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Abstract: A common technique for improving the estimation performance of the Kalman filter and making 
the filter robust against any kind of faults is to adapt its process and measurement noise covariance 
matrices. Although there are numerous approaches for the adaptation such as full estimation or scaling, 
simultaneous adaptation of these two matrices is an ongoing discussion.  In this paper, firstly, two common 
problems for the attitude estimation of a nanosatellite are solved by adapting the process and noise 
covariance matrices. Then these two adaptation methods are integrated with an easy to apply scheme and 
the matrices are simultaneously adapted. The newly proposed filtering algorithm, which is named Robust 
Adaptive Unscented Kalman Filter, considerably increases the estimation performance and is fault tolerant 
against the sensor malfunctions. 



1. INTRODUCTION 

In a broad perspective, the attitude determination problems 
for nanosatellites carrying magnetometers onboard are related 
to magnetic disturbance compensation which is necessary to 
guarantee the magnetic cleanness of the spacecraft. The basic 
problem is finding an accurate estimation algorithm for the 
in-orbit and real time estimation of the magnetometer biases 
and that is an obligation. This is a recent topic for 
nanosatellite applications and since the magnetometers are 
popular sensors for this type of satellites there are many 
documented studies especially on magnetometer calibration.   
In (Inamori et al. 2009) the magnetometer biases are 
estimated as a part of the magnetic disturbance compensation 
for a nanosatellite. The Unscented Kalman Filter (UKF) is 
used as the estimator algorithm. Han et al. (2012) proposes 
both pre-launch on ground and post-launch in-orbit 
magnetometer calibration schemes for Chinese ZDPS-1A 
nanosatellite. In (Soken and Hajiyev 2012) along with the 
magnetometer biases the scale factors are also considered and 
a UKF based reconfigurable attitude estimation and 
magnetometer calibration method is presented. Lastly Vinther 
et al. (2011) investigates the effects of magnetometer and 
gyro calibration on the attitude accuracy and gives a 
simultaneous estimation algorithm using the full-order UKF.  

The biggest difficulty that arises in case of in-orbit real time 
sensor bias estimation is tuning the process noise covariance 
(Q) matrix of the estimator. If prior assumptions about the 
covariance values are poor then the filter’s optimality will be 
affected and estimation performance will degrade (Almagbile 
et al., 2010). For the general case where the UKF is used for 
estimating only the attitude and gyro biases as a reduced-
order filter the process noise covariance matrix can be 
approximated analytically (Crassidis and Markley 2003; 

Fosbury 2011). But this method fails if the magnetometer 
biases are also estimated as a part of the state vector. One 
possible solution technique is to use an adaptive algorithm to 
tune the Q matrix as discussed in this paper.  

The adaptation of the UKF is also a necessity for building a 
filter which is robust against any kind of sensor malfunctions. 
Since the spacecraft is vulnerable against the external 
disturbances there is a high risk for the magnetometer 
measurements to be affected and give faulty outputs for a 
period of time. Unless the filter is built robust, sensor faults 
will deteriorate the estimation performance significantly. In 
this case the measurement noise covariance (R) matrix must 
be adapted (Soken and Hajiyev, 2010). 

In literature there are several methods to adapt the linear 
Kalman filter (KF). Unquestionably, the pioneering methods 
in this area have been proposed by Mehra (Mehra 1970; 
Mehra 1972). Specifically the covariance matching technique 
discussed in (Mehra 1972) may be considered as the 
fundamental of the algorithms proposed in this paper. The 
main drawback of these studies, and as well their successors 
that examine the adaptation of the KF (Geng and Wang 2008; 
Kim et al., 2006; Odelson et al., 2006; Dunik et al., 2009; 
Fakharian et al., 2011), they are generally appropriate for 
discrete-time linear systems and cannot be used as a method 
for the adaptation of the UKF without any correction or 
modification. 

In this sense, researches on the adaptation of nonlinear 
Kalman filters should be searched. In (Han et al. 2009), two 
distinct methods are described as the Adaptive Unscented 
Kalman Filter (AUKF) algorithms. In the first method, the 
MIT rule is used to derive the adaptive law and a cost 
function is defined in order to minimize the difference 
between the filter computed covariance and the actual 
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innovation covariance. The algorithm is used for the Q-
adaptation and it is stated that a similar approach may be 
followed for the R-adaptation. As a deficiency, the presented 
algorithm requires calculation of the partial derivatives and 
that introduces a relatively large computational burden as it is 
also stated by authors themselves. In the second method, two 
UKFs are run in parallel within master and slave filter 
manner. Its computational demand is lower than the first 
method but as it is known (Soken, 2013), despite being free 
of the Jacobian calculations, the computational burden of the 
UKF is not very low because of the sigma point calculations. 
Therefore, using two UKF algorithms in a parallel manner 
still increases the required computation burden significantly. 
Hence the main problem for both of the methods presented in 
(Han et al. 2009) is high computational load.  

There are also adaptation techniques, applied to the other 
nonlinear Kalman filters. In (Sebesta and Boizot, 2014) an 
adaptive high-gain Extended Kalman Filter (EKF) is 
introduced specifically to solve the convergence problem 
associated with the traditional EKF. Both the Q and R 
matrices are adapted based on the filter’s innovation. In 
(Karlgaard and Shen, 2013) a robust divided difference 
filtering approach based on the concept of Desensitized 
Kalman Filtering is proposed. The filter is adapted to reduce 
the sensitivity to the deviations in the assumed plant model 
parameters. The main drawback of these studies is the 
complexity which may increase the computational load 
unnecessarily.  

In this study, first we examine two practical problems for a 
nanosatellite carrying magnetometers onboard and describe 
how to solve these problems using the adaptive Kalman 
filtering approach. In this sense, the proposed Q and R 
adaptation techniques, which are mentioned briefly in (Soken 
and Sakai, 2013), are discussed in details. Then as the next 
step, we propose an integration scheme for using these two 
adaptation techniques in a single UKF simultaneously. We 
address the applicability conditions of the new algorithm, 
which is named Robust Adaptive UKF (RAUKF). As the 
final step we demonstrate the RAUKF for attitude estimation 
of a hypothetical nanosatellite to validate its availability. 

2. PROCESS AND MEASUREMENT NOISE 
COVARIANCE ADAPTATION FOR ATTITUDE 

ESTIMATION 

2.1 The Q-Adaptation for In-flight Magnetometer Calibration 
Accuracy 

As mentioned, magnetometers are not accurate sensors. 
Moreover, on-ground calibration of these sensors is not 
sufficient since the spacecraft is small and there is a high 
interaction between the operating subsystems. For an 
effective calibration and increasing the overall ADCS 
performance the magnetometers must be in-flight calibrated 
(Soken, 2013). 

In general, magnetometer calibration methods may be 
categorized in two: attitude-independent algorithms such as 
two-step and its varieties (Alonso and Shuster, 2002; Sakai et 
al., 2011); and attitude-dependent algorithms where usually a 

Kalman filter is used for estimation (Vinther et al., 2011). 
The latter is also what we prefer in this study. We use a 
reduced-order UKF, an UKF that is propagating the states via 
gyro-based model, for estimating the satellite’s attitude and 
calibrating the gyro and magnetometer measurements.   

A nonlinear version of the Kalman filter must be used for the 
attitude estimation problem. The UKF algorithm is a 
relatively new nonlinear filtering method which has many 
advantages over the well known EKF (Julier et al., 1995). 
The biggest challenge, when we use the UKF for the 
simultaneous attitude and magnetometer bias estimation, is 
determining the process noise covariance matrix of the filter. 
If the a priori statistics selected as a constant do not match 
with the real values, then the filter characteristics such as the 
accuracy or convergence speed may be affected and even a 
serious mismatch may cause the filter to fail in practice 
(Dunik et al., 2009). The designer has always chance to tune 
the process noise covariance by trial-error method but this is 
a time consuming process and obtaining the optimal values is 
not guaranteed. 

Our proposed solution for this problem is to use an adaptive 
algorithm to estimate the Q matrix based on the residual 
series. The process noise covariance is estimated via the 
following maximum likelihood based algorithm (Maybeck, 
1982) to get the Q values that increase the overall estimation 
performance.  

   1 (1 )Q k Q Q k     ,                      (1) 

 ( 1) ( 1) 1TQ k k P k k       x x  

   1 1P k k Q k    ,   (2) 

   ˆ ˆ( 1) 1 1 - 1k k k k k     x x x .           (3) 

where,  1Q k  is  the  estimated process  noise covariance 

matrix for step 1k  , Q is the observation for the estimation, 

 ˆ 1 1k k x is the estimated state vector,  ˆ 1k kx is the 

predicted state vector,  1 1P k k  is the estimated covari-

ance matrix,  1P k k is the predicted covariance matrix 

and  is the scale factor for low-pass effect.  

The process noise covariance matrix estimated by (1) is not a 
diagonal matrix because of the state residual term. So 
specifically for this problem we propose modifying it such 
that it fits in the form given as 

3 3 _ 3 3 3 3

_ 3 3 3 3 3 3

3 3 3 3 3 3

0

0

0 0

q q gb

q gb gb

mb

Q I Q I

Q Q I Q I

Q I

  

  

  

 
   
  

,             (4) 

when the attitude, gyro and magnetometer biases are 
estimated. Here qQ , gbQ and mbQ are the scalar process noise 

covariance terms which correspond to the attitude quaternion, 
gyro and magnetometer biases respectively and _q gbQ are the 

scalar terms for the noise covariance in between the 
quaternion and gyro bias states. 
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The UKF is started with an initial guess for the Q matrix. 
Then, after each state estimation step, Q is updated using the 
residual based estimation procedure (1-4) and this updated 
matrix is used for the next step.  

2.2 The R-Adaptation for Magnetometer Fault Tolerance 

For the nanosatellite missions the measurement sensors may 
be easily affected from the other subsystems considering the 
size of the nanosatellite and necessity for placing the 
subsystems closely to each other. Furthermore the external 
disturbances such as the ionospheric currents may have a 
great deteriorating effect on the measurement performance. 
Such faulty measurements affect the stability and accuracy of 
the UKF even when they last for few samples. 

Therefore, a robust algorithm must be introduced such that 
the filter is insensitive to the measurements in case of 
malfunctions and the estimation process is corrected without 
affecting the remaining good estimation behavior.   

The robustness of the filter is secured by scaling the 
measurement noise covariance matrix in case of fault. For 
scaling we multiply the measurement noise covariance matrix 
with a scale matrix formed of multiple factors. The scale 
matrix is calculated based on the innovation series as (Soken 
and Hajiyev, 2010), 

         1

1

1
1 1 1 1

k
T

m yy
j k

S k j j P k k R k




  

        
  

 e e .    (5) 

where  mS k is the scale matrix,  1j e is the innovation of 

the UKF,  1yyP k k is the observation covariance matrix, 

 1R k   is the measurement noise covariance matrix and 

is the size of the moving window. The calculated  mS k

matrix  may not be diagonal and may have diagonal elements 
which are “negative” or lesser than “one”. In order to avoid 
such situations, composing the scale matrix by the following 
rule is suggested: 

 1 2, , , zS diag s s s                           (6) 

 max 1, 1,i iis S i z   .                   (7)  

Here, iiS  represents the ith diagonal element of the matrix

 mS k , where z  is the dimension of the innovation vector. 

Apart from that point, if the measurements are faulty,  S k

will change and so affect the Kalman gain as; 

         
1

1 1 1 1xy yyK k P k k P k k S k R k
        .   (8) 

Here  1K k  is the Kalman gain.  

The robust algorithm affects characteristic of the filter only 
when the condition of the measurement system does not 
correspond to the model used in the synthesis of the filter. 
Otherwise the UKF work with the regular algorithm. The 
fault detection is realized via a kind of statistical information. 
In order to achieve that, following two hypotheses may be 

proposed: 

 o ; the system is normally operating 

 1 ; there is a malfunction in the estimation system. 

Then we may introduce the following statistical functions for 
the R-adaptation  

       
1

( ) 1 1 1 1 ,T
yyk k P k k R k k


       e e      (9) 

This function has 2 distribution with z degree of freedom.  

If the level of significance, ,  is selected as, 

 2 2
, ;zP               0 1  ,          (10) 

the threshold value, 2
,z  

can be determined. Hence, when the 

hypothesis 1  is correct, the statistical value of ( )k  will be 

greater than the threshold value 2
,s , i.e.: 

  2
0 ,: sk                   k  

                  2
1 ,: sk                  k  .                  (11) 

3. THE RAUKF ALGORITHM 

The Q and R-adaptation algorithms presented in Section 2 are 
solutions for different problems. The Q-adaptation is used as 
a tuning algorithm for the process noise covariance of the 
filter in order to ease the difficult tuning procedure and make 
the filter more efficient in the sense of estimation accuracy. 
On the other hand, the R-adaptation is performed as a 
measure against the possible measurement faults in the harsh 
space environment. In this section we integrate these two 
filters.  

The integration of the Q and R-adaptation techniques is an 
open topic and there are numerous researches in the literature 
(Hajiyev and Soken, 2013; Almagbile et al. 2010). Indeed 
there is not any stable integration method when both the R 
and Q matrices are estimated based on the innovation 
covariance (Almagbile et al. 2010). In this case the Q must be 
estimated assuming full knowledge of the R and vice versa. 
Nonetheless, the Q-adaptation method presented in this paper 
estimates the Q matrix based on the residual covariance and 
the adaptation method for the R matrix is an innovation 
covariance based scaling method, not the direct estimation of 
the matrix itself. The adaptation methods use different 
information sources, the R-adaptation uses the innovation and 
the Q adaptation uses the residual. Moreover the Q-
adaptation is performed by directly estimating the matrix 
whereas the R is adapted by scaling. Hence these two 
methods can be run at the same time. Fig. 1 shows the 
integration method with the key steps of the RAUKF. 

There are two important points that should be regarded while 
designing the RAUKF: 

 The R scaling is performed only when a fault is detected 
in the measurements as given with (11). In all other 
cases the filter runs with the regular algorithm only with 
the Q estimation (when there is no fault the algorithm is 
same as the UKF with Q estimation). 
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 The scale factor for the Q-adaptation in (1) should be 
selected carefully. If more aggressive adaptation is per-
formed (such that 1  ) the stability of the RAUKF 

might be affected in case of a measurement fault when 
both R and Q adaptations are necessary. 

Fig. 1. The proposed RAUKF. 

4. DEMONSTRATION OF THE OVERALL ATTITUDE 
ESTIMATION SCHEME 

In order to test the RAUKF, a series of simulations are 
performed for a hypothetical nanosatellite. First we showed 
the effects of the Q-adaptation by comparing a regular UKF 
with the RAUKF. Then the results for the UKF and RAUKF 
are compared in case of sensor malfunction to clarify the 
necessity of the R-adaptation. The advantages of using the 
RAUKF as the attitude estimation algorithm is clearly shown 
by the discussing the estimation results. 

The satellite is assumed to be a  3U cubesat with dimensions 
of 10cm× 10cm× 30cm, an approximate mass of 3kg and an 
approximate inertia matrix of  

2(0.055 0.055 0.017) . .J diag kg m  A real mission 

example for a similar 3U nanosatellite might be seen in 
(Reijneveld and Choukroun, 2012).  

For the magnetometer measurements, the sensor noise is 
characterized by zero mean Gaussian white noise with a 
standard deviation of 300m nT  (Sakai et al., 2011) and the 

constant magnetometer bias terms are accepted as 

  40.14 0.019 0.37 10
T

mb nT  , which is reasonable 

when compared to the values in (Sakai et al., 2011; Han et al., 
2012). Moreover, the gyro random error is taken as 

2.47[ / ]arcsec s  , whereas the standard deviation of the 

gyro biases is 4 36.36 10 [ / ]u arcsec s   .
 

Initial attitude errors are set to 30, 25 and 25 deg for pitch, 
yaw and roll axes respectively. The initial estimation values 
for the gyro and magnetometer biases are all taken as 0. 

We tested the RAUKF for the continuous bias failure. A 
constant value is added to the measurements of the 
magnetometer aligned in the x axis between the 30000th and 
30200th seconds for a period of 200 seconds such that 

   , , 20000x xB t B t nT q q       30000 30200sect    

A deviation in the bias with this amount is reasonable when 
the values given in (Sakai et al., 2011) are taken into 
consideration.  

4.1  Effects of the Q-Adaptation 

In Fig. 2 the pitch angle estimation results that are obtained 
when we use the regular UKF or the proposed RAUKF are 
given in the same plot. As clearly seen, especially from the 
zoomed subplot, the results obtained by the RAUKF are far 
more accurate. This is mainly because of the nearly optimal 
values of the Q matrix for the RAUKF that we cannot easily 
obtain by the trial-error method.  

Fig. 2.  Estimation of the pitch angle via the RAUKF (red 
line) and UKF (black line). 
 
For the simulations the process noise covariance matrix for 
the UKF is  

   
   

 

3 7
3 3 3 3 3 3

7 10
3 3 3 3 3 3

12
3 3 3 3 3 3

1 10 1.5 10 0

1.5 10 1 10 0

0 0 1 10

I I

Q I I

I

 
  

 
  


  

   
 
    
 
  

. 

That is also the same value with which the RAUKF is 
initialized. As to the values that the RAUKF converged are, 

 

_ 3 3

_ 3 3

3 3 3 3

0

0

0 0

q q gb

q gb gb

mb

Q Q

Q Q Q

Q





 

 
   
  

, 

where, 
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6

6

6

1.9372 10 0 0

0 3.1132 10 0

0 0 3.6348 10
qQ







 
   
  

, 

13

13

13

1.9528 10 0 0

0 2.7443 10 0

0 0 2.5297 10
gbQ







 
   
  

, 

15

15

15

1.694 10 0 0

0 1.4116 10 0

0 0 2.3095 10
mbQ







 
   
  

, 

10

10
_

10

5.6722 10 0 0

0 8.6334 10 0

0 0 8.7782 10
q gbQ







  
    
   

. 

 

As seen the estimated Q values are absolutely different from 
the initial values and it is not easy to guess such values by 
trial-error method. 

In case we use the RAUKF the sensor calibration 
performance is also highly increased as may be seen in Fig. 3, 
which presents the magnetometer bias estimation error for the 
magnetometer aligned in the z axis. Indeed, such increment is 
tightly related to the increased attitude estimation accuracy. 
The RAUKF itself increases both attitude estimation and 
sensor calibration performance as the estimated Q values 
match with the real values. Besides, when the magnetometer 
biases are estimated more precisely that brings about better 
attitude estimation results since the accuracy of the incoming 
measurements are increased.   

 
Fig. 3.  Bias estimation error for the magnetometer aligned in 
the z axis: the RAUKF (red line) and UKF (black line). 

4.2  Effects of the R-Adaptation 

The same scenario is repeated by considering a sensor 
malfunction in between 30000th and 30200th seconds this time. 
Fig. 4 gives the roll angle estimation result comparing the cases 
that the estimator is the RAUKF or just the regular UKF. As 
expected the UKF estimations deteriorate in case of 
measurement fault and it takes an additional 1000 seconds for 
the filter to converge again and satisfy estimation results with 

error less than 0.1deg. On the other hand the RAUKF maintains 
its good estimation performance even in case of the fault. 

Fig. 4.  Estimation of the roll angle via the RAUKF (red line) 
and UKF (black line) in case of measurement malfunction. 

 

Similar behavior can be seen for the magnetometer bias 
estimation results (Fig.5). An additional bias that is 
experienced because of the sensor fault is considered as a 
variation in the estimated bias terms by the regular UKF. 
Therefore UKF bias estimations, specifically for the 
magnetometer with the fault, worsen. However the RAUKF 
keep providing the accurate bias estimation results. 
  

 
Fig. 5.  Bias estimation error for the magnetometer aligned in 
the x axis in case of measurement malfunction: the RAUKF 
(red line) and UKF (black line). 

5.  CONCLUSIONS 

In this study, first two practical problems for a nanosatellite 
carrying magnetometers onboard are examined and it is 
described how to solve this problems using adaptive Kalman 
filtering approach. In this sense, the process noise covariance 
(Q) and measurement noise covariance (R) adaptation 
techniques are presented. The Q-adaptation method is used to 
tune the Q matrix based on the residual series and obtain the 
optimal Q values. As a result the attitude estimation and 
sensor calibration performance of the UKF increased. The 
innovation based R-scaling method is used to adapt the R 
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matrix and build an UKF that is robust against sensor 
malfunctions. Then as the next step, an integration scheme 
for using these two adaptation techniques in a single UKF 
simultaneously is proposed. The applicability conditions of 
the new algorithm that is named Robust Adaptive UKF 
(RAUKF) are discussed. As the final step the RAUKF is 
demonstrated for attitude estimation of a hypothetical 
nanosatellite. The simulation results show that the RAUKF 
perform well under all conditions including the sensor fault 
case and give better estimation results than the regular UKF 
algorithm. Besides the demonstrations prove that the 
proposed integration scheme for two different adaptation 
methods works properly. 
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