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Abstract: In the paper a new approach for solution of PDE’s generating by transient gas flow
networks of pipelines is considered. In particular, the fundamental solution representation for
the considered partial differential problem is based on exploiting the so-called canonical system
formed by the collection of the eigenfunctions for the underlying operator and its adjoint. This
canonical system is the base of the multifunctional integral transformation for spatial variables
which is the core of the developed operational calculus for PDE’s. The main objective is to
present a new approach to construct then the parallel numerical method which meets the suitable
accuracy and relatively small computation time.
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1. INTRODUCTION

Most real physical processes are governed by partial dif-
ferential equations (PDEs). Hence, the development of the
adequate methods for solutions of such PDEs is actual
task. In the engineering practice it is widely used the
Laplace transformation with respect to the time variable in
the model formulated by ODEs. This paper presents the
so-called multifunctional transformation (MFT) method
for solution of partial differential equations proposed by
Dymkou V. (2006). The application of this idea to some
cases of multidimensional partial differential equations is
given by Dymkou V., Rabenstein R. and Stefen P. (2006).

The introduced the multifunctional transformation (MFT)
for the space variable presents some new elements of op-
erational calculus. One of the reasons for the development
of the multi functional transformation was that its ap-
plication together with Laplace transformation turns the
initial boundary value problems into the block diagram
model representations which are used widely in engineer-
ing practice and which are available for the well known
computationally efficient parallel numerical methods. This
approach shown the good results for solution of some
actual engineering problems of liquid metal magnetohy-
drodynamic (MHD) flows (see Dymkou V. et al.(2009),
Potherat A. et al. (2010)).

The gas transportation network (GTN) is a well known
example of a complex and large scale distributed param-
eter system of great practical interest Mohring J et al.
(2004), Dymkou S. (2006). Although in the last decades
a number of papers devoted to this theme were published
(see, for example, Simone Research Group, 2000), the gas
networks still remains an actual problem. A general model

of the gas transportation network includes a number of
nonlinear elements such as pipelines, gasholders, compres-
sor stations and others. A detailed description of dynamic
processes in gas pipeline units based on partial differential
momentum and continuity equations is rather complex,
and is sometimes used in theoretical studies. Usually the
proposed equations involve a number of variables and can
become quite cumbersome. The wide practical application
of such models is blocked by their complexity to implement
in a reasonable manner and time.

At the first stage the mathematical model of gas trans-
port pipe units can be introduced on the basis of their
linearization that leads to some linear PDE’s (Osiadacz
A., 1987). Also, some approximation (Dymkov M et al.,
2012) can be introduced by exploiting 2−D and repetitive
models (Rogers E. et al., 2007, Dymkov M. et al., 2008).
We propose to use at this stage the MFT-approach by
Dymkou V. (2006). In particular, the fundamental solution
representation for the PDEs problem under consideration
was given on a strong mathematical basis by exploiting
the canonical system of the underlying operator and its
adjoint.

The obtained solution indicates the natural way to in-
troduce the multifunctional transformation with respect
to the space variables. Both transformations, the Laplace
transformation for the time variable and multifunctional
transformation for the space variables turn the initial
boundary value problem into an algebraic equation which
leads to their effective numerical implementation. This,
in turn, gives a good way to design then the parallel
numerical method which meets the suitable accuracy and
relatively small computation time.
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2. GAS FLOW MODEL IN A PIPELINE UNIT

The aim of this section is to introduce the linear PDE’s and
operator setting for studying gas flow in pipeline units. The
state space parameters are gas pressure p and mass flow
Q at the points of the pipe. All other physical parameters
of the pipe and gas used here are constant at the moment
of calculation. It is known that some important dynamic
characteristics of the processes can be evaluated from
the linearized model of the processes. The most accurate
linear model can be realized in some neighborhood of
the known basic regime (Q, p) of the considered process.
In particular, the following system of linear differential
equations can be used for description of the disturbed state
space parameters for the turbulent, isothermal gas flow in
the unit pipeline (see, for example, Osiadacz A., 1987)

∂Q(t, x)

∂t
=−s

∂p(t, x)

∂x
− ρQ(t, x)− βp(t, x),

∂p(t, x)

∂t
= α

∂Q(t, x)

∂x
, (1)

where x denotes the space variable, t the time variable,
s the cross sectional area, d the pipeline diameter, c the
isothermal speed of sound and ν the friction factor. Here
we denote

α = −c2

s
, γ =

νc2

2ds
= −α

ν

2d
, β = γ

Q̄2

p̄2
, ρ = 2γ

Q̄2

p̄Q̄
,

and x ∈ [0, 1], t > 0.

Rewrite now the given equations in operator form as

Dty(t, x) = Ly(t, x), (2)

where y(t, x) =

[
y1(t, x)
y2(t, x)

]
.
=

[
Q(t, x)
p(t, x)

]
and the operator

L is given as

L = A+BDx =

[
−ρ −sDx − β
αDx 0

]
(3)

and

A =

[
−ρ −β
0 0

]
, B =

[
0 −s
α 0

]
. (4)

Here Dt and Dx describe the partial derivatives with
respect to the time and space variables, respectively. The
initial and boundary conditions are given by

y(0, x) =

[
y1(x)
y2(x)

]
=

[
q0(x)
p0(x)

]
. (5)

and

U1(y) =

1∫
0

y2(t, x)(t, x)dx =

1∫
0

p(t, x)dx = const, (6)

U2(y) = y2(t, 0)− y2(t, 1) = p(t, 0)− p(t, 1) = 0, ∀t ≥ 0,

respectively.

The given initial condition images the arisen disturbances
q(x), p(x) at the initial moment t = 0 for the preassigned
pumping regime Q(t, x), p(t, x) in the pipeline, and the
boundary data images the conservation of the gas pressure

in the pipe. Note, that the given pressure conservation
conditions lead to the pipeline storage condition. Indeed,
the condition (6) and integration the second equation of
(1) on x ∈ [0, 1] give

d

dt

( 1∫
0

p(t, x)dx
)
= 0,

d

dt

( 1∫
0

p(t, x)dx
)
= α

1∫
0

∂Q(t, x)

∂x
dx,

Since

1∫
0

∂Q(t, x)

∂x
dx = Q(t, 1)−Q(t, 0)

then the last is equivalent to the following pipeline storage
condition

y1(t, 1)− y1(t, 0) = Q(t, 1)−Q(t, 0) = 0∀t ≥ 0. (7)

3. BASIC NOTIONS OF MULTIFUNCTIONAL
TRANSFORMATION METHOD

In this section we give a short overview of the basic ele-
ments of MFT-method needed for this paper. The details
and strong description of this approach can be found in
Dymkou V. (2006). In particular, we show how the fun-
damental solution representation for the considered PDEs
problem can be written on a strong mathematical basis by
exploiting the canonical system of the underlying operator
and its adjoint. The obtained solution indicates the nat-
ural way to introduce the multifunctional transformation
(MFT) with respect to the space variables. Then, applying
both transformations, the Laplace transformation for the
time variable and multifunctional transformation for the
space variables, turn the initial boundary value problem
into an algebraic equation.

We consider the following nonhomogeneous initial bound-
ary value problem

∂

∂t
y(t, x) =Ly(t, x) + v(t, x), t > 0, x ∈ Ω,

y(t, x)|t=0 = ya(x), x ∈ Ω, (8)

Uµ

(
y(t, x)

)
= 0, t > 0, x ∈ ∂Ω, µ = 1, · · · ,m.

The set Ω denotes a domain in RN and ∂Ω its boundary.
The functions v(t, ·) and y(t, ·) are elements of H (or
H(Ω)) for each fixed value of t ≥ 0, where H is a Hilbert
space with the scalar product (·, ·). The operator L is
assumed to be a differential operator with respect to the
space variable x which acts on properly elected elements of
H. We presuppose that (−L) is a sectorial operator on the
Hilbert space H such that L has a compact resolvent and
the spectrum σ(L) is not empty. The linear differential
form of Uµ

(
y(t, x)

)
= 0 represents the collection of all

homogeneous boundary conditions which are necessary
to yield a unique solution of the initial-boundary-value
problem.

The corresponding eigenproblem for the prime operator L
can be summarized in the form
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L :

{
σ(L) = {λi}i − the set of eigenvalues

E = {ep,m(x, λi)}i,p,m − the canonical system.

The associated eigenproblem for the adjoint operator L†

is summarized as follows

L† :

{
σ(L†) = {λ∗

i }i − the set of eigenvalues

E† = {ϵp,m(x, λ∗
i )}i,p,m − the canonical system.

Note that all elements ep,m(x, λi) from the canonical sys-
tem E should satisfy the homogeneous boundary condi-
tions Uµ

(
ep,m(x, λi)

)
= 0, µ = 1, . . . ,m. And all elements

ϵp,m(x, λ∗
i ) from the adjoint canonical system E† should

satisfy the corresponding adjoint homogeneous boundary
conditions Vµ

(
ϵp,m(x, λ∗

i )
)
= 0.

The canonical system of the adjoint operator L† is used as
kernels of the required spatial transformation. Namely, the
multi-functional transformation T is the set of transforma-
tions {Tp,m(λi)}, which are constructed by the canonical
system E† of the adjoint spatial operator L† and act on
elements f ∈ H as

Tp,m(λi){f(·)} = fp,m(λi) = (f(·), ϵp,m(·, λ∗
i )), (9)

where p = 1, . . . , Pi = P (λi), m = 0, . . . ,Mp are defined
for each λi ∈ σ(L) by the canonical system. Here P (λ) is
the dimension of the eigenvector space for the eigenvalue
λ, Mp is the multiplicity of the eigenvector ϵp,m(·, λ), and
(·, ·) denotes the inner product in the Hilbert space H.

From the definitions of the MFT and the adjoint operator
it follows that

Tp,m(λi){Lf(·)}= (Lf(·), ϵp,m(·, λ∗
i )) (10)

= (f(·), L†ϵp,m(·, λ∗
i )).

It can be shown that

Tp,m(λi){Lf(·)} = λifp,m(λi) + fp,m−1(λi),

m = 0, . . . ,Mp, (11)

where we use the agreement fp,µ(λi) ≡ 0, µ < 0. This
property of the introduced transformation is a generaliza-
tion of the so-called ”differentiation theorem” well known
from Laplace-, Fourier-, and other functional transforma-
tions. In the image domain, the effect of the operator L is
expressed in the transformed domain by a multiplication
with λi, which takes the role of the discrete frequency vari-
able. Therefore, application of the MFT to Lf(·) replaces
the image of the operator L on the element f ∈ H by its
direct transformations in the frequency domain.

To define the inverse transformation we use the canonical
systems E of the operator L. Namely, the inverse trans-
formation is given by the following series

T −1{fp,m(λi)} = f(·) = (12)

∑
λi∈σ(L)

Pi∑
p=1

Mp∑
m=0

fp,m(λi)ep,Mp−m(·, λi).

Then, applying the Laplace transform with respect to the
variable t directly to the problem (8) gives

sY (s, x) = LY (s, x) + V (s, x) + ya(x),

Uµ

(
Y (s, x)

)
= 0, s ∈ C, x ∈ ∂Ω, µ = 1, · · · ,m.

(13)

Applying now the MFT spatial transformation for the
obtained Laplace output Y (s, x) of (8) in the s− domain
we have the following solution representation

Y p,m(s, λi) =
V p,m(s, λi)

s− λi
+

ya,p,m(λi)

s− λi
+

Y p,m−1(s, λi)

s− λi

=

m∑
µ=0

(
V p,m−µ(s, λi)

(s− λi)µ+1
+

ya,p,m−µ(λi)

(s− λi)µ+1

)
(14)

The first two terms of the expression (14) represent the
transformed excitation function Vp,m(s, λi) and the trans-
formed boundary conditions ya,p,m(λi).

Using now the inverse MFT transformation we can obtain
the solution of the problem in the Laplace domain as

T −1{Y p,m(s, λi)} = Y (s, x) (15)

=
∑

λi∈σ(L)

Pi∑
p=1

Mp∑
m=0

Y p,m(s, λi)ep,Mp−m(x, λi).

Hence

Y (s, x) =
∑

λi∈σ(L)

Pi∑
p=1

Mp∑
m=0

( m∑
µ=0

V p,m−µ(s, λi)

(s− λi)µ+1

+
ya,p,m−µ(λi)

(s− λi)µ+1

)
ep,Mp−m(x, λi). (16)

Thus, the MFT-method reduces the differential operators
of boundary value problems to algebraic equations, similar
to the Laplace transformation approach used for the time
variable.

4. MFT METHOD IN GAS PIPELINES MODEL

To apply the MFT-method for the problem (2) - (6) we
have to find the corresponding canonical systems for the
given prime and adjoint operators L and L† introduced in
Section 2.

4.1 Adjoint operator

The considered operators act on the space AC1([0, 1])
of absolutely continuous functions together with its first
derivatives on interval [0, 1] that is dense in the Hilbert
space L2[0, 1] of square integrable functions with the

standard scalar product (f, g) =
1∫
0

fT (x)g(x)dx, f, g ∈

L2, where superscript fT denotes transposed of f .

To construct the MFT-transformation, the operator L
has to be a sectorial operator on the considered space,
with compact resolvent operator R(s, L) and non-empty
spectrum σ(L).

First, using the so-called Green’s formula, we determine
the adjoint operator:
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(Ly, z) =

1∫
0

zTLydx =

1∫
0

zT (A+BDx)ydx =

(y, (AT −BTDx)z) + z
T
By

∣∣∣x=1

x=0
, (17)

where z(t, x) =

[
z1(t, x)
z2(t, x)

]
. Equation (17) complies with

the definition of the adjoint operator only if zTBy
∣∣x=1

x=0
= 0

vanishes,

zT (t, x)By(t, x)
∣∣x=1

x=0
= zT (t, 1)By(t, 1)− zT (t, 0)By(t, 0)

= α[z2(t, 1)y1(t, 1)− z2(t, 0)y1(t, 0] +

s[z1(t, 0)y2(t, 0)− z1(t, 1)y2(t, 1)] = 0.

Using the boundary conditions this equation can be rewrit-
ten as

α
(
z2(t, 1)− z2(t, 0)

)
y1(t, 0) =

s
(
z1(t, 1)− z1(t, 0)

)
y2(t, 0). (18)

The conditions for z1(t, x) and z2(t, x) at the boundary
x = 1 and x = 0 have to be chosen such that this
expression becomes zero: z2(t, 0) − z2(t, 1) = 0, and
z1(t, 1)− z1(t, 0) = 0.

Thus, the adjoint operator L† is given by

L† = AH −BHDx =

[
−ρ −αDx

−β + sDx 0

]
, (19)

subject to the boundary conditions of the form

V1(z) = 0 ⇔ z1(t, 1)− z1(t, 0) = 0,

V2(z) = 0 ⇔ z2(t, 1)− z2(t, 0) = 0. (20)

4.2 Eigenvalue problems

Prime operator The eigenvalue problem of the operator
L is

[λI − L]ep,0(x, λ) = 0, p = 1, . . . , P (λ), (21)

where ep,0(x, λ) = [f1
p,0(x, λ), f

2
p,0(x, λ)]

T and P (λ) is the
unknown number of all linear independent eigenvectors
corresponding to the eigenvalue λ. Let us rewrite equation
(21) in the following form[

λ 0
0 λ

] [
f1
p,0

f2
p,0

]
+

[
ρ sDx + β

−αDx 0

] [
f1
p,0

f2
p,0

]
=

[
0
0

]
(22)

then we have the following linear system for f1
p,0 and f2

p,0 λf1
p,0 + ρf1

p,0 + sf2′

p,0 + βf2
p,0 = 0

λf2
p,0 − αf1′

p,0 = 0

→
λ ̸= 0

sαf1′′

p,0 + αβf1′

p,0 + λ(λ+ ρ)f1
p,0 = 0

f2
p,0 =

α

λ
f1′

p,0

. (23)

By the superprimes we have denoted the derivatives with
respect to the spatial variable x. Note that for the case

λ0 = 0 the differential equations (23) are represented as
follows  ρf1

p,0 + sf2′

p,0 + βf2
p,0 = 0

αf1′

p,0 = 0
(24)

and, hence, in this case the general solution of these
equations is

f1
p,0(x, λ0) = c0, f2

p,0(x, λ0) = c1e
− β

s x − 2c0.

The boundary conditions (6) are satisfied for these func-
tions iff c1 = 0 such that the function

e1,0(x, λ0) =

[
f1
p,0(x, λ0)
f2
p,0(x, λ0)

]
= c0

[
1

−2

]
is the eigenfunction of the operator L corresponding the
trivial eigenvalue λ0 = 0.

The corresponding characteristic polynomial for the first
differential equation of (23) is:

sαK2 + αβK + λ(λ+ ρ) = 0 (25)

where α < 0, s > 0, β > 0, ρ > 0 and the roots are:

K1,2 =
−αβ ±

√
(αβ)2 − 4sαλ(λ+ ρ)

2sα
=

−β

2s
±
√

β2

4s2
− λ(λ+ ρ)

sα
= a± jb, (26)

where j is the imaginary unit j2 = −1, and

a =
−β

2s
, b =

√
−
(

β2

4s2
− λ(λ+ ρ)

sα

)
. (27)

From the theory of linear differential equations follows that
(23) in accordance with the roots K1,2 of characteristic
polynomial (26) have the following solutions f1

p,0(x, λ) and

f2
p,0(x, λ):
f1
p,0(x, λ) = c1e

(a+jb)x + c2e
(a−jb)x)

f2
p,0(x, λ) =

α

λ
[c1(a+ jb)e(a+jb)x + c2(a− jb)e(a−jb)x].

In this case due to the boundary conditions (6) and (7),
we obtain the following algebraic system

c1 + c2 = c1e
a+jb + c2e

a−jb

c1(a+ jb) + c2(a− jb) =
c1(a+ jb)ea+jb + c2(a− jb)ea−jb

(28)

This system has a nontrivial solution c1 ̸= 0, c2 ̸= 0 iff

det

∣∣∣∣∣ 1− ea+jb 1− ea−jb

(a+ jb)(1− ea+jb) (a− jb)(1− ea−jb)

∣∣∣∣∣ = 0. (29)

And finally the system (28) has a nontrivial solution
c1 ̸= 0, c2 ̸= 0 iff

2(1− ea+jb)(1− ea−jb)jb = 0

that is equivalent to

1− ea+jb = 0, 1− ea−jb = 0, and b = 0. (30)

The condition b = 0 and (27) lead to the relation
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β2

4s2
− λ(λ+ ρ)

sα
= 0 (31)

Hence, in this case we have

λ1,2 = −β ± β

√
1 +

4α

s
. (32)

The first and second conditions of (30) can be rewritten
as ea+jb = e0 and ea−jb = e0, respectively. Since the
exponential function ez, z ∈ C has imaginary period, we
have a + jb = 2πnj, n = 0,±1,±2, .... and a − jb =
2πkj, k = 0,±1,±2, .....

Due to (26) the corresponding eigenvalues λ(n) satisfy the
following relations

±
√

β2

4s2
− λ(λ+ ρ)

sα
= 2πnj +

β

2s
, n = 0,±1, ... (33)

and hence we have for n = 0,±1,±2, ...

λ
(n)
1,2 = −β +

√
β2 − 2αβπnj + 4sαπ2n2. (34)

(Here we write + instead ± since the complex valued
square root are two values.)

After carrying out some lengthly but routine calculation.
it can be shown that the corresponding eigenfunction are
given by the following formulas:

i) for the case K1,2 = a ± jb where b = 0 and the
corresponding eigenvalues λ1, λ2 are given by (32) the
needed eigenfunctions are:

e1,0(x, λ1) =

[
f1
p,0(x, λ1)
f2
p,0(x, λ1)

]
= c1e

ax

[
1

aα

λ1

]
,

e1,0(x, λ2) =

[
f1
p,0(x, λ2)
f2
p,0(x, λ2)

]
= c2e

ax

[
1

aα

λ2

]
.

ii) for the case K1,2 = a ± jb = 2πnj, where n =

0,±1,±2, .... and the corresponding eigenvalues λ
(n)
1,2 are

given by (32) we have the following eigenfunctions

e1,0(x, λ
(n)
i ) =

[
f1
p,0(x, λ

(n)
i )

f2
p,0(x, λ

(n)
i )

]
=

c
(n)
i e2πnjx

 1

2aαπnj

λ
(n)
i

 , i = 1, 2, n = 0,±1, ... (35)

Adjoint operator. The eigenvalue problem of the oper-
ator L† is

[λ̂I − L†]ϵp,0(x, λ̂) = 0, p = 1, . . . , P (λ), (36)

where ϵp,0(x, λ̂) = [z1p,0(x, λ̂), z
2
p,0(x, λ̂)]

T and P (λ̂) is the
unknown number of all linear independent eigenvectors

corresponding to the eigenvalue λ̂. Let us rewrite equation
(36) in the following form

[
0
0

]
=

[
λ̂ 0

0 λ̂

] [
z1p,0
z2p,0

]
+

[
ρ αDx

β − sDx 0

] [
z1p,0
z2p,0

]
(37)

then we have the following linear system for z1p,0 and z2p,0 λ̂z1p,0 + ρz1p,0 + αz2
′

p,0 = 0

λ̂z2p,0 + βz1p,0 − sz1
′

p,0 = 0

λ̂ ̸= 0

→


sαz1

′′

p,0 − αβz1
′

p,0 + λ̂(λ̂+ ρ)z1p,0 = 0

z2p,0 = −β

λ̂
z1p,0 +

s

λ̂
z1

′

p,0.
(38)

Again, by the superprimes we have denoted the derivatives
with respect to the spatial variable x.

It is easy to check that for the case λ̂0 = 0 the correspond-
ing eigenfunction is

ϵ1,0(x, λ̂0) =

[
f1
p,0(x, λ̂0)

f2
p,0(x, λ̂0)

]
= c0

[
1

−2

]
.

The characteristic polynomial for the first equation (38) is
given as

sαK2 − αβK + λ̂(λ̂+ ρ) = 0 (39)

and the roots are:

K1,2 =
αβ ±

√
(αβ)2 − 4sαλ̂(λ̂+ ρ)

2sα
=

=
β

2s
±

√
β2

4s2
− λ̂(λ̂+ ρ)

sα
= −a± jb, (40)

where again

a =
−β

2s
, b =

√
−
(

β2

4s2
− λ̂(λ̂+ ρ)

sα

)
.

Hence, the linear differential equations of (38) have the

general solutions z1p,0(x, λ̂) and z2p,0(x, λ̂) of the following
form:

z1p,0(x, λ̂) = c1e
(−a+jb)x + c2e

(−a−jb)x)

z2p,0(x, λ̂) = − 1

λ̂

[
c1e

(−a+jb)x(as− jbs+ β)+

+c2e
(−a−jb)x(as+ jbs+ β)

]
.

(41)

In this case due to the boundary conditions (20), we obtain
the following algebraic equations

c1 + c2 = c1e
−a+jb + c2e

−a−jb,

c1((a− jb)s+ β) + c2((a+ jb)s+ β) =

c1((a− jb)s+ β)e−a+jb + c2((−a− jb)s+ β)e−a−jb

This system has a nontrivial solution c1 ̸= 0, c2 ̸= 0 iff
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det

∣∣∣∣∣ 1− e−a+jb 1− e−a−jb

A(1− ea+jb) B(1− e−a−jb)

∣∣∣∣∣ = 0. (42)

where A = ((a+ jb)s+β), B = ((a− jb)s+β). And finally
the system (42) has a nontrivial solution c1 ̸= 0, c2 ̸= 0 iff

2(1− e−a+jb)(1− e−a−jb)jb = 0

that is equivalent to

1− e−a+jb = 0, 1− e−a−jb = 0, and b = 0. (43)

The condition b = 0 and (40) give

λ̂1,2 = −β ± β

√
1 +

4α

s
. (44)

The first and second conditions of (43) can be rewritten
as e−a+jb = e0 and e−a−jb = e0, respectively. Again,
since the exponential function ez, z ∈ C has imaginary
period, we have −a + jb = 2πnj, n = 0,±1,±2, .... and
−a − jb = 2πkj, k = 0,±1,±2, ..... Due to (40) the

corresponding eigenvalues λ̂(n) are given

λ̂
(n)
1,2 = −β +

√
β2 − 2αβπnj + 4sαπ2n2. (45)

After carrying out some lengthly but routine calculation.
it can be shown that the corresponding eigenfunction are
given by the following formulas:

i) for the case K1,2 = −a ± jb where b = 0 and the

corresponding eigenvalues λ̂i, i − 1, 2 are given by (44)
the needed eigenfunctions are:

ϵ1,0(x, λ̂i) =

[
z1p,0(x, λ̂i)

z2p,0(x, λ̂i)

]
= cie

−ax

 1

−2(as+ β)α

λ̂i

 .

ii) for the case K1,2 = −a ± jb = 2πnj where n =

0,±1,±2, .... and the corresponding eigenvalues λ̂
(n)
1,2 , n =

0,±1,±2, ... are given by (44) we have the following
eigenfunctions

ϵ1,0(x, λ̂
(n)
i ) = c

(n)
i e2πnjx

 1

−2(as+ β)απnj

λ̂
(n)
i

 (46)

Thus, the needed eigenfunctions for the prime L and the
adjoint L† operators are obtained. Hence, in accordance
with Section 3, the solution of the problem (2) - (6) in the
Laplace domain is given by formula (16).

5. CONCLUSION

This paper presents the multifunctional transformation
(MFT) method for solution of PDE’s arisen in modeling
transient gas flow networks of pipelines. The subject of
ongoing work is also the development of numerical algo-
rithms and experiments for models considered here applied
to gas transportation networks based on the real data.
Note that some elements of the functional transformation
method was used in digital sound modeling (Trautmann
L., Rabenstein R., 2003). It is necessary to add that this
paper covers only first attempts to investigate the pipeline

units on the base of new calculus operational approach
developed for partial differential equations in Dymkou
V. (2006) and which are available for the well known
computationally efficient parallel numerical methods, and
which was successfully applied in Dymkou V., Potherat A.
(2009) and Potherat A., Dymkou V. (2010). These results
constitute a very promising base for further research to-
wards applications to the other real models, for example,
to Timoshenko S. (1921) beam equation that is used now
in nanotechnology to design atomic microscope where the
so-called cantilever beam of the size 200 × 35 × 2mkm is
a key element.
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