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Abstract: Partial network synchronization is studied for a class of nonlinear oscillators
interconnected through diffusive dynamic couplings. We construct diffusive dynamic couplings
combining nonlinear observers and output feedback controllers. Sufficient conditions on the
systems to be interconnected, on the network topology, on the observer dynamics, and on the
coupling strength that guarantee (global) partial synchronization are derived. The results are
illustrated by computer simulations of coupled Hindmarsh-Rose oscillators.

1. INTRODUCTION

Synchronization of dynamical systems has attracted the
attention of many researchers over the last decades. One
of the first results regarding synchronization of chaotic
systems was presented by Fujisaka and Yamada [1983].
In their paper, it is shown that coupled chaotic systems
may synchronize in spite of their high sensitivity to initial
conditions. After this result, considerable interest in the
notion of synchronization of general nonlinear systems
has arisen. Several examples of synchronous behavior in
nature, science, and engineering can be found in, for
instance, Blekhman [1988], Pikovsky et al. [2001], Stro-
gatz [2003], and references therein. In this manuscript,
we study a phenomenon called partial synchronization or
clustering in networks of coupled oscillators, i.e., some
oscillators in the network do synchronize while others
do not. The study of partial synchronization is relevant
in many science and engineering practical applications.
For instance in Terry et al. [1999], the authors report
partial synchronization occurrence in arrays of chaotic
semiconductor lasers. Rulkov [1996] studies experimental
partial synchronization in networks of chaotic circuits with
applications to communication systems. The clustering
problem of Josephson junction arrays with applications to
high-frequency electromagnetic generators is addressed in
Qin and Chen [2004]. Partial synchronization of diffusively
coupled oscillators has been investigated in, for instance,
Belykh et al. [2000], Yanchuk et al. [2001], Pogromsky
et al. [2002], and Pogromsky [2008]. In particular, Pogrom-
sky et al. [2002] and Pogromsky [2008] derive conditions
for the existence and stability of partial synchronization
modes in networks of nonlinear semipassive oscillators
with convergent internal dynamics. Moreover, the authors
show that if a network contains certain symmetries, then
these symmetries identify modes of partial synchroniza-
tion. In these results, it is assumed that the variable z
that renders the internal dynamics convergent, and for
which each system is strictly semipassive is used in the
diffusive (feedback) coupling. Therefore, if the measurable
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output is a different output function y, which does not
have the desired stability properties, then these results
cannot be directly applied. Nevertheless, if the systems
are observable, there may exist a (nonlinear) observer,
which reconstructs z from measurements of y. If such an
observer exists, then a diffusive dynamic coupling (DDC),
which only depends on the measurable output y could be
constructed to interconnect the systems. In Murguia et al.
[2013], we have started with the analysis of these ideas
for the study of full network synchronization. Following
the same approach, in this paper, we extend the ideas
presented by Pogromsky [2008] to the case where the
systems are interconnected through observer-based diffu-
sive dynamic couplings. We derive sufficient conditions
on the individual systems, on the network topology, on
the observer dynamics, and on the coupling strength that
guarantee partial network synchronization. The remainder
of the paper is organized as follows. In Section 2, the no-
tions of semipassivity, convergent systems, and some basic
terminology of graph theory are introduced. The system
description and the problem statement are given in Section
3. The observer structure, the proposed diffusive dynamic
coupling, and sufficient conditions for boundedness of the
closed loop system are introduced in Section 4. In Sections
5 and 6, we present the main result on network partial
synchronization. In Section 7, an illustrative example is
given. Finally, conclusions are stated in Section 8.

2. PRELIMINARIES

The Euclidian norm in Rn is denoted simply as | · |,
|x|2 = xTx, where T defines transposition. The notation
col(x1, ..., xn) stands for the column vector composed of
the elements x1, ..., xn. This notation will be also used in
case the components xi are vectors. The induced norm
of a matrix A ∈ Rn×n, denoted by ‖A‖, is defined as
‖A‖ = maxx∈Rn,|x|=1 |Ax|. The n × n identity matrix is
denoted by In or simply I if no confusion can arise. The
spectrum of a matrix A is denoted by spec(A). For any
two matrices A and B, the notation A⊗B (the Kronecker
product) stands for the matrix composed of submatrices
AijB , where Aij , i, j = 1, ..., n, stands for the ijth entry of
the n×n matrix A. Let X ⊂ Rn and Y ⊂ Rm. The space of
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continuous functions from X to Y is denoted by C(X ,Y).
If the functions are (at least) r ≥ 0 times continuously
differentiable, then it is denoted by Cr(X ,Y). A function
s : R≥0 → R≥0, is of class K if it is continuous, strictly
increasing and s(0) = 0. It is of class K∞ if, in addition,
it is unbounded.

2.1 Semipassive Systems

Consider the system

ẋ = f(x, u), (1a)

z = h(x), (1b)

with state x ∈ Rn, input u ∈ Rm, output z ∈ Rm,
sufficiently smooth functions f : Rn × Rm → Rn, and
h : Rn → Rm.

Definition 1. Pogromsky et al. [2002]. System (1a),(1b) is
called Cr-semipassive if there exists a nonnegative storage
function V ∈ Cr(Rn,R≥0) such that V̇ (x, u) ≤ yTu −
H(x), where the function H ∈ C(Rn,R) is nonnegative
outside some ball, i.e., ∃ ϕ > 0 s.t. |x| ≥ ϕ → H(x) ≥
%(|x|), for some continuous nonnegative function %(·) de-
fined for |x| ≥ ϕ. If s1(xi) ≤ V (xi) ≤ s2(xi) for some
s1, s2 ∈ K∞ and the function H(·) is positive definite
outside some ball, then the system (1a),(1b) is said to be
strictly Cr-semipassive.

2.2 Convergent Systems

Consider the system (1a) and suppose f(·) is Lipschitz in
x, u(·) is piecewise continuous in t and takes values in some
compact set u ∈ U ⊆ Rm.

Definition 2. System (1a) is said to be convergent if and
only if for any bounded signal u(t) defined on the whole
interval (−∞,+∞) there is a unique bounded globally
asymptotically stable solution x̄u(t) defined in the same
interval for which it holds that, limt→∞ |x(t)− x̄u(t)| = 0
for all initial conditions.

Proposition 1. Demidovich [1967] and Pavlov et al. [2004].
If there exists a positive definite symmetric matrix P ∈
Rn×n such that all the eigenvalues λi(Q) of the symmetric
matrix

Q(x, u) =
1

2

(
P

(
∂f

∂x
(x, u)

)
+

(
∂f

∂x
(x, u)

)T
P

)
, (2)

are negative and separated from zero, i.e., there exists a
constant δ ∈ R>0 such that λi(Q) ≤ −δ < 0, for all
i ∈ {1, ..., n}, u ∈ U and x ∈ Rn, then system (1a)
is globally exponentially convergent, and there exists a
positive definite function W ∈ C2(Rn,R≥0) satisfying

(∇W(x1 − x2))T (f(x1, u)− f(x2, u)) ≤ −α |x1 − x2|2 ,
for some α ∈ R>0.

2.3 Graph Theory

Given a set of interconnected systems, the communication
topology is encoded through a communication graph. The
convention is that system i receives information from
system j if and only if there is a directed link from node j
to node i in the communication graph. Let G = (V, E , A)
denote a weighted digraph (directed graph), where V =

{v1, v2, ..., vk} is the set of nodes, E ⊆ V × V is the
set of edges, and A is the weighted adjacency matrix
with nonnegative elements aij . The neighbors of vi is the
set of directed edges to a node vi and it is denoted as
Ei. If the graph does not contain self-loops, it is called
simple. Throughout this manuscript, it is assumed that the
communication graph is strongly connected, i.e., for every
two nodes (i, j) ∈ V, there is at least one path connecting
i and j. If two nodes have a directed edge in common, they
are called adjacent. Assume that the network consists of k
nodes, then the adjacency matrix A ∈ Rk×k := aij with
aij > 0, if {i, j} ∈ E and aij = 0 otherwise. Finally, we
introduce the degree matrix D ∈ Rk×k := diag{d1, ..., dk}
with di =

∑
j∈Ei aij , and L := D − A, which is called the

Laplacian matrix of the graph G, see Bollobas [1998] for
further details.

3. SYSTEM DESCRIPTION

Consider k identical nonlinear systems of the form

ẋi = f(xi) +Bui, (3a)

yi = C1xi, (3b)

zi = C2xi, (3c)

with i ∈ I := {1, ..., k}, state xi ∈ Rn, input ui ∈ Rm,
measurable output yi ∈ Rs, semipassive output zi ∈ Rm,
sufficiently smooth function f : Rn → Rn, and matrices
C1, C2, and B of appropriate dimensions. The matrix
C2B ∈ Rm×m is assumed to be similar to a positive
definite matrix. In addition, it is assumed that, the systems
(3a),(3c) are strictly C1-semipassive and have relative
degree one. A network is called diffusively coupled if the
systems interact through a coupling of the form

ui = γ
∑
j∈Ei

aij(zj − zi), i ∈ I, (4)

where zj denotes the semipassive outputs of systems j to
which system i is connected, γ > 0 denotes the coupling
strength, aij ≥ 0 are the weights of the interconnec-
tions, and Ei is the set of neighbors of i. Moreover, since
the coupling strength is encompassed in the constant γ,
then it can be assumed without loss of generality that
maxi∈I

∑
j∈Ei aij = 1. Notice that the controller (4) can

be written in a matrix notation as follows

u = −γ (L⊗ Im) z, (5)

where L ∈ Rk×k denotes the Laplacian matrix, z :=
col(z1, ..., zk) ∈ Rkm, and u := col(u1, ..., uk) ∈ Rkm.
Define x := col(x1, ..., xk) ∈ Rkn and the linear manifold

M := {x ∈ Rkn|xi = xj ,∀ i, j ∈ I}.
The manifold M is called the synchronization manifold.
The systems (3a),(3c),(4) are said to fully synchronize,
or simply synchronize, if the synchronization manifold
M contains an asymptotically stable subset. In a similar
manner, consider the linear manifold

MP := {x ∈ Rkn|xi = xj , for some i, j ∈ I}.
The manifold MP is called a partial synchronization
manifold. The systems (3a),(3c),(4) are said to partially
synchronize, if the partial synchronization manifold MP

is invariant under the closed loop dynamics and contains
an asymptotically stable subset.
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The result presented here is a direct extension of the
results presented by Pogromsky [2008, 2009], where suffi-
cient conditions for partial synchronization in networks of
diffusively interconnected semipassive systems are derived.
These papers show that if a network contains certain sym-
metries, then these symmetries identify modes of partial
synchronization. It is therefore interesting to extend these
results to the case when the variable zi is not available, but
there exists a (nonlinear) observer which reconstructs zi
from the measurable output yi. If such an observer exists,
we can construct a diffusive dynamic coupling combining
the observer and an estimated version of the diffusive
coupling (4).

4. DIFFUSIVE DYNAMIC COUPLING

In this section, the structure of the observers that we
consider and the diffusive dynamic coupling that is used
to interconnect the systems are introduced. Moreover,
sufficient conditions for boundedness of the closed loop
system are presented.

4.1 Nonlinear Observer

Consider the k identical systems (3). Assume that for any
initial condition xi(t0) ∈ Rn and every input signal ui, the
corresponding solution x(t) is well defined and ultimately
bounded for all t ≥ t0. Consider an observer of the form

η̇i = l(ηi, yi, ui),

ẑi = β(ηi, yi),
(6)

with observer state ηi ∈ Rp, p ≥ n− s, ẑi ∈ Rm denoting
the estimated semipassive variable zi, sufficiently smooth
vectorfield l : Rp ×Rs ×Rm → Rp and function β : Rp ×
Rs → Rm. Associated with the observer (6), we have the
estimation error εi ∈ Rm defined as

εi := ẑi − zi = β(ηi, yi)− zi. (7)

Then, the estimation error dynamics is given by

ε̇i =
∂β(ηi, yi)

∂ηi
l(ηi, yi, ui) (8)

+

(
∂β(ηi, yi)

∂yi
C1 − C2

)
(f(xi) +Bui) .

We assume that l(·) and β(·) are designed such that the
estimation error dynamics (8) is of the form

ε̇i = φ(εi, xi), (9)

with sufficiently smooth vectorfield φ : Rm × Rn → Rm

and φ(0, xj) = 0. Furthermore, it is assumed that ẑi
uniformly asymptotically converge to zi. This implies that
the origin of the estimation error dynamics (9) (or 8) is
uniformly asymptotically stable. Then, there may exist a
radially unbounded function V0 ∈ C1(Rm,R≥0) such that

(∇V0(εi))
Tφ(εi, xi) ≤ −κ |εi|2 , (10)

uniformly in xi(t), for some constant κ ∈ R>0. In general,
it is unknown under what conditions on (3a) and (3b)
the (nonlinear) observer (6) can be constructed. In this
manuscript, it is assumed that the observer exists and
the observation error converges uniformly asymptotically
to zero. Nevertheless, we forward the interested reader to
Nijmeijer and Mareels [1997] and Karagiannis et al. [2008]
for existence conditions and interesting design methods of
(nonlinear) observers.

4.2 Diffusive Dynamic Coupling

Let the k systems (3a),(3b) interact through a DDC of the
form

η̇i = l(ηi, yi, ui), (11a)

ẑi = β(ηi, yi), (11b)

ui = γ
∑
j∈Ei

aij (ẑj − ẑi) , (11c)

where γ > 0 denotes the coupling strength and aij > 0 are
the weights of the interconnections. The interconnection
is not assumed to be symmetric, i.e., aij is not necessarily
equal to aji. Moreover, since the coupling strength is
encompassed in the constant γ, then it can be assumed
without loss of generality that maxi∈I

∑
j∈Ei aij = 1. The

dynamic coupling (11) is the combination of the nonlinear
observer (6) and an estimated version of the diffusive
coupling (4).

4.3 Boundedness of the Interconnected Systems

In this part, we give conditions for boundedness of the
closed loop system.

Lemma 1. (Murguia et al. [2013]). Consider k identical
systems (3a),(3b) on a simple strongly connected graph
interconnected through the DDC (11). Assume that

(H4.1) There exists a nonlinear observer (6) such that
the estimation error dynamics (9) is (globally) asympto-
tically stable with radially unbounded Lyapunov func-
tion V0 ∈ C1(Rm,R≥0) satisfying (10).

(H4.2) Each system (3a),(3c) is strictly C1-semipassive
with radially unbounded storage function and the func-
tions H(xi) are such that there exists R > 0 such
that |xi| > R implies that H(xi) − γdi|zi|2 > 0 with
di =

∑
j∈Ei aij .

Then, the solutions of the coupled system (3a),(3b),(11)
exist for all t ≥ 0 and are ultimately bounded.

5. SYMMETRIES AND INVARIANT MANIFOLDS

In this section, we extend the ideas presented by Pogrom-
sky [2008] for the identification of partial synchronization
modes to the case of diffusive dynamic couplings. If a given
network possesses certain symmetry, this symmetry must
be present in the Laplacian matrix L. In particular, the
network may contain some repeated patterns when con-
sidering the arrangements of the constants aij and hence
the permutation of some elements would leave the network
unchanged. The matrix representation of a permutation of
the set I = {1, ..., k} is a permutation matrix Π ∈ Rk×k.
In the following lemma, we show that a symmetry in the
network defines a linear invariant manifold for the closed
loop dynamics.

Lemma 2. Consider a network of k systems (3a),(3b)
interconnected through the DDC (11) with Laplacian
matrix L ∈ Rk×k. Let Π ∈ Rk×k be a permutation matrix.
If there is a solution X ∈ Rk×k to the matrix equation

(Ik −Π)L = X (Ik −Π) , (12)

then the set ker
(
Ik(n+m) −Π⊗ In+m

)
defines a linear

invariant manifold for the coupled systems (3a),(3b),(11).
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Proof: Since εi = ẑi − zi, then the closed loop system
(3a),(3b),(11) can be written in term of the estimation
error εi as follows

ε̇i = φ(εi, xi), (13)

ẋi = f(xi) + γB
∑
j∈Ei

aij (zj − zi + εj − εi) , (14)

with φ(·) from (9). Introduce the new set of variables: the
stacked state ξ := col(ε1, x1, ..., εk, xk), Ξ := Π ⊗ In+m,
F (ξ) := col(φ(ε1, x1), f(x1), ..., φ(εi, xi), f(xi)), and

B̃ =

(
0 0
B BC2

)
. (15)

Then, using the new notation, the stacked closed loop
system (3a),(3b),(11) can be written as

ξ̇ = F (ξ)− γ(L⊗ B̃)ξ. (16)

Assume that at some time t∗ the extended state ξ(t∗) satis-
fies (Ik(n+m)−Ξ)ξ(t∗) = 0. Then, the set ker

(
Ik(n+m) − Ξ

)
is invariant under the closed loop dynamics if the assump-
tion of (Ik(n+m)−Ξ)ξ(t∗) = 0 implies (Ik(n+m)−Ξ)ξ̇(t∗) =
0. Consider (16) and the solution X of the matrix equation
(12). Since Π is a permutation matrix, it follows that
ΞF (ξ(t∗)) = F (Ξξ(t∗)), then

(Ik(n+m) − Ξ)ξ̇(t∗) = (Ik(n+m) − Ξ)F (ξ(t∗))

− γ(Ik(n+m) − Ξ)(L⊗ B̃)ξ(t∗)

= F (ξ(t∗))− F (Ξξ(t∗))

− γ(X ⊗ B̃)(Ik(n+m) − Ξ)ξ(t∗) = 0,

because it is assumed that (Ik(n+m) − Ξ)ξ(t∗) = 0.
It follows that (Ik(n+m) − Ξ)ξ(t) = 0 for all t ≥ t∗

and therefore the set ker
(
Ik(n+m) −Π⊗ In+m

)
defines a

linear invariant manifold for the interconnected systems
(3a),(3b),(11). �

6. PARTIAL SYNCHRONIZATION

In the previous section, conditions for the existence of
linear invariant manifolds are presented. For partial syn-
chronization to occur, we require these manifolds to con-
tain an asymptotically stable subset. In this section, we
present sufficient conditions for a linear invariant manifold
to contain an asymptotically stable subset. Consider the
k systems (3). Since it is assumed that the systems have
relative degree one and the matrix C2B is similar to a
positive definite matrix, then it can be shown that there
always exists a globally defined coordinate transformation
such that systems (3a),(3c) can be written in the following
normal form

ζ̇i = q(ζi, zi), (17)

żi = a(ζi, zi) + C2Bui, (18)

with ζi ∈ Rn−m the state of the internal dynamics,
sufficiently smooth vectorfields q : Rn−m ×Rm → Rn−m,
and a : Rn−m × Rm → Rm. For the sake of simplicity,
it is assumed that C2B = Im. In the following theorem,
we give sufficient conditions for partial synchronization to
occur in the closed loop system.

Theorem 1. Consider k identical systems (3a),(3b) inter-
connected through the diffusive dynamic coupling (11) on
a simple strongly connected graph. Suppose the conditions
of Lemma 1 and Lemma 2 are satisfied for some matrix
X and permutation matrix Π. In addition assume that

(H6.1) There is a constant λ′ > 0 such that

1

2
ϑT (I −Π)

T
(X +XT ) (I −Π)ϑ ≥ λ′ |(I −Π)ϑ|2 .

(H6.2) There exists a positive definite matrix P = PT
such that the eigenvalues of the symmetric matrix

P
(
∂q

∂ζi
(ζi, zi)

)
+

(
∂q

∂ζi
(ζi, zi)

)T
P,

with q(·) from (17), are strictly negative and bounded
away from zero for all ζi ∈ R(n−m) and zi ∈ Rm.

Then, there exist positive constants γ′ and κ′ such that
if γ > γ′ and κ > κ′ with κ from (10), then the set
ker
(
Ik(n+m) −Π⊗ In+m

)
contains a globally asymptoti-

cally stable subset.

A sketch of the proof of Theorem 1 is presented in the
appendix. Notice that if the matrices L and Π commute,
then the matrix equation (12) admits a solution X = L.
The problem of finding a λ′ ∈ R>0 satisfying (H6.1) can
be solved via singular value decomposition, see Pogromsky
[2009]. Moreover, if X +XT commutes with Π, then λ′ is
the minimal eigenvalue of 1

2 (X+XT ) under the restriction

that the eigenvectors of 1
2 (X+XT ) are taken from the set

range(Ik −Π).

7. EXAMPLE

A. Convergence and Semipassivity. Consider k iden-
tical Hindmarsh-Rose oscillators of the form

ζ̇1i = 0.005 (4 (zi + 1.618)− ζ1i) , (19a)

ζ̇2i =−2zi − z2
i − ζ2i, (19b)

żi =−z3
i + 3zi − 4.75 + 5ζ2i − ζ1i + ui, (19c)

yi = ( ζ1i, ζ2i )
T
. (19d)

where yi is the measurable output, state xi = (ζ1i, ζ2i, zi)
T

∈ R3, input ui ∈ R, and i ∈ I = {1, 2, 3, 4}. It is shown in
Neefs et al. [2010] that the system (19a)-(19c) is strictly C1-
semipassive with input ui, output zi and storage function
V (xi) = 1

2 ( 1
0.005·4ζ

2
1i+µζ

2
2i+z

2
i ) for some µ > 0. Moreover,

the corresponding H(xi) satisfies (H4.2) for arbitrarily
large γ. Assumption (H6.2) is satisfied with P = I2, i.e.,
the internal dynamics (19a),(19b) is convergent. At this
point, Theorem 1 in Pogromsky [2008] could be applied
to conclude that the network of coupled Hindmarsh-Rose
systems may exhibit partial synchronization. However, the
variable zi is not available for feedback. The coupling
variable is the measurable output yi; therefore, the results
in Pogromsky [2008] can not be used. Nevertheless, if there
exists a nonlinear observer which estimates zi from yi, then
the DDC (11) could be constructed and therefore Theorem
1 may be used to study partial synchronization.
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B. Nonlinear Observer.

Proposition 2. Consider k systems of the form

η̇i = −0.005κ1

(
4

κ2
β + 4.472− y1i

)
(20)

+ κ2

(
−β

3

κ3
2

+
3β

κ2
− 4.75 + 5y2i − y1i + ui

)
,

ẑi =
1

κ2
β(yi, ηi), (21)

with state ηi ∈ R, and function β(yi, ηi) = κ1y1i + ηi.
Then, there exist positive constants κ1, κ2 ∈ R>0 such
that for all initial conditions ηi(t0) ∈ R the following holds
limt→∞ (κ1y1i + ηi − κ2zi) = 0.

Proof: Define the estimation error εi := κ1y1i+ ηi−κ2zi.
Then, the estimation error dynamics is given by

ε̇i = −

(
κ1

5κ2
− 3 +

1

κ2

(
εi +

3κ2

2
zi

)2

+
3κ2

4
z2
i

)
εi. (22)

Consider the positive definite Lyapunov function V0 = 1
2ε

2
i ,

then V̇0 ≤ −( κ1

5κ2
− 3)ε2i . Therefore, for κ1 > 15κ2, the

origin of (22) is globally uniformly asymptotically stable.

C. Dynamic Diffusive Coupling. Combining the ob-
server (20),(21) and an estimated version of (4), the dy-
namic coupling (11c) is then given by

ui =
γ

κ2

∑
j∈Ei

aij (κ1y1j − κ1y1i + ηj − ηi) . (23)

D. Network Topology. Consider a network of four
bidirectionally coupled systems in ring configuration, see
also Steur et al. [2012]. The network is strongly connected
and simple. The associated Laplacian matrix is given by

L =
1

3

 3 −1 0 −2
−1 3 −2 0

0 −2 3 −1
−2 0 −1 3

 . (24)

Note that the above Laplacian commutes with the follow-
ing permutation matrices

Π1 =

 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,Π2 =

 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,Π3 =

 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

i.e., LΠi = ΠiL for all i ∈ {1, 2, 3}, and hence X = L
is a solution to the equations (I4 − Πi)L = X(I4 − Πi).
It follows that the sets ker (I4 −Πi ⊗ I4) define linear
invariant manifolds for the closed loop system. Moreover,
since L is symmetric and L and Πi commute, then λ′ in
(H6.1) can be estimated as the minimal eigenvalue of L
under the restriction that the eigenvectors of L are taken
from the set range(Ik − Πi), see Pogromsky et al. [2002].
Let λi be an eigenvalue of L and µi the corresponding
eigenvector, then λ1 = 0, λ2 = 2

3 , λ3 = 4
3 , λ4 = 2, and

µ1 =

 1
1
1
1

 , µ2 =

 1
−1
−1

1

 , µ3 =

 1
1

−1
−1

 , µ4 =

 −1
1

−1
1

 .

Then, after some straightforward computations, it follows
that λ′ = λ2 for both Π1 and Π2, and λ′ = λ3 for Π3.
Therefore, all the assumptions stated in Theorem 1 are
satisfied, and it can be concluded that for sufficiently large
γ, κ1, and κ2 the sets ker (I4 −Πi ⊗ I4) contain globally
asymptotically stable subsets. Note that the conditions for

Figure 1. States responses. The controller is turned-on at
time = 500[ms].

Figure 2. (a) Synchronization of neurons 1 and 4. (b)
Synchronization of neurons 2 and 3. (c) No synchro-
nization between neurons 1 and 3.

partial synchronization of Π1 and Π2 are the same. It may
be that multiple partial synchronization manifolds coexist
and also their conditions for being stable might coincide.
It follows that to observe partial synchronization, it is
necessary that the values of γ, κ1, and κ2 for which a
partial manifold is stable do not coincide with those for
which the full synchronization manifold is stable. Parti-
cularly, in this example, the only partial synchronization
manifold that can be observed is the corresponding to the
set ker (I4 −Π3 ⊗ I4), i.e., x1 = x4 6= x2 = x3.

E. Numerical Results. Figure 2 and Figure 3 depict
simulation results of the network of four Hindmarsh-Rose
oscillators with coupling constant γ = 1, κ1 = 10, and
κ2 = 0.07. In Figure 2, the top panel shows the zi
states of the four oscillators and the ζ1i and ζ2i states
are depicted in the bottom ones. The controller is turned
on at time = 500[ms].

8. CONCLUSION

We have presented a methodology for studying the emer-
gence of partial network synchronization for a class
of nonlinear oscillators interconnected through observer-
based diffusive dynamic couplings. It has been shown that
symmetries in the network define linear invariant mani-
folds, which, when being attracting, define modes of partial
synchronization. Sufficient conditions on the systems to be
interconnected, on the network topology, on the observer
dynamics, and on the coupling strength that guarantee
(global) partial synchronization have been derived.
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Appendix A. SKETCH OF PROOF OF THEOREM 1

If there exists a solution X of the matrix equation
(Ik −Π)L = X (Ik −Π) for a given permutation ma-
trix Π, then the set ker

(
Ik(n+m) −Π⊗ In+m

)
defines

a linear invariant manifold for the coupled systems
(3a),(3b),(11), see Lemma 2. Define the stacked es-
timation error ε := col(ε1, ..., εk) ∈ Rkm, semipas-
sive output z := col(z1, ..., zk) ∈ Rkm, and internal

state ζ := col(ζ1, ..., ζk) ∈ Rk(n−m). Note that ε ∈
ker (Ikm −Π⊗ Im), z ∈ ker (Ikm −Π⊗ Im), and ζ ∈
ker
(
Ik(n−m) −Π⊗ In−m

)
define equations of the form

εi − εj = 0, zi − zj = 0, ζi − ζj = 0, (A.1)

for some i, j ∈ I. Let IΠ be the set of pairs (i, j) for
which (A.1) holds. We want to show that zi − zj = 0,
ζi − ζj = 0, and εi = 0 restricted to IΠ are globally
asymptotically stable under the conditions supplied in the
Theorem 1. Note that (H6.2) implies that the internal
dynamics (17) are convergent. Assumptions (H4.1) and
(H6.2), smoothness of the vectorfields, and boundedness
of the closed loop system imply the existence of positive
definite functions V1(ε) and V2(ζ) such that

V̇1(ε, x) ≤ −κc0
∑

(i,j)∈IΠ

|εi − εj |2 ∀ ε, x,

V̇2(ζ, z) ≤
∑

(i,j)∈Π

(
−α|ζi − ζj |2 + c1|ζi − ζj ||zi − zj |

)
,

for some constants c0, c1, α ∈ R>0 and κ as in (10). Let

V3(z) =
1

2
|(Ikm −Π⊗ Im) z|2 =

1

2

∑
(i,j)∈IΠ

|zi − zj |2.

Then, using the assumption that there exists X such that
(I −Π)L = X(I −Π), the time derivative of V3 along the
trajectories of the closed loop system is given as

V̇3(ζ, z, ε) =
∑

(i,j)∈IΠ

|zi − zj |T (a(ζi, zi)− a(ζj , zj))

− γ

2
zT (Ikm − Ξ)T ((X +XT )⊗ Im)(Ikm − Ξ)z

− γ

2
zT (Ikm − Ξ)T ((X +XT )⊗ Im)(Ikm − Ξ)ε,

with Ξ := Π ⊗ Im. Again, using smoothness of the
vectorfields, ultimate boundedness of the solutions, and
assumption (H6.1) it follows that

V̇3 ≤ (c2 − γλ′)
∑

(i,j)∈IΠ

|zi − zj |2

+
∑

(i,j)∈IΠ

(
c3|zi − zj ||ζi − ζj |+ γλ̄|zi − zj ||εi − εj |

)
,

for some constants c2, c3 ∈ R>0, λ̄ > 0 being the largest
eigenvalue of the symmetric matrix 1

2 (X+XT ), and λ′ the
largest number such that (H6.1) holds. Let V = V1 + V2 +
V3, then from the previous results, it follows that

V̇ ≤
∑

(i,j)∈IΠ

((c2 − γλ′)|zi − zj |2 − κc0|εi − εj |2 (A.2)

− α|ζi − ζj |2 + (c1 + c3)|ζi − ζj ||zi − zj |

+ γλ̄|zi − zj ||εi − εj |).
straightforward computations show that

γ > γ′ :=
1

λ′

(
(c1 + c3)2

4α
+ c2

)
, (A.3)

κ> κ′ :=
λ̄2

4c0λ′

(
γ2

γ − γ′

)
, (A.4)

implies V̇ ≤ −σ
∑

(i,j)∈IΠ
(|zi−zj |2 + |ζi−ζj |2 + |εi− εj |2),

for some positive constant σ. Hence, it can be concluded
that V̇ is negative definite for γ > γ′ and κ > κ′,
and therefore the set ker

(
Ik(n+m) −Π⊗ In+m

)
contains

a globally asymptotically stable subset. �
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