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Abstract: The optimal control problem of connecting any two trajectories in a behavior B
with maximal persistence of that behavior is put forth and a compact solution is obtained
for a general class of behaviors. The behavior B is understood in the context of Willems’s
theory and its representation is given by the kernel of some operator. In general the solution
to the problem will not lie in the same behavior and so a maximally persistent solution is
defined as one that will be as close as possible to the behavior. A vast number of behaviors
can be treated in this framework such as stationary solutions, limit cycles etc. The problem is
linked to the ideas of controllability presented by Willems. It draws its roots from quasi-static
transitions in thermodynamics and bears connections to morphing theory. The problem has
practical applications in finite time thermodynamics, deployment of tensigrity structures and
biomimetic locomotion.

1. INTRODUCTION

The problem considered here is that of connecting two
trajectories from a set with a particular behavior in
such a manner that the characteristic behavior persists
during the transition. These particular behaviors could
be stationary solutions, limit cycles or an even more
general class of behaviors. The idea of exploring such
transitions was first introduced in Verriest and Yeung
(2008). The problem is: “Given two trajectories w1 and
w2 of the same behavior, the objective is to construct a
maximally persistent transition, w, over given finite time
interval [a, b] such that w = w1 for t ≤ a and w = w2

for t ≥ b.” First, we will motivate our interest in the
problem of persistence of behavior, and further elucidate
the concept by some examples. The original motivation
for the problem comes from the notion of quasi-static
transitions in thermodynamics between two equilibrium
points. Persistence of stationarity is aimed for in this
case (Berry et al. (2000), Andresen et al. (1977)). A
related problem where such transitions are found is the
deployment of tensigrity structures. In this case, it is also
desirable to transition from one configuration to another
but remaining close to the equilibrium manifold, so that
in case of loss of power the structure converges to some
equilibrium configuration (Sultan and Skelton (2003)).

In the context of animal locomotion, gaits are periodic
patterns of movement of the limbs. Most animals employ a
variety of gaits (Golubitsky and Stewart (2003)). To switch
from a gait to another, one necessarily has to employ an
aperiodic transition but animals do this naturally in a
graceful manner. It is our hypothesis that this translates to
the transient motion being as close as possible to periodic
behavior, or persistently periodic. The theory of finding
a persistent transition may also be of use in the control
of legged robots (Clark Haynes and Rizzi (2006)). This

entails designing different gaits or schemes of motion of
a robot, and then finding a suitable gait transition that
connects the two desired gaits from the set of dynamically
consistent transitions. Thus, the problem of finding a
persistent transition is of significant practical interest.

The problem of finding a persistent transition was pre-
sented in the earlier work: Verriest and Yeung (2008); Ye-
ung and Verriest (2009); Yeung (2011). However, the focus
in the aforementioned papers was on specific behaviors.
More general results are presented in this paper, which
extend the earlier work in a number of ways. Firstly, a
more generalized and rigorous mathematical formulation
has been established and the nomenclature introduced in
Verriest (2012) is clarified. Secondly, the earlier Wronskian
characterization of a scalar n-th order LTI differential
system, introduced in Verriest (2012), is extended to the
vector case. Thirdly, a very compact method is presented
to find the transitions for a broad class of behaviors, char-
acterized by the kernel of operators, with respect to any
appropriate norm. This motivates the title of the paper.
Fourthly, a characterization of the transitions between tra-
jectories of a linear time invariant dynamical system with
respect to differential behaviors under any Sobolev norm
has been found. These ideas are illustrated using clear
examples including one considering the optimal charging of
a capacitor which is a significant problem in cyber-physics:
the charging of batteries.

2. BEHAVIORAL APPROACH - A REVIEW

We start by reviewing some of the relevant concepts from
the behavioral approach to systems theory. These ideas
will be used later to set the nomenclature for our frame-
work. A detailed exposition of the subject can be found in
Willems (2007); Polderman and Willems (1998). The time
axis is denoted by T. For continuous-time systems, T = R.
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Signal space, W, is the set in which an n-dimensional
observable signal vector, w, takes its values. Typically,
W = Rn, n ≥ 1. The universum is the collection of all
maps from the time axis to signal space, denoted by WT.
A dynamical system Σ is defined as a triple Σ = (T,W,B).
The behavior B is a suitable subset of WT, for instance
the piecewise smooth functions, compatible with the laws
governing Σ. We define the evaluation functional σt by
σt(w) = w(t) a.e. (exception where w is not defined). The
shift operator Sτ is defined by σt(Sτw) = σt+τw.

The dynamical system Σ = (T,W,B) is said to be linear
if W is a vector space over R or C, and the behavior
B is a linear subspace of WT. The dynamical system
Σ = (T,W,B) is said to be shift invariant if w ∈ B implies
Sτw ∈ B for all τ ∈ T. The behavior defined by the system
of differential equationsR(D)w = 0, whereR(ξ) ∈ Rp×n[ξ]
is a matrix of polynomials with real coefficients and D is
the differentiation operator, represents a system of p linear
time invariant (LTI) ordinary differential equations (ODE)
in n scalar variables.

A behavior is called autonomous if for all w1, w2 ∈ B
w1(t) = w2(t) for t ≤ 0 implies w1(t) = w2(t) for almost
all t. The notion of controllability is an important concept
in the behavioral theory. Let B be the behavior of a linear
time invariant system. This system is called controllable
if for any two trajectories w1 and w2 in B, there exists a
τ ≥ 0 and a trajectory w ∈ B such that

σt(w) =

{
σt(w1) t ≤ 0
σt(S−τw2) t ≥ τ

i.e., one can switch from one trajectory to the other, with
perhaps a delay, τ .

3. THE GLUSKABI FRAMEWORK

In this section, we will first define the requisite nomencla-
ture for our problem. We will then rigorously formulate our
problem using the behavioral approach to systems theory
by Willems. We begin by defining a behavior which re-
stricts the universum to just the ones which are interesting.

Definition 1. The Base Behavior (B0) is a subset of the
universum B0 ⊂ WT that defines the set of all allowable
functions of interest. For any particular problem, the
functions we are trying to connect lie in this set and the
search for a connection 1 between the two is also conducted
in this set.

For example, if we want to work with smooth functions
entirely then B0 = C∞(T,W). Or, if we are interested in
the smooth trajectories of an LTI differential system then
B0 = {w ∈ C∞(T,W) s.t. R(D)w = 0}.
Definition 2. A Type (T ) is a strict subset of the base
behavior (T ⊂ B0) described by an operator Op : A → V
in the following way:

T = {w ∈ A s.t. Opw = 0}
where A ⊂ B0 is the maximal linear space on which the
operator is properly defined A ⊂ Dom(Op), and V is a
linear space as well.

1 This usage of the term connection is different from a connection
defined in differential geometry.

The Type behavior defines the set of trajectories possess-
ing a desired quality, which we want to connect. Given the
obvious similarities, we call this the Kernel representation
of the type irrespective of whether the operator Op is
linear or nonlinear. A type may admit representations
other than the kernel representation, but in this paper we
will only consider the kernel representation of types.

Definition 3. A Trait (Tθ) is a subtype of the type
i.e., it is a subset of the type such that it has its own
characteristic behavior, given by some operator Opθ,

Tθ = {w ∈ T such that Opθw = 0}

For instance, a trait could be specified by some (or all)
boundary conditions, or some intermediate values and
their derivatives.

Example 1. (Constants). Let B0 = C0(R,R). Then, the
operator Op := D, the differentiation operator, defines
the type of constants in B0. An example of a particular
trait in this type could be the constant c i.e., Tc = {w ∈
T s.t. w = c}.
Example 2. (Polynomials). Let B0 = C0(R,R). Then, the
operator Op := D3 defines the second order polynomials
type in B0. An example of a trait in this type is the subtype
of first order polynomials or constants. Another example
of trait in this type is polynomials that vanish at t = 0.

Example 3. (Periodic signals with period τ). The operator
Op := (I−Sτ ) where I is the identity operator and S is the
shift operator, defines the periodic type in B0. The periodic
type in B0 = Cω(R,R) may also be characterized by the
infinite product operator

[
D
∏∞
n=1

(
1 + 1

n2ω2D
2
)]

, which

can also be written as sinh
(
π
ωD
)

(Silverman (1984)),
where ω = 2π/τ . This representation defines a number
of traits in terms of the number of finite product terms
and these traits serve as various levels of approximation
to the periodic functions.

The above three definitions form the basic nomenclature
of our problem but we will need one more definition to
rigorously define a connection later on. Given any type,
we can extend it to create a collection of related types in
the following manner.

Definition 4. The Equation Error System (Tee) of a
type T , defined by the kernel of the operator Op, is a union
of behaviors Te := {(w, e) ∈ A× {e} s.t. Opw = e}.
Tee := ∪e∈Op(A)Te = {(w, e) ∈ A× V s.t. Opw = e} ,

where V is the vector space where the image of Op lies
i.e., Op(A) ⊂ V.

Notice that the original type T is the projection onto A of
the behavior T0 = {(w, 0) ∈ A× V s.t. Opw = 0} in this
collection. It is also worth noticing that the Equation Error
System lies in an extended base behavior Σ = (T,W ×
E,B0), where V ⊂ ET.

Example 4. Consider the type in C∞(R,R) defined by
the operator Op := (D − λI), i.e., the type of multiples
of the exponential eλt. Then the equation error system
corresponding to this type is the set of solutions w to the
non-homogeneous ODE (Dw − λw = e), for some forcing
function e ∈ C∞(R,R).

Now with this suitable terminology, we can formulate our
problem. Given a type T , the objective is to find a mapping
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that assigns to any two elements w1 and w2 in the said
type, a unique element, w, in the base behavior which
connects w1 and w2 in finite time, i.e., over the given
interval [a, b], and in such a manner that the defining
quality of the type persists maximally. We will call this
mapping the “Gluskabi map”. Using the established idea
that a type is given by the kernel of some operator Op, the
Gluskabi map and the notion of persistence of a trajectory
are defined in the following manner.

Definition 5. Given a type T , with the associated operator
Op, an element w ∈ A ⊂ B0 is said to be maximally
persistent with respect to the norm ‖.‖, defined on V
restricted to [a, b], if w minimizes ‖Opw‖.
Definition 6. Given a type T , with the associated operator
Op, the Gluskabi map g : T × T → B0 with respect to
the norm ‖.‖, defined on V restricted to [a, b], is defined as
follows:

g(w1, w2)(t) =


w1(t) t ≤ a
argmin

w∈A
‖Opw‖ a < t < b

w2(t) t ≥ b
.

Clearly this requires that V restricted to the interval [a, b]
be a normed space. The connection in the interval [a, b]
will be called the “Gluskabi raccordation”. As evident from
the definition of the Gluskabi map, the element w corre-
sponding to w1, w2 ∈ T may not lie in the type T and is
constructed piecewise from elements in A. A new behavior
can now be constructed by collecting all the elements w
corresponding to any two elements w1 and w2 in the type
T i.e., this behavior is the image of the Gluskabi map.
This behavior will be called the “Gluskabi Extension” and
can also be defined using the extended types Tee in the
following way.

Definition 7. Given a type T , with the associated operator
Op, the Gluskabi Extension (GT ) with respect to the
norm ‖.‖, defined on V restricted to [a, b], is defined as

GT := {w ∈ B0 s.t. ∃w1, w2 ∈ T with Π−w = Π−w1,

Π+w = Π+w2, and ∃(u, e) ∈ Tee
s.t. Π[a,b]w = Π[a,b]u with ‖e‖ minimal

}
where Π is the projection operator i.e., Π−w is the restric-
tion of w to the interval (−∞, a], Π+w is the restriction
to the interval [b,∞), and Π[a,b]w is the restriction to the
interval [a, b].

Notice that the type T is in the Gluskabi Extension GT .
Since the space V generally admits multiple norms, the
Gluskabi map and extension will in general depend on
the chosen norm and the raccordation interval. Thus, a
suitable norm in conjunction with the operator Op com-
pletely characterizes the desired persistence. For instance,
if Op is a differential operator of some order then any
Sobolev norm of compatible degree can be used to get
the required level of smoothness. Say the time interval
is [a, b] and the Op : Cr(R,R) → Cs(R,R), then the
Sobolev norm ‖.‖W of e ∈ V = Cs([a, b],R) is given
by ‖e‖W =

∑n
i=0 ρi‖Die‖L2 , where ρi > 0, n ≤ s, and

‖x‖2L2 =
∫ b
a
x2(t)dt.

4. LTID TYPE

In this section, we focus our attention on an interesting
type namely the linear time invariant differential (LTID)
behavior, Lkn, of some order n , i.e., the set of all solutions
to any system of k constant coefficient homogeneous dif-
ferential equations of nth order. The goal here is to find
a kernel representation for this type Lkn. This type was
first introduced in Verriest (2012), where the operator was
derived for the scalar n-th order differential equation case
i.e., when k = 1. Using Willems’s approach, this behavior
is represented as,

Lkn =
{
w ∈ Cn(R,Rk) | ∃R ∈ R[ξ]k×k

for which R(D)w = 0}
where D is the differentiation operator and R is a poly-
nomial matrix, R(ξ) := R0ξ

n +R1ξ
n−1 + · · ·+Rnξ. Let’s

assume that R0 = I and that the system of differential
equations is not underdetermined or overdetermined. If
w ∈ Lkn, then there exist Ri ∈ R[ξ]k×k such that the
following holds true

w(n) +R1w
(n−1) + · · ·+Rnw = 0 (1)

⇒
(
Dn +R1D

n−1 · · ·+Rn
) [
w ẇ · · · w(nk+k−1) ] = 0

(2)

[Rn · · · R1 I]

 w ẇ · · · w(nk+k−1)

...
...

. . .
...

w(n) w(n+1) · · · w(n+nk+k−1)

 = 0

(3)
Notice that the matrix on the right looks like a Wronskian
in the vector functions (w, ẇ, · · · , w(nk+k−1)). Let’s call it
the generalized Wronskian and partition it in the following
manner:

w · · · w(nk−1) w(nk) · · · w(nk+k−1)

...
...

...
...

w(n−1) · · · w(n−1+nk−1) w(n−1+nk) · · · w(n+nk+k−2)

wn · · · w(n−1+nk) w(n+nk) · · · w(n+nk+k−1)

 .
(4)

Let’s name the upper left and the upper right blocks of

this partitioned matrix as Ŵ and W̃ respectively. Note
that:[

I O
−BA−1 I

] [
A C
B D

] [
I −A−1C
O I

]
=

[
A O
O Schur(A)

]
where Schur(A) is the Schur complement of A. Using this
fact, (3) can be written as

[Rn · · · R1 I]

[
I O[

wn · · · w(n−1+nk)] Ŵ−1 I

]
[
Ŵ O

O Schur(Ŵ )

]
= 0 (5)

⇒

{
[Rn · · · R1] Ŵ +

[
wn · · · w(n−1+nk)] = 0

Schur(Ŵ ) = 0
(6)

The first equation in (6) is just a subset of the original set
of equations (3), specifically the ones formed by using the
columns to the left of the partition in (4). Thus, if w ∈ Lkn
then a necessary condition for w is that Schur(Ŵ ) = 0 or
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[
w(n+nk) · · · w(n+nk+k−1)]−[

wn · · · w(n−1+nk)] Ŵ−1W̃ = 0. (7)

Thus, we have found a nonlinear operator Op such that
the functions w satisfying Opw = 0 or (7) form the nth
order LTID type in k variables (Lkn).

5. FINDING THE GLUSKABI EXTENSION

Now that we have rigorously stated our problem, we
will devote this section to present two results on finding
the Gluskabi extension that are applicable to a broad
collection of types. The only requirement for these results
to be applicable is that the range of the operator associated
with the type, restricted to the raccordation interval [a, b]
be an inner product space and the said operator admits
an adjoint. This condition is not extremely restrictive and
is satisfied by a number of interesting operators such as
differential operators and shift operators. The two results
differ in the choice of the base behavior; in the first result
the base behavior is some appropriately chosen function
space, whereas in the second case the base behavior is the
set of smooth trajectories of a dynamical system. So the
two cases are appropriately called the signal raccordation
and the dynamical raccordation problem respectively.

5.1 Signal Raccordation

Theorem 1. Given a type T with the associated operator
Op, the Gluskabi extension with respect to the norm ‖.‖Q,
where Q is a self-adjoint operator, is given by

GT |[a,b] = {w ∈ B0 such that Op∗wQOpw = 0} |[a,b],
where the raccordation is sought over the interval [a, b],
the norm is computed as ‖.‖2Q = 〈Q(.), (.)〉 and Opw is

the linearized form (Gâteaux derivative) of the operator
Op about w.

Proof. This can be easily proved using variational calcu-
lus. Given the type operator, Op : A → V, and the norm
‖.‖2Q, the cost functional to be minimized can be written
as

J(w) = ‖Opw‖2Q = 〈QOpw,Opw〉 (8)

Now using the assumption that Op is Gâteaux differen-
tiable, the first variation of J exists and its expression in
terms of Op is computed as follows:

∆J = 2t〈QOpw,Opw h〉+ t2〈QOpw h,Opw h〉
+ 2〈QOpw,O

(
t2
)
〉+ 2〈Opw th,O

(
t2
)
〉

+ 〈O
(
t2
)
, O
(
t2
)
〉. (9)

The last expression is obtained using the facts that Q is
self adjoint and Opw is linear. Then the first variation is
given by

δJ(w;h) = lim
t→0

∆J

t
= 2〈Op∗wQOpw, h〉+ boundary terms (10)

since each of the other terms in (9) goes to zero as t→ 0.
Thus, a necessary condition for all raccordations in the
Gluskabi extension, GT , is that

Op∗wQOpw = 0. (11)

The boundary terms are zero because of the given bound-
ary conditions for the problem i.e., w and possibly a num-
ber of its derivatives at t = a and t = b are fixed. Therefore
the admissible variations h are zero at the endpoints. 2

If there exists an operator Op∗ such that

Op∗(w + δw)−Op∗ w = Op∗w δw ∀w ∈ A, (12)

then the above condition for the Gluskabi Extension (11)
can be written as the following nested form:

Op∗(w + QOpw) = Op∗ w ∀w ∈ GT . (13)

Furthermore, examples of the norms that can be employed
are the Sobolev norms.

5.2 Dynamical Raccordation

Next we look at the dynamical raccordation case when
the trajectories in the base behavior are constrained by
the dynamics of the system. Since one is never allowed
to step out of the base behavior, we can call the dynam-
ical system constraints as “hard constraints” whereas the
type constraints are “soft constraints”. The focus of the
following result is on finding the Gluskabi extension for
polynomial differential types, i.e., Op is a polynomial in D
and the base behavior is trajectories of an LTI dynamical
system i.e., B0 = {w ∈ C∞(R,Rq) s.t. R(D)w = 0} where
R ∈ Rg×q[ξ] and g < q.

The presentation of the main result is preceded by some
necessary remarks. Given a scalar type (T ,Op) i.e., de-
fined on signal space W = R, it can be lifted to vector
trajectories i.e., W = Rq by extending Op as Ope w =

(Opw1, · · · ,Opwq)
T

for w = (w1, · · · , wq)T ∈ WR. In
the following result Op will be understood to be Ope

wherever appropriate. The inner product is appropriately
extended as well. Every LTI system has an equivalent
minimal representation that can also be expressed in the
input/output form P (D)y = N(D)u where P ∈ Rg×g[ξ],
detP 6= 0, and P−1N is a proper matrix (Polderman and
Willems (1998)). This input/output form of an LTI system
will be used in the following result and since u and y are
simply obtained by some partition of w, w ∈ T implies
that both u and y are of the same type. Hence, we are
looking for connections of input/output pairs of the type
T .

Theorem 2. Given a minimal and controllable linear time
invariant dynamical system P (D)y = N(D)u and a type
T with the associated linear operator Op, the trajectories
in the Gluskabi extension with respect to the Sobolev
norm ‖.‖Q, restricted to the interval [a, b] are given by
the following equations:(
U∗12 Opu∗QuOpuU12 + U∗22 Opy∗QyOpyU22

)
η = 0

−U12 η = u

U22 η = y

where U =

[
U11 U12

U21 U22

]
is a unimodular matrix such that

[N P ]U = [I O], P ∈ Rg×g[ξ], N ∈ Rg×(q−g)[ξ], U ∈
Rq×q[ξ], Q is self-adjoint, y and u are the output and input
respectively, and D is the differentiation operator.

Proof. The cost function to be minimized along with the
adjoined constraints is given in the inner product form:
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J(u) =
1

2
〈QuOpu u,Opu u〉+

1

2
〈QyOpy y,Opy y〉

+ 〈λ, P (D)y −N(D)u〉 (14)

where Opu, Opy, Qu and Qy are the appropriately
extended forms of the operators Op and Q, depending
on dimensions of u and y, respectively. The first variation
of J leads to the Euler-Lagrange equations,

Opy∗QyOpy y + P (D)∗ λ = 0. (15)

The necessary condition for optimality is,

Opu∗QuOpu u−N(D)∗ λ = 0. (16)

To find the Gluskabi extension it is required to solve
the following set of equations with the given boundary
conditions: [

N∗ X O
P ∗ O Z
O N P

]
(D)

[
λ
−u
y

]
= 0, (17)

whereX, Z,N∗, and P ∗ are polynomial matrices such that
X(D) = Opu∗QuOpu, Z(D) = Opy∗QyOpy, N∗(D) =
N(D)∗, and P ∗(D) = P (D)∗. This behavior in (17) will be
unchanged under any left unimodular transformation on
the polynomial matrix. Since the system is controllable,
the rank of the matrix [P (s) −N(s)] is the same for all
s ∈ C and because of minimality the matrix has full row
rank for almost all s, and so it has full rank for all s
and the polynomial matrices P and N are left coprime.
Thus, there always exists a unimodular matrix U such that
[N P ]U = [I O]. It also holds that

U∗
[
N∗

P ∗

]
=

[
I
O

]
(18)

where U∗(s) = U(−s)T . If the matrix U is partitioned as[
U11 U12

U21 U22

]
, then U∗ =

[
U∗11 U

∗
21

U∗12 U
∗
22

]
. A new unimodular ma-

trix can now be constructed using U∗, specifically

[
U∗ O
O I

]
,

and applying it as a left unimodular transformation to (17)
yields: [

I U∗11X U∗21Z
O U∗12X U∗22Z
O N P

] [
I O
O U

] [
I O
O U

]−1
(D)

[
λ
−u
y

]
= 0

[
I U∗11XU11 + U∗21ZU21 U∗11XU12 + U∗21ZU22

O U∗12XU11 + U∗22ZU21 U∗12XU12 + U∗22ZU22

O I O

][
λ
ν
η

]
=0

(19)

where the bold font corresponds to the differential oper-
ator of the respective polynomial, e.g. X = X(D), and[
I O
O U

]−1 [ λ
−u
y

]
=

[
λ
ν
η

]
, ν is a g × 1 vector, and η is a

(q−g)×1 vector. The third row of (19) simplifies to ν = 0
and then the second row simplifies to the equation,

(U∗12XU12 + U∗22ZU22) η = 0

and the subsequent substitution yields

u = −U12 η

y = U22 η

2

The controllability assumption is a sufficient condition for
the solution to exist. Furthermore, for smooth solutions to

an LTID system the time can be taken to be arbitrarily
small (Polderman and Willems (1998)) and so the length
of the interval [a, b] does not matter. This result can be
further generalized to the case when only the input or the
output is of the type and needs to be connected or to
the case when the persistence of output is more important
then the input. This will be further elucidated in the final
example in Section 6.

6. EXAMPLES

We start by looking at the signal raccordation problem.
Let’s choose our base behavior to be B0 = C0(R,R)
and the type to be scalar first order LTID type L1

1 i.e.,
the set of all exponentials ceλt for all values of c ∈ R
and λ ∈ R. Looking back at Section 4, the operator
for this type is found to be Opw = ẅw − ẇ2. Say
the raccordations are sought over the interval [0, 1] and
the norm to be minimized is the usual L2 norm. Then
according to Theorem 1, the raccordation w over the
interval [0, 1] must be the solution to the differential
equation Op∗wOpw = 0 where Opw = wD2 − 2ẇD+ ẅI.
This gives us a general solution and then the specific
raccordation connecting say w1 and w2 is obtained by

using the boundary conditions i.e. w(i)(0) = w
(i)
1 (0) and

w(i)(1) = w
(i)
2 (1) for i = 0 and i = 1. The raccordation for

the case when w1 = 5e−2t and w2 = 0.02e8t is shown in
Fig. 1.

-1.0 -0.5 0.5 1.0 1.5

10

20

30

40

50

5e−2t

0.02e8t

Fig. 1. A raccordation between w1 = 5e−2t and w2 =
0.02e8t.

Next we look at an example for dynamical raccordation.
We have a scalar first order LTI system given by the
input-output differential equation (D + 1)y = u. We are
interested in transitioning from one constant steady state
to another. So our type is “constants” and Op = D. Notice
that elements of this type satisfy the hard constraint
i.e., if y = c where c is some constant then u = c.
The transfer function for this system is H(s) = 1

s+1

and so at steady state yss = uss, by the final value
theorem. The chosen norm is again the L2 norm and the
raccordation time interval is [0, 1]. The numerator and
denominator polynomials are N(s) = 1 and P (s) = s + 1

respectively. And so U =

[
1 −(s+ 1)
0 1

]
is the unimodular

matrix required by Theorem 2 and the following system of
differential equations need to be solved.

[(D + 1)∗Op∗Op(D + 1) + Op∗Op] η = 0 (20)

(D + 1) η = u (21)

η = y (22)
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Solving these differential equations yields,

y(t) = Ae
√
2t +Be−

√
2t + C +Dt

u(t) = (1 +
√

2)Ae
√
2t + (1−

√
2)Be−

√
2t + C +D(1 + t)

Again the specific raccordation is obtained by using the
boundary conditions i.e. u(0), y(0), u(1), and y(1). The
raccordation for the case when u = y = 0 for t ≤ 0 and
u = y = 1 for t ≥ 1 is illustrated in Fig. 2.

-1.0 -0.5 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

u(t)

y(t)

Fig. 2. The raccordation from 0 to 1. Input is the dashed
line and output is the solid one.

We end this section by looking at the cyber-physical
problem of charging a capacitor. We consider the series
RC circuit shown in Fig. 3. The objective here is to
put a charge Q on the capacitor in time interval [0, T ].
So the type to be considered for this case is the “type
of constants” and again the L2 norm is minimized. The
dynamical system equation associated with the circuit is
q̇+ 1

RC q = 1
Ru, where q is the charge on the capacitor and

u is the source voltage as well as the input over here. The
type constraint is only imposed on the output i.e. q and so
in terms of Theorem 2, Qu = 0. The resulting trajectory
of charge and the input voltage is illustrated in Fig. 4.
An interesting parallel has been found that the resulting
minimizing trajectory obtained from applying Theorem 2
is the same trajectory obtained when minimizing the heat
generated in the resistor as shown in De Vos and Desoete
(2000). This points to a possible correlation between our
theory and minimization of entropy for thermodynamic
systems and will be explored in future publications.

�

�����

C

Fig. 3. Charging of a capacitor in an RC circuit

7. CONCLUSION

The previous work of Verriest and Yeung was extended by
introducing new terminology and rigorously formulating
the raccordation problem using those terms. The solution
to the raccordation problem corresponds to constructing
the Gluskabi extension. A generalized construction of
the Gluskabi Extension was obtained for the class of

u(t)

q(t)

Q

Q
C

T
t

q, u

Fig. 4. Charge and input voltage trajectories – RC circuit

types defined by a kernel. The Gluskabi Extension for
trajectories of a linear time invariant dynamical system
was also obtained, and a novel operator characterization
for the LTI nth order differential type was developed.
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