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Abstract The article proposes a method that gives the ability to consider the mathematical
model of the system as a symmetry-preserving one, even if the conditions of the symmetry for
the plant model are not met or if the symmetry was lost during the system operation. The
proposed approach is based here on an active disturbance rejection scheme, which assumes
an augmentation of the system model, which further leads to an online reconstruction and
attenuation of the effects of terms in the plant, that preclude its model from being a symmetry-
preserving one. The effectiveness of the proposed technique is presented in the paper using an
illustrative example, supported with simulation results.
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1. INTRODUCTION

Finding the symmetry of a system allows to describe how it
physically changes by the action of a transformation group.
The symmetry group G of the system with state space X,
maps solution to solution, i.e. one integral line of a vector
field into another. This leads to a natural definition of a
system that preserves its specified property, namely the
system is invariant by the action of group G (or simply
G-invariant).

Techniques exploiting symmetry are deeply studied in
modern nonlinear control theory. They turn out to be a
comprehensive and readable tools for observer and control
design. In their article, Martin et al. (2004) consider rather
simple system, however it shows the general idea in a clear
way. Another attempt has been presented by Rudolph and
Frohlich (2003).

In terms of observers that preserve symmetries, a consider-
able contribution has been made by Bonnabel et al. (2008).
In his article, Bonnabel (2007) presented a modification of
an invariant observer based on extended Kalman filter.
Experimental results of the invariant control system for
a mobile robot has been shown by Nowicki et al. (2013),
where a combination of invariant controller with invariant
observer was investigated.

The classical control theory techniques do not consider the
geometry of the system, hence they can be seen from a
mathematical point of view as local approximations only.
Indeed, the classical methods consider the input, state, and
output spaces as Rn manifolds. Therefore, the actions are
expressed for an Euclidean space only, which is not true in
most cases.

One can think about the state space as any manifold
instead of the Euclidean space. The evolution of the system
in time can push the solution off the space. Then, the local
approximation to the nearest point on the manifold has
to be found. On the contrary, when using the symmetry
group, the solution always stays on the state manifold.
Moreover, the fact that every component, even the most
complicated one, has its geometrical representation, helps
to understand how such system behaves.

There are many simple systems, whose invariance is obvi-
ous (one can think of a rigid body motion in free space).
However, the consideration of some additional elements in
the mathematical model can lead to breaking the symme-
try. Generally, such phenomena appear as additional fields
that are not invariant by the action of the symmetry group.

This paper proposes an active disturbance rejection con-
trol (ADRC) approach as a method of online estimation
and rejection of particular effects that break the symmetry
of the system. The resultant system in the ADRC scheme
can be considered as a symmetry-preserving one, since the
unwanted elements of the dynamics are reconstructed and
mitigated in each time instant, hence does not influence
the plant behavior in practice.

The ADRC methodology, recently summarized in a
survey-type article by Gao (2013), assumes treating the
mentioned terms collectively, as a time-varying parameter
of the system. Such lumped components, often denoted in
the literature as total disturbance, are considered in the
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ADRC approach as an additional, virtual extension of the
system 1 .

The proposed control scheme poses both robust and adap-
tive features, since the unwanted effects occurring in the
system are attenuated in each control cycle. The ADRC,
in general, is a powerful tool, with numerous experimen-
tal case studies (Przybyla et al. (2012); Madonski et al.
(2013)) and even industrial applications (Zheng and Gao
(2010); Vincent (2011)).

The contribution of this paper is the proposition of the
ADRC-based method that gives the ability to treat a given
system, which does not hold the symmetry condition, as a
symmetry-preserving one.

2. SYMMETRY-RECOVERY METHODOLOGY

2.1 System modeling

Assume that r-dimensional manifold X defines a state
space of the system ẋ = f(x, u) and G is a Lie group
of dimension n. The Lie group maps the state X, input
U = Rm, and output Y of dimension p, via following
transformations:

(g, x) ∈ G×X→ ϕg(x) ∈ X,
(g, u) ∈ G× U → ψg(u) ∈ U,
(g, y) ∈ G× Y → %g(y) ∈ Y.

Assuming G is a symmetry group of the system, the
following definition states that:

Definition 1. The system ẋ = f (x, u) is G-invariant with
G-equivariant output map y = h (x, u), if for all g, x, u, y:

f (ϕg(x), ψg(u)) =
∂

∂x
ϕg(x) f (x, u) ,

h (ϕg(x), ψg(u)) = %g (h (x, u)) .

The G-invariance property can be interpreted such that
changing of state, input, or output map of the system by
the action of group G remains the dynamics of the system
unchanged.

Now, consider a more specific dynamic SISO system, which
does not hold the symmetry condition:

ẋ = f(x) + κu+ ζ(t, x, u), (1)

where x is the measurable plant state, u is the plant control
signal, f(x) stands for the known system dynamics, κ 6= 0
denotes the known input scaling factor and ζ(t, x, u) is the
part of the dynamics that excludes the system from being
a symmetry-preserving (SP) one.

If the unwanted term ζ(t, x, u) is time differentiable, then
the system (1) can be artificially augmented with another
state variable as seen below:

ẋ= f(x) + κu+ xr+1,

ẋr+1 = ζ̇ (t, x, u) , (2)

1 In this work, the total disturbance is defined as a combination of
terms in the mathematical model of a given system that breaks its
symmetry.

which now gives dim(X) = r+1 and xr+1 is the additional,
fictitious state variable corresponding to the unknown
term ζ(t, x, u).

If we assume that the information about the ζ(t, x, u) is
however available at every time instant, one can choose a
following modification of the control input:

u := ū− ζ̂(t, x, u)

κ
= ū− x̂r+1

κ
, (3)

where x̂r+1 := ζ̂(t, x, u) is the estimate of the uncertain
term ζ(t, x, u), ū is the new control input, to be tuned to
meet a certain system dynamic behavior, related with the
given control task.

If ζ̂(t, x, u) = ζ(t, x, u), one can use (3) in (1), which results
in a theoretical perfect compensation of the uncertain
term, giving a simplified model of the system:

ẋ = f(x) + κū,

which now holds the symmetry condition. Hence, the aim
is to obtain a following symmetry-recovery scheme:

ẋ = f(x) + κu+ ζ(t, x, u)︸ ︷︷ ︸
not SP

(3)
=⇒ ẋ = f(x) + κū︸ ︷︷ ︸

SP

.

From (3), it is obvious that the effectiveness of the above si-
multaneous estimation and cancellation scheme is directly
related to the quality of reconstruction of the uncertain
total disturbance ζ(t, x, u). One approach is to use a state
observer in order to estimate it (see Fig. 1).

2.2 Observer design

There is a precisely defined method of constructing a
symmetry-preserving observer (further denoted as SP-
ESO). Since the transformation group is a set, one can use
a method, namely normalization, to find all the invariants.
By several assumptions discussed by Bonnabel et al. (2008)
and Nowicki et al. (2013), one can split ϕg(x̂) into ϕag(x̂)

and ϕbg(x̂). The local solution of:

ϕag(x̂) = c, for c ∈ ϕag [X̂],

i.e. g = γ(x̂) maps x̂ to the cross-section γ : X̂ → G. This
is known as a moving frame method. The above solution
is necessary to define a new output error equation, namely
invariant output error, given by:

E := %γ(q̂)(ŷ)− %γ(q̂)(y).

The motivation for such redefinition is the fact that the
usual output error in the form ŷ− y does not preserve the
symmetry of the system.

Once the solution is set, it can be used to get a complete
set of invariants by applying γ(x̂) to:

I(x̂, u) :=
(
ϕbγ(x̂)(x̂), ψγ(x̂)(u)

)
.

Finally, take a set of invariant vector fields W =
{ν1, ..., νr+1}, where r+1 is the dimension of the manifold

X̂. The G-invariant frame W on X̂ is defined for the set of
G-invariant vector fields that forms a basis for the tangent
space TX̂|x̂. By Lemma 1 from Bonnabel et al. (2008), the
vector fields are given by:

νi(x̂) =

(
∂

∂x̂i
φγ(x̂)(x̂)

)−1
∂

∂x̂i
,
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Figure 1. The idea of online estimation and mitigation of effects of the uncertain elements of the system dynamics.

for i = 1, ..., r + 1 and the ∂
∂x̂ is a canonical base of X̂.

Since the model function f(x̂, u) in the SP-ESO observer is
G-invariant in the sense of Definition 1 and we replace the
usual output error with an invariant one, the G-invariant
observer is given by:

˙̂x = f(x̂, u) +W (x̂)L (I, E)E,

where W is a G-invariant frame on X̂, and L (I, E)
is a (r + 1)-by-p ”gain matrix” depending on a set of
invariants and on an invariant output error. Due to the
form of the observer, which is based on the nonlinear
observer, the operations between terms are simply matrix
multiplication.

Remark 2. For the augmented system model in (2), the
(r + 1)-th order SP-ESO is usually constructed. It results

from the assumption that ζ̇(t, x, u) = 0 (which means that
the total disturbance) is often considered to be a piecewise
constant signal / degree-zero time polynomial. However,
perturbation in real applications is rarely constant, but
various examples (e.g. in Madonski and Herman (2013))

show that if ζ̂(t, x, u)− ζ(t, x, u) is small enough, this dis-
crepancy can be practically acceptable, giving satisfactory
quality 2 .

Remark 3. The procedure of online reconstruction of the
unknown term (seen in (2)) and further cancellation of its
effects (seen in (3)) can be also expanded with the ability
to estimate the system modeling uncertainty as well as the
external perturbations acting on the plant. Such approach
assumes that the system can be expressed as:

ẋ = f(x) + κu+ ζ(t, x, u) + ζint(x) + ζext(·), (4)

where ζint(x) is a function with unknown structure and/or
parameters and ζext(·) represents the unknown and un-
measurable overall external disturbances acting on the
system. One can rewrite (4) with a following simplified
local model:

ẋ= f(x) + κu+ xr+1,

xr+1 = ζ∗ (t, x, u, ·) ,
where the generally unmeasurable time-varying total dis-
turbance is now assumed to be:

2 In a discrete-time application, this difference can be made ne-
glectable if the sampling time of the system is appropriately de-
creased.

ζ∗(t, x, u, ·) = ζ(t, x, ·) + ζint(x) + ζext(·).
which can also be treated as the system extra, virtual state
variable xr+1, as presented in (2). Remarks 2 and 3 also
apply to the case when such total disturbance is considered.

3. ILLUSTRATIVE EXAMPLE

3.1 System modeling

Consider a following second order system, which describes
the simplified dynamics of a 1DOF rigid-link manipulator
arm:

θ̈ =
1

J
τ − b

J
θ̇−mglsin(θ)

J︸ ︷︷ ︸
d(θ)

, (5)

where J > 0 is the known inertia of the manipulator link,
b 6= 0 is the known coefficient of the friction model, and
d(θ) ∈ R is the generally unknown symmetry-breaking
term related to the gravity effect (and also the assumed
total disturbance in this case). The above system can also
be expressed with the state representation as:ẋ1 = x2,

ẋ2 =
1

J
τ − b

J
x2 + d(x1),

(6)

where x1 := θ, x2 := θ̇ are the selected phase state
variables.

3.2 Symmetry of the model

It is easy to verify that the system (6) does not admit
symmetry under action of an unit circle group S1. Indeed,
by defining the group action as addition of angles, we have
the following transformation maps:

ϕg(x) =

(
x1 + g
x2

)
,

ψg(τ) = τ,

%g(y) = x1 + g.

According to Definition 1, simple calculation shows:
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L=

(
x2

1

J
τ − b

J
x2 + d(x1 + g)

)
,

R=

(
1 0
0 1

)( x2
1

J
τ − b

J
x2 + d(x1)

)
,

L 6=R.

Now, let us hypothetically assume that the term d(x1)
does not exist, e.g. the considered system is placed in a
gravity-free space. Analogous calculations shows that the
symmetry is now held.

L=

(
x2

1

J
τ − b

J
x2

)
,

R=

(
1 0
0 1

)( x2
1

J
τ − b

J
x2

)
,

L=R.

3.3 Symmetry-preserving observer

If the unwanted term d(x1) is time differentiable, the
system model (6) can be artificially extended with an extra
state variable (x3 := d(x1)) and formulated as:

ẋ1 = x2,

ẋ2 =
1

J
τ − b

J
x2 + x3,

ẋ3 = ḋ(x1).

(7)

For such augmented system model, the SP-ESO can be
constructed. Taking (7), we can design the symmetry-
preserving (or G-invariant) observer. Firstly, the action on
the state has to be redefined:

ϕg(x) =

(
x1 + g
x2
x3

)
,

recalling the fact that the state variable x3 can be viewed
locally as constant (see Remark 2).

The invariant output error is given by normalization
procedure with c = 0:

x̂1 + gγ = 0,

thereby, the solution states:

γ(x̂1) = −x̂1.
which gives:

E(x̂, y) = (−x̂1 + x̂1)− (−x̂1 + x1) = x̂1 − x1.

Obviously, if one takes the canonical basis of prolonged S1

the invariant frame is 3-by-3 identity matrix:

W =
∂

∂(x1, x2, x3)
ϕg

(
x1 + g
x2
x3

)(
1 0 0
0 1 0
0 0 1

)
=

(
1 0 0
0 1 0
0 0 1

)
.

In the end, the equation of G-invariant observer writes:


˙̂x1 = L1(x̂1 − x1) + x̂2

˙̂x2 = L2(x̂1 − x1) +
1

J
τ − b

J
x̂2 + x̂3

˙̂x3 = L3(x̂1 − x1)

aim⇒


x̂1 → θ

x̂2 → θ̇

x̂3 → d(θ)

where x̂1, x̂2, x̂3 are the estimates of the assumed state
variables and L1, L2, L3 < 0 are the observer gains (design

parameters). Terms θ̇ and d(θ) are unknown, hence have
to be reconstructed based on the I/O plant signals.

3.4 Symmetry-recovery loop

Once the information about the unknown term that breaks
the symmetry in the system is reconstructed accurately

(i.e. d̂(θ) = d(θ)), using the SP-ESO from Sect. 3.3,
a following modification of the control variable can be
proposed for the system in (5):

τ = τ̄ − Jd̂(θ), (8)

where τ̄ is the new control input (to be designed later
on). After substitution in (5) it further gives a new form
of the system model, which can be locally (in small time
intervals) treated as a symmetry-preserving one:

θ̈ =
1

J
τ − b

J
θ̇ + d(θ)︸ ︷︷ ︸

not SP

−d̂(θ)
(8)

=⇒ θ̈ =
1

J
τ̄ − b

J
θ̇︸ ︷︷ ︸

SP

. (9)

Such procedure allows to treat the nominal plant, where
the symmetry is not held (i.e. (5)), with a different model
where the symmetry is held (i.e. (9)). The symmetry is

recovered if the estimated term d̂(θ) is being fed back to
the system in real time and compensates for the effects of
the time-varying function d(θ).

3.5 Results

The simulation study of the proposed symmetry-recovery
scheme is performed for the exemplary 1DOF system from
(5). The analysis is divided into two parts (E1: open-
loop tests and E2: closed-loop tests) and conducted in the
Matlab/Simulink environment. The fixed sampling time
of the overall control system in each considered scenario is
Ts = 0.001s with solver ODE5.

E1a: Symmetry-recovery test in the open-loop control
The symmetry-recovery procedure was first tested in an
open-loop scheme. The behavior of the system without
symmetry but with the symmetry-preserving observer is
compared with the results obtained for the symmetry-
preserving system (i.e. without the symmetry-breaking
term d(θ)). The results, seen in Figs. 2 and 3, show that the
proposed symmetry-preserving procedure works, since the
outputs of the two systems are almost identical (cf. em[rad]
representing the difference between the two systems). It
is thanks to the estimation part that reconstructs the
total disturbance with a small estimation error (denoted

as etd = d(θ)− d̂(θ)).

E1b: Robustness analysis in the open-loop control The
scenario from E1a is now tested with an extra, additive,
and unknown sine-type disturbance in the control signal.
From the results in Figs. 4 and 5 one can notice a
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significant influence of the extra perturbation on the SP
system without symmetry-recovery. On the other hand,
the system with symmetry-recovery manages to attenuate
the additional disturbance (which was considered as an
extra part of the total disturbance, cf. Remark 4) and
behaved almost as the SP system without disturbance
(from E1a).

E2a: Symmetry-recovery test in the closed-loop control
This test presents a symmetry-preserving control system,
which combines the symmetry-recovery scheme in the
inner loop with a symmetry controller in the outer loop.
The main benefit of such structure is the fact that the
whole control system preserves the same symmetries as
the plant. Therefore, a G-invariant controller has to be
designed. Take a simple PD controller in the form of:

τ̄ = K2

(
ε
ε̇

)
= K2

(
θd − θ
−x̂2

)
,

where θd[rad] is the reference angular position of the
manipulator link, Ki := diag{kp, kd} with kp and kd
being the proportional and derivative gains of the feedback
controller, respectively. Simple calculations show, that it is
invariant by the action of group G, since the transformed
equation yields the same formula 3 .

The results of the closed-loop system without any addi-
tional disturbances are seen in Figs. 6 and 7. The outcomes
are again compared with the behavior of the SP system.
It is seen that thanks to the symmetry-recovery tool, the
two systems act similarly.

E2b: Robustness analysis in the closed-loop control The
final test studies the closed-loop system with the influence
of the extra unmodeled disturbance in the control signal.
The results are gathered in Figs. 8 and 9. One can notice
that the SP system (without symmetry-recovery loop)
lacks robustness. The added perturbation generates a
significant tracking error in this case. Contrary, the system
with the symmetry-recovery scheme manages to estimate
the unwanted discrepancy and reject its influence on the
system output.

4. CONCLUSIONS AND FUTURE WORK

In this paper, the framework for symmetry-recovery has
been presented. The ADRC-based approach allows the si-
multaneous estimation and decoupling of terms that break
the symmetry of the system. The case study, supported
with simulation results, shows that it is possible to use
techniques exploiting invariance, for the system where
the symmetry has been corrupted by considering some
additional elements in the system dynamics.

Future work concerns the elaboration of the explicit for-
mula for system prolongation, as well as an analysis of
systems with complex geometric structures. Much work is
going to be devoted to real-time experiments in laboratory
conditions.

3 For further readings about G-invariant controllers and advantages
of this approach see Martin et al. (2004); Nowicki et al. (2013).
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