tolerances and these constraints are converted
to equality constraints. We argue that demand tolerances
are best applied in the optimization levels (only) to obtain
benefits from manipulating the power generated. The
objective function is also temporarily ignored, applying a
strict constraint satisfaction approach. In order to satisfy
the equality constraint, the problem is reformulated as:

minimise
D∑

j=1

((djt −
S∑

i=1

xijt)
2) (5)

with respect to xijt, subject to:

0 ≤
D∑

j=1

xijt ≤ sit (6)

In the above formulation, minimising (5) seeks to ensure
that the power demand equality constraints (3) are satis-
fied. The resulting solution will be feasible assuming the
solution converges and (7) holds, which represents the
feasibility of the problem. An analytical method (quadratic
programming (Frank and Wolfe [1956])) is used to solve
the above problem.

D∑
j=1

dijt ≤
S∑

i=1

sit (7)

Level 2 - Local search: an improvement Subsequent to
finding a feasible solution, we aim to improve the obtained
solution in a short amount of time. Using a local search, a
local minimum may be rapidly found. A global minimum
is only found if the starting point is sufficiently near

the global minimum, i.e. in the global minimum’s basin
of attraction, or if the problem if unimodal. Although
this level often finds a local minimum (for multi-modal
functions), it is obtained in a reasonable amount of time
and provides an improved solution compared with the
solution obtained from Level 1.

A deterministic heuristic technique is proposed to be
used for Level 2. Using this class of techniques, the
determinacy of Level 2 of the PMS is guaranteed; this
is desirable for autonomous systems. The main task of
this level is to improve the Level 1 solution, not to
search for the global minimum which is often the reason
stochastic search is introduced into heuristic techniques.
The Nelder-Mead algorithm (Nelder and Mead [1964])
was selected for Level 2 and performs well in finding the
nearest minimum while optimizing a nonlinear function.
This technique uses the worst point out of an N + 1 point
simplex (N is the number of decision variables) and moves
towards the nearest minimum using a set of rules. However,
this technique solves unconstrained or box-constrained
nonlinear problems. The decision variables of the presented
problem have very large bounds. The non-negativity of
the decision variables and the maximum capability of
the power sources may be applied as the bounds for the
decision variables (6). This cannot be directly reduced due
to the coupling between the decision variables. Solving (1-
3) using this formulation and including penalty terms to
handle the constraints was found to be inefficient.

In order to improve the performance of this technique,
the problem can be reformulated. A change of variables
allows the use of the Nelder-Mead algorithm directly while
satisfying the constraints at all times. Since the constraints
(2-3) are affine, the decision variables, x, can be redefined
to another set that is, by definition, within the convex hull
of the constraints (assuming the problem is well posed),
producing only feasible solutions. The minimum (or max-
imum) value for each decision variable, while satisfying
(2-3), are determined to form the lower (or upper) bounds
using CVX (Grant and Boyd [2013]), a software package
for specifying and solving convex programs. Using the
concept of convex combinations,

x = Cw̃ (8)

where

w̃ =
wn∑2N
n=1 wn

(9)

and C represents a matrix containing the bounds for the
decision variables, x is a vector of the original decision
variables, w̃ ∈ [0, 1]2N , wn ∈ [0 1], and N is the number
of decision variables, x. The local search algorithm can
now solve the problem as a box-constrained optimization
problem. The Nelder-Mead algorithm for the reformulated
problem now searches for w (with much smaller bounds)
while optimizing (1) subject to only event-specific con-
straints. Using convex combinations in the reformulated
problem also guarantee that only feasible solutions (with
respect to (2-3)) are explored and (2-3) may be omitted
from the optimization process. The efficiency of the Level
2 algorithm is significantly improved by exploiting the
convex components of the problem. Penalty terms are
added to the objective function to encourage the algorithm
to find solutions satisfying event-specific constraints.
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Level 3 - Global search: best executable solution A
stochastic global search is proposed as the Level 3 algo-
rithm. This level runs for the remaining allowed execution
time for the PMS, and explores the search space to find
the best executable minimum. Particle swarm optimiza-
tion (Kennedy and Eberhart [1995]) was selected as the
global search algorithm for Level 3 due to its tendency
to perform well in dynamic environments as well as its
ease of application. Particle swarm optimization solves an
optimization problem by updating a swarm of particles
(solutions) at every iteration based on each particle’s best
solution and the swarm’s best solution. This is a stochastic
search algorithm where random perturbations are enforced
to explore the search space, while exploiting the best
solutions found so far. The algorithm, which is also an
unconstrained optimization solver, solves for w and uses
penalty terms in the objective function to manage event-
specific constraints (the same formulation as the problem
solved by the Level 2 algorithm).

4.2 Three-tiered optimization strategy

The overall structure of the proposed integrated PMS is
to:

(1) Update the default problem formulation (1-4) and any
additional constraints (as required) according to the
information provided to the PMS.

(2) Find a feasible solution using a constraint satisfaction
technique.

(3) Construct the upper and lower bounds of the decision
variables using convex programming based on the
default constraints which enables an efficient repre-
sentation of the problem.

(4) Improve the feasible solution using convex combina-
tions and a local search algorithm.

(5) Invest the remaining execution time in a global search
algorithm to find the best attainable solution for the
problem.

(6) Select the best executable solution for enactment.

5. CASE STUDY

In this case study, the PMS is connected to a Central
Management System (CMS), System Health Management
(SHM), and the Power System (PS). The CMS is a
centralised controller for the system and informs the
PMS of the system status, system requirements, and
other information required by the PMS to construct best
executable power schedules. Additional information, which
is informed by the SHM, is also supplied to the PMS. This
equipment health information encourages efficient power
management based on the system’s current health. It is
assumed that all the information required is provided to
the PMS as needed and the CMS informs the PMS when
a new schedule is required. The PMS will be required to
construct the best executable power schedule (in terms
of fuel consumption and feasibility) describing the power
supply and delivery between four power sources and five
power sinks within four minutes (Fig. 1). The purpose of
this case study is to demonstrate a proof-of-principle of
the proposed strategy. Note: it is necessary to withhold
certain details of this case study for reasons of commercial
sensitivity.

Here, a normal, or default, condition indicates full (equip-
ment) health and maximum rated power rating for the
power sources. The system is planned to operate over three
phases and is pre-loaded with an offline power schedule. A
new event is introduced in Phase 2 (while the system is
in Phase 1 ) which leads to infeasibility of the previous
power schedule for the remaining operation time. Thus, a
new schedule is required. The integrated PMS is activated
as a result of this new event, and a revised best attainable
power schedule is constructed.

For this event, Source 4 experiences health issues which
decreases the maximum power rating to 42kW from 50kW
while the allowable power demand tolerances remain at
15%. This causes the previous solution to become in-
feasible. The PMS is notified of this change and a new
power schedule is constructed within the allocated four
minutes on a representative processing architecture. Table
1 shows the power distribution for Phase 2 based on the
infeasible solution, and the feasible solutions constructed
by Level 1-3 of the PMS. The rows represent each power
source while each column represents each power source.
For example, Source 1 is to supply Sink A with 0.78kW
based on the previous (infeasible) solution. Table 2 depicts
the fuel consumption in kg/s for each phase and algorithm.
Implementation was in Matlab vR2011a on Intel Core
3.20GHz processor with 4GB RAM; the computational
constraints were not exceeded for this demonstration.

6. DISCUSSION

Updated solutions for Phase 2 (Table 1) show that al-
though some components of the new solution were similar
to the infeasible solution, others were altered, especially
the power setting for the affected power source. In most
cases, the small differences are likely to be due to the
algorithms optimizing the solutions according to the equip-
ment efficiencies, exploiting allowable demand tolerances.
Larger differences, for example, occur in power sources 3
and 4 for both cases. This is likely to be due to wider
efficient operating regions for larger power sources com-
pared with the smaller power sources. Recall that the fuel
minimisation function incorporates equipment efficiencies
and is reflected in the avoidance of maximum loading of
the power sources. This is also beneficial to maintaining
the life of the equipment since maximum usage will cause
additional equipment wear and subsequently reduce equip-
ment life. Only in Level 1 does the PMS ignore these
inefficiencies, seeking only to satisfy the constraints, while
temporarily ignoring the fuel consumption optimization.

The fuel consumption is reduced as the PMS moves from
Level 1 to Level 3 (Table 2). The changes may seem
small, however, in large applications, this improvement is
capable of significantly reducing the costs of operation.
For example, comparing solutions of Level 1 and Level
3 in the case study presented here, which has a 40 hour
total operation time, will save approximately 100kg of fuel,

Objective value Phase 2 Phase 3

Level 1 (kg/s) 0.0140 0.0144

Level 2 (kg/s) 0.0134 0.0143

Level 3 (kg/s) 0.0133 0.0143

Table 2. Objective values for Phases 2 and 3.
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Phase 2 Sink A (kW) Sink B (kW) Sink C (kW) Sink D (kW) Sink E (kW) Power generated (kW)

Source 1 (kW)

P 0.78 1.19 1.20 1.18 0.71 5.06 (6)
L1 1.10 0 0 0 0 1.10 (6)
L2 0.92 1.12 1.13 1.11 0.88 5.15 (6)
L3 0.96 1.12 1.12 1.12 0.92 5.25 (6)

Source 2 (kW)

P 1.83 2.92 3.52 2.72 1.61 12.58 (15)
L1 0 0 14.00 0 0 14.00 (15)
L2 1.97 3.22 3.24 3.01 1.79 13.23 (15)
L3 1.91 3.22 3.22 2.95 1.67 12.96 (15)

Source 3 (kW)

P 3.76 13.41 13.12 9.97 3.53 43.78 (50)
L1 0 32.00 18.00 0 0 50.00 (50)
L2 3.74 14.44 14.56 10.42 3.23 46.39 (50)
L3 3.67 14.12 14.12 10.76 3.44 46.12 (50)

Source 4 (kW)

P 3.75 13.57 13.28 10.05 3.13 43.77 (42)
L1 8.90 0 0 24.30 8.80 42.00 (42)
L2 3.47 11.67 11.49 8.96 3.02 38.61 (42)
L3 3.49 11.72 11.72 8.51 2.89 38.31 (42)

Power supplied(kW)

P 10.12 (10) 31.08 (32) 31.11 (32) 23.91 (24.3) 8.98 (8.8)

-
L1 10.00 (10) 32.00 (32) 32.00 (32) 24.30 (24.3) 8.80 (8.8)
L2 10.10 (10) 30.45 (32) 30.41 (32) 23.50 (24.3) 8.92 (8.8)
L3 10.02 (10) 30.18 (32) 30.18 (32) 23.34 (24.3) 8.91 (8.8)

Table 1. Power grid: power distribution for Phase 2. P, L1, L2, and L3 represent previous
solution, Level 1 solution, Level 2 solution, and Level 3 solution respectively. The numbers in
bracket indicates the maximum power available from each power source (in the Power generated

column) or the power requirement of each power sink (in the Power supplied row).

equivalent to 5% of the total fuel available. However, in
Phase 3, there is no improvement from Level 2 to Level 3.
This may be because the PMS may have reached a global
minimum at Level 2.

7. CONCLUSION

In order to contribute towards an intelligent PMS, a flex-
ible and adaptive PMS is proposed comprising of a three-
level strategy, combining concepts from constraint satis-
faction, convex programming and optimization techniques.
The optimization strategies in this cross-platform PMS are
aimed to suit any real-time power management of complex
systems. In the case study presented, the proposed PMS
demonstrates the capability to solve and provide best exe-
cutable solutions within real-time requirements.

There are several other attributes of the proposed PMS
which are still under development. For example, robust-
ness of solutions is crucial for autonomous systems. Other
ongoing work involves extension of the current problem by
incorporating complexities (true behaviour and dependen-
cies of other sub-systems) of the system and also improving
the current techniques used.
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