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Abstract: This paper presents a hierachical model predictive control (MPC) structure with
decoupled MPCs for building heating control using weather forcasts and occupancy information.
The two level control structure embeds a fuzzy MPC (FMPC) for user comfort optimization
and a mixed-integer MPC (MI-MPC) for energy optimization at minimal costs. As FMPC uses
a set of local linear models classical linear MPC theory is applicable, though the underlying
system dynamics is non-linear. The supply level in a large modern office building always features
switching states of aggregates, hence an MI-MPC is used for energy supply optimization.
Additionally, both FMPC and MI-MPC consider all relevant constraints. The innovation in
this study, beside the usage of FMPC for building control, is the decoupling of the energy
supply level and the user comfort with a single coupling node. Although a global optimum is
not guaranteed, a decoupled control system often is more attractive for industrial applications
and building operators. The perfomance of the proposed control structure is demonstrated
in a simulation with a validated building model, and two different disturbance scenarios are
presented.

Keywords: Model predictive control; Advanced process control; Fuzzy MPC; Building climate

control.

1. INTRODUCTION

Saving energy has become a political and social issue of
concern worldwide. As buildings cause 40% of the total
final energy consumption, Energy Ag. (2008), and due
to the long lifespan of buildings, an emphasis is put on
the development of strategies to operate modern large
building systems in an energy efficient way. Optimizing
the energy consumption while ensuring a given level of
comfort within the building leads to a challenging control
problem. Numerous different input variables and distur-
bances influence the desired outputs, such as room tem-
perature. Model predictive control (MPC) has become one
of the most promising techniques in this field. This paper
presents a new decoupled MPC structure ensuring high
comfort with minimal energy and costs expended. The
comfort level controller is a Fuzzy MPC using a set of
local linear models guaranteeing the desired comfort with
minimal amount of energy while complying with the given
thermodynamical input constraints, which enables the use
of proven linear MPC theory. The models result from a
data-driven black-box algorithm, Nelles (2001), which is
straightforward to implement and allows for utilization of
existing data records. The supply level MPC focuses on
the supply of the energy demanded by the building at the
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best possible costs based on a simplified thermodynamical
model including intermittent power supply units (e.g. heat
pump). This leads to a mixed-integer quadratic program-
ming (MIQP) problem to be solved for each predictive
step. The interface between the two MPCs is the energy
demand of the building which constitutes the output of
the comfort level controller and input of the supply level
controller. This hierarchic approach opens the opportunity
to implement either both MPCs or just a single one.

In the field of building control recent papers have shown
that energy savings can be reduced significantly with the
MPC technology, e.g. Sirok{ (2011). Taking the uncer-
tainty of disturbances into account either due to the use
of weather predictions, Oldenwurtel (2012), and/or occu-
pancy information, Oldenwurtel (2013), by using stochas-
tic MPC (SMPC) was found to be superior in terms of
comfort violations. Another approach dealing with uncer-
tain disturbances is a Randomized MPC (RMPC) applica-
ble for non-additive uncertainties, Zhang (2013). However,
the common concept is the use of one global model for
building Heat Ventilation and Air Condition (HVAC) dy-
namics, Air Handling units (AHUs), and components for
chilled or hot water generation. In Ma (2012) a two level
distributed MPC approach is presented distinguishing en-
ergy conversion and energy distribution without explicit
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interface between the controllers. The main difference pre-
sented in this work is a decoupled MPC structure with a
single coupling parameter, the building’s energy demand.
One model is used for the building’s HVAC dynamics
and another is formulated for a simplified thermodynamic
behavior of the energy supply components. This hierarchic
approach allows to seperate control targets with different
time constants to reduce complexity in operation.

The building’s HVAC dynamics are generally nonlinear
and non-convex. In order to avoid non-convex optimiza-
tion, a set of local linear models can be extracted from
a Takagi-Sugeno (TS) fuzzy model, Takagi (1985), which
are then utilized by the MPC. The usage of the resulting
Fuzzy MPC, Fischer (1998); Abonyi (2003), is new in the
field of building control. T'S fuzzy models approximate the
nonlinear HVAC dynamics very well and allow to extract
a set of models valid for a whole year, since the additional
models are identified for varying the ambient temperature,
Killian (2013).

Mixed-integer quadratic programming (MIQP) problems
are well known as NP-hard problems. For predicitve con-
trol this implies a demanding and computationally ex-
pensive task as an MIQP problem has to be solved on-
line for each prediction step to compute the control in-
put. Therefore, several works report how the optimization
problem can be devided into off-line and on-line tasks, e.g.
Bemporad (2002). Nevertheless, as long as the system is
linear and constraints are linear or second order cone, free
powerful solvers, Lofberg (2004), allow straight forward
on-line computation if the sampling time is large enough.

The remainder of the paper is structured as follows: In
Sec.2 the system models used by the MPCs are intro-
duced. The hierarchic MPC structure and the MPCs’
formulations are presented in Sec.3. The simulation results
of the hierarchically connected but decoupled MPCs are
shown on a demonstration building in Sec.4. The paper is
concluded by a discussion of the simulated application and
an outlook to further research.

2. SYSTEM MODEL

It is well known, that modeling and identification are the
most difficult and time consuming parts of the control
design process, particularly for predictive control. Reliable
predictions from the identified dynamic building model are
absolutely necessary for a good MPC performance. More-
over, predictions of stochastic disturbances like weather
forecasts and occupancy are important as well for model-
ing, Privara (2013); Oldenwurtel (2012, 2013). As already
mentioned, the study focuses on two types of model pre-
dictive controllers. It is essential to construct two different
system models, on the one hand for comfort maximization
in the High Level (HiLe) (the building indoor rooms) and
on the other hand for energy minimization in the Low
Level (LoLe) (supply area of the building). Note that the
relevant dynamics in the higher level is comparatively slow,
whereas in the lower level it is faster. In the HiLe Takagi-
Sugeno models are used, due to the fact that they can
represent nonlinearities in a local linear way, see Sec.2.1.
For the energy sources in the LoLe a physical white-box
model is built, see Sec.2.2.

2.1 HilLe System Model

Data-driven system identification (black-box identifica~
tion) for modeling nonlinear dynamic systems by local
linear model (LLM) networks is an efficient way of model
building for complex dynamic systems. One of the main
advantages is that existing theory of system identifica-
tion is extended to globally nonlinear system behaviour.
Since the validity of those LLMs is confined to certain
regions within the so-called partition space, this model
class is also named Takagi-Sugeno Fuzzy models, Takagi
(1985). The dynamics in the office building itself is slow,
so the sampling time is assumed to be one hour. To set
the indoor room temperature 9" there exist two main
input variables, the supply heat of fan coils (F'C') and the
supply heat of the thermally activated building system
(TABS). In addition to the control variable inputs, the
linear model tree (LOLIMOT) algorithm also incorporates
disturbances, therefore weather forecasts and occupancy
information are used. The LOLIMOT algorithm used for
this study is described in Nelles (2001), applied for this set
of data in Killian (2013) and validated in Mayer (2013).

Takagi-Sugeno (TS) Models

Motivated by results of classical linear MPC theory, e.g.
stability theory, Bordons (2004), it is beneficial to use a lin-
ear model structure. To fulfill this necessary assumption,
TS fuzzy models are used and a fuzzy model predictive
controller (FMPC) is presented in Sec.3.2, the results are
given in Sec.4.2. Complex dynamical systems can often
be represented by a nonlinear autoregressive model struc-
ture with exogeneous input (NARX), Abonyi (2003). In
general, this structure can be considered as a nonlinear
relation between past inputs and ouputs and the predicted
ouputs of the sytem:

gk +1) = fly(k), .. y(k —ny + 1), w(k —nq), (1)
"'aul(kfnu —Ng + 1))3

where n, and n, are the maximum lags considered for the
output and input terms, ng is the discrete dead time, and
f represents the nonlinear mapping. TS fuzzy models are
proved to be suitable for approximation of such sytems
by interpolating between local linear, time-invariant ARX
models, Abonyi (2003). The basic element of a fuzzy
system is a set of fuzzy inference rules. In general, each
inference rule consists of two elements: the IF-part, called
the antecedent of a rule, and the THEN-part, called the
consequent of the rule. For each rule R’ the following
structure holds:

R/ :IF ¢ is A{ and ... (pis A7)

THEN ¢/(k+1) =) aly(k—i+1)  (2)
=1

N
+Zb{ul(k—i—nd+1)+c7.
i=1

Here j =
of input fuzzy variables and A7,..

{TABS,FC}, ¢ = [G1,...,(m] is the vector
., AJ are the forgoing

m
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fuzzy sets or regions for the j-th rule R/ with correspond-
ing member ship functions /‘{41 yee ,,uilm (note: 14, (¢;) —
[0,1], for j =1,...,m), Nelles (2001); Killian (2013). The
elements of the fuzzy vector are usually a subset of the
past input and ouputs, Abonyi (2003):

CE{y(k)w'wy(k_ny+1)7ul(k_nd)ﬂ (3)
cou(k—ny, —ng+ 1)}

The overall output of the TS fuzzy model can be written

as
Zvﬂ

where r denotes the number of rules. The degree of
fulfillment if the j-th rule can be computed using the
product operator:

y(k+1) = o (k+ 1), (4)

i=1

furthermore, the normalized degree of fulfillment can be
computed as:

j _ Nj(C)
w“%_ZLuMO' ©)

If all consequents of the rules have identical structure, the
TS model can be expressed as a pseudo-linear model with
input-dependent parameterS'

Z ai(¢
zn

+ Z bi(Q)u(k
i=1

y(k+1) (k—i+1) (7)

—i—nd+1)+

c(¢),

where:

=2 _w'(Qa]
bi(¢) = 3w/ (O], (8)
= W(Q)d
j=1

It is obvious that there are systematic similarities between
conditional parametic models and TS fuzzy models. In
this context the local neighborhood around each fitting
point is dermined by Kernel functions, for fuzzy models
the term membership functions is used, Abonyi (2003);
Nelles (2001); Takagi (1985).

2.2 Simplified LoLe System Model

By modeling the LoLe the objective is to develop a simpli-
fied yet descriptive model which can be used for optimiza-
tion in an MPC. Modern buildings are supplied by nu-
merous energy sources as district heating, geothermal en-
ergy, free cooling, and equipped with electrically powered
units supplying different HVAC systems of the building.
In terms of an optimization problem these physical energy
circuits are decision trees starting from the source and end-
ing at the transfer node to the building. A straight forward

modeling approach based on thermodynamical principles
is pursued, Ma (2012). Additionally, the units have the
possibility to switch their state between on and off or
even between several modes. In order not to change modes
arbitrarily minimum up-times and minimum down-times
are additional constraints to the units’ power limitations.
The extension with integer or binary control inputs change
the model from non-linear to mixed-integer nonlinear pro-
gramming problem, Ma (2009).

For this work, as the control objective of the LoLe MPC
lies on supplying the demanded amount of energy at
minimal costs, the interactions of the energy supply units
as pumps, heating pumps, or chillers up to the supply
connection point to the building are further simplified and
modeled in the form of energy balances. Therefore, the
following relationship exists for the whole supply system
as well as for each circuit of pumps and units:

Qoutput = Qenv + Qelectric - Qlosses
The output energy Qoutput is gained by the energy drawn
from the environment Qem, and the total electric energy

invested Qelecmc minus the sum of all losses Qlog&eg Some
further simplifying assumptions are made:

(1) Asin Vrettos (2013) the heating pump is modeled by
a linear Coefficient of Performance (COP), i.e., the
ratio of the output thermal power to the input electric

power.
m; - AY; - cp

Pe ectric e — 9

e = TR0 )

COP=cy+cy Tomp+co-Ts (10)

with ¢ = 5.593, ¢; = 0.0569 K~ and ¢y = 0.0661
K~1. T, is the ambient temperature of the supply
basement which is assumed to be constant. As in
Vrettos (2013) the temperature of the supply water
on the hot side T is a state variable and is also kept
constant with the start value.

(2) Pump characteristic curves are linearized, so that the
electric power for pump ¢ depends on the correspond-
ing mass flow 7h;.

Pelectric,i =Ci m1
3. MODEL PREDICTIVE CONTROL STRUCTURE

Hierachical MPC structures in building climate control
are a possible way to make the implementation and op-
timization problem easier, even if the global optimum is
not guaranteed, Picasso (2010); Scattolini (2007); Skoges-
tad (2000). One motivation for decoupled MPCs in this
study was, that industrial partners and building operators
wanted to have two products, on the one hand an MPC for
comfort maximization and on the other hand an MPC for
energy cost minimization. In Sec.3.1 the hierachical control
concept is presented. Sec.3.2 shows a High Level MPC
(HiLe-MPC) in form of a fuzzy MPC (FMPC), which is
used for performance optimization, guaranteeing maximal
user comfort. The energy supply for the HiLe-MPC comes
from the underlying Low Level mixed integer MPC (LoLe-
MPC, MI-MPC), see Sec.3.3, which handles the energy
supply in an optimal way.
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3.1 Control Concept

The innovation in this paper is the hierachical MPC con-
cept for large office buildings. First of all, a new FMPC
method is described to maximize user comfort in the HiLe.
In the LoLe energy supply is optimized with MI-MPC
concept in a cost minimal way. In Ma (2009) a similar
concept for optimizing the supply level was choosen, how-
ever with an nonlinear MI-MPC. This study focuses on
decoupling of two different types of MPC problems. Their
extremly diverse dynamic behavior supports this struc-
ture. Communication between the two types auf MPCs is
based on one coupling variable, the heating energy @. In
Fig.1 the hierachical scheme is presented, Picasso (2010);

Scattolini (2007); Skogestad (2000). @ for the HiLe-MPC

weather forecast
occupancy data

e

£

A supply,; > M

> -t
Q7°

)

,Lginf HiLe LoLe 9,
re act
FMPC MI-MPC | Supply |( | Building|_

building supply |
model model Plant
ants

hierachical MPCs

Fig. 1. Concept of hierachical decoupled MPCs

represents the energy demand, which constitutes the con-
trol variables of the HiLe-MPC. The sum of these control
variables )", Q); is the energy supply of the LoLe-MPC,
respectively the reference value. Thus, the LoLe control
variables are given by Avguppiy,, which is the tempera-
ture difference between heat supply and heat return, and
massflow 77;, for i = {TABS, FC}. 912 an 93}, give the
reference and actual value for indoor room temperature.
However, the important fact is the decoupling of the opti-
mization problems. Stochastical disturbances like weather
and occupancy information only affect the HiLe-MPC,
Oldenwurtel (2013); Zhang (2013). Due to the fact that
dynamical behavior is highly different in HiLe-MPC and
LoLe-MPC, decoupling is useful. Dynamics arise because
of different dead and sampling times in the individual
MPCs. Latency periods are the reason for dynamics in
LoLe. Global optimal solutions may not be reached with
a decoupled method, but two local optimal solutions are
easier to optimize and implement.

3.2 Fuzzy MPC

Standard MPC formulations are well known and given in
e.g. Bordons (2004). In this paper a local linear model was
computed for nonlinear dynamics. To avoid non-convex
optimization, a set of local linear models was extracted
from a TS fuzzy model which is then utilized by the
MPC algorithm, Abonyi (2003). Stochastical disturbances,
weather forecast and occupancy information, are noteable
in the HiLe of the building, Oldenwurtel (2012, 2013);
Zhang (2013). As already mentioned, the FMPC controls
the indoor room temperature.

The FMPC optimization problem is formulated as follows:

J*=min J(U,t) = - [|[052,(U, t) = 9¢ll5 + 8 - ZQ?

s.t. (11)

min max

Ui,min < uz(t) § Ui,mam

for U = {u;} and for i = {TABS, FC}. Moreover, a and
B are weights of the minimization criterium. In this paper
« is highly weighted in contrast to § to guarantee high
comfort.

Fuzzy MPC formulation

The formulation of the FMPC depends on linear models,
which are obtained by interpolating the parameters of the
local models in the T'S model, see system (8) and equations
(7), Takagi (1985); Mollov (2004).

The goal is to locally represent a TS fuzzy model by a
linear state-space model

x(k+1) = Apx(k) + Bru(k) + Epz(k)
y(k) = Crx(k)

(12)

in which system matrices Ay, By, Cr and Ej are consid-
ered to be non-constant. Assume that the MISO TS fuzzy
model can be regarded as a multivariable linear parameter-
varying system, Abonyi (2003).

Yk +1) = Y ROy i+ 1) (13)

+ Z H; (Qu(k —i+ 1) + ¢(¢).
i=1

in which parameter matrices frozen at a certain operating
point ¢ are calculated as

FZ(C) :iWJ(C)FH 1= 17 <5 Ty
j=1

H() =Y WORL  i=1..n (1)
1=1

c(¢) = Z W (¢)e?,

where WY is the diagonal weight matrix which entries are
normalized degrees of fulfillment of the j-th rule. In order
to predict the trajectory of the controlled ouput, system
(13) can be used. The linear extracted state-space models
can be augmented to provide offset free control. Let £(k)
denote the augmented state vector at time step k, then
future process outputs are computed from the following
matrix:

Y = F(k)&(k) + @, (k)AU + &, (k)AZ,  (15)

the matrices F, ®,, and ®, have to be calculated at each
time step and are then used in the following quadratic
program for determining optimal future control sequences:
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J* = min J(AU) = (Y, - Y)'Q(Y, - Y)+AUTRAU

s.t. (16)
Ymin S }Af S Ymam»
Umin S U S Umama
AUmzn S AU é A[jrnax~

Y, is the reference trajactory, U = {u;},i = {TABS, FC},
Q and R are positive semidefinite weighting matrices
which allow for tuning. The approach can be summarized
in the following steps:

(1) Use the obtained linear model (12) at the current
operating point ((k) and compute the control signal
u(k) for the whole control horizon.

(2) Simulate the TS fuzzy model over the prediction
horizon.

(3) Freeze the TS fuzzy model along each point in the
predicted operating point trajectory ((k+i) and ob-
tain to parameters of (12), for i =1,..., N,.

(4) Use calculated (12) of step before, ¢ = 1,..., N, to
construct MPC matrices F, ®,, and ®, and compute
the new control sequence u(k).

Steps 3 and 4 are repeated until u converges, Abonyi
(2003); Fischer (1998); Mollov (2004); Takagi (1985).

3.8 Mizxed Integer MPC

Intermittent units at the building’s energy supply level
require binary variables representing the on/off state as
well as continuous variables. In literature such systems
are denoted as hybrid systems. Hybrid systems are mod-
eled in discrete-time within the mixed logical dynamical
(MLD) framework, Bemporad (1999). First approaches to
control dynamic systems with online mixed-integer pro-
gramming subject to logical conditions have appeared in
Tyler (1999). As the traditional MPC objective function
is quadratic the optimization routine is a mixed-integer
quadratic programming (MIQP) problem. The realization
of the MPC of hybrid systems implies that a MIQP pro-
gram must be solved on-line each prediction step to obtain
the control input, which is a computationally expensive
task as MIQP are known as NP-hard problems. As long as
the system is linear, the dynamics are time-invariant, and
the control frequency is in the order of minutes, the mixed-
integer quadratic programming (MIQP) problem can be
solved by readily available off the-shelf optimizers using
efficient branch and bound algorithms. The free Matlab
toolbox YALMIP, Lofberg (2004) was used for the MPC
formulation and gurobi as MIQP solver, Gurobi (2013).
Nonlinear systems can be treated by approximation with
piecewise affine systems (PWA) which are equivalent to
MLD, Bemporad (2000a). Bemporad (2000b) shows crite-
ria for stability of optimal controllers of PWA systems.

As the low level model is a simplified thermodynamical
model, namely a static energy balance as introduced in
Sec.2.2, only linear constraints are considered. In addition
to limits on all control input variables, minimal switch-
on/switch-off times expand the set of constraints. The
discrete time MI-MPC problem is formulated as follows:

7 = ) = 13 Qu08) ~ Qres (1)1
+ Cj - Ejz(U, t)
s.t. (17)
Qi(t) = mi(t) - AD(t) - cp
E;(t) = Z Zpij;k(t)At
ik

Ui, min S Uq (t) S Ui max
-Pi,k,min S Pi,k(t) S -Pi,k,max
onoff,(t) € {0,1}
minup; , € N

mindown; j, € N

for i = {TABS,FC}, j = {electric, district heat} and
U = {my;, AY;}. ¢; denotes the price for one kWh and

E; the amount of energy demanded from the jt* energy
source whereas onoffj, are the on/off state of each supply
unit k. PZ  is the power of unit £ run by source j and
decision tree i. Minup and mindown are the time constants
for minimal up and minimal down periods for unit & and
decision tree ¢.

4. RESULTS
4.1 Demonstration Building

The 27.000 m? university building in the center of
Salzburg, Austria, has five floors above ground contain-
ing several large and numerous smaller meeting rooms,
offices and lecture rooms. There are six atriums within
the modern building complex. For this study, the north-
east quarter of the building is considered, comprised of 400
rooms almost all used as offices. The heat demand for this
part is about 300 to 350 kW in winter time. The considered
simulation period was February 2012. The samples for this
period are drawn from historic databases for the model
identification introduced in Sec.2.1, whereas basis for the
LoLe Model (see Sec.2.2) were plan data from supply units
as pumps or the heat pump. The system disturbances
are the outside temperature and the occupancy profile.
The historic outside temperature was provided by the
ZAMG! Austria. As the control simulation is run for a
winter month where outside temperature does not exceed
5°C only heating is relevant for the simulation. The office
rooms are heated with F'C and TABS, i.e. fast and slow
heating dynamics characterize the HiLe model. To identify
the HiLe black-box model different types of sensores were
used, to be specific for supply heat and return run from F'C'
or rather TABS, indoor room temperatures and ambient
temperature. For the LoLe model two decision trees are
important for this work. The first delivers hot water for the
TABS which is fed by geothermal energy and a heat pump
whereas the second is responsible for the supply of hot
water for the FC system which is run by district heating.
In order to optimize the maintainance costs for the heat
pump it is only switched on if necessary. Both trees have
one pump in the circuit. The following power limits are

1 Zentralanstalt fiir Meteorologie und Geodynamik - The central

institute for meteorology and geodynamics
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effective for the constraint formulation in Sec.3.3:

k k
10 =2 <y < 40 —2 fori € {1,2}
min min

10 kW < P, gp < 250 kW
10kW < P, pg < 500 kW
minup; yp = 6 min

mindown; gp = 3 min
4.2 Control Simulation

This section presents simulation results of the FMPC and
MI-MPC communicated by @);, as described in Sec.3.1.
The simulations in both examples were run over a heating
period. For weather and occupancy, historical data were
used. The first example (see Fig.2 and Fig.3) shows a
reference value step and a disturance step. The reference
step increases by 2°C' (¢t = 50h), stays at the new value
and goes back to the old reference (¢ = 80h). The ambient
temperature step increases from —5°C to 0°C' (t = 20h)
and decreases to —2°C (¢ = 90h). In the first plot of Fig.2
the reference value step, blue dash-dotted line, and the
FMPC, red line, are presented. The green dashed lines
represent the constraints on . In the second plot of Fig.2
the disturbance steps are shown. The control variables
upmpo; = {TABS,FC} are presented in the plot 3 and
4 of Fig.2. The FMPC is able to enforce constraints in
the controlled variable as well as in control variables,
shown in plot 3 and 4 of Fig.2. The constraints are also
shown in green dashed lines. Fig.3 presents the results

controled system output vs. reference value

= FMPC
ref.val.

12 24 36 48 60 72 84 96 108 120

disturbance step
5 T T T

-10 i i i i i i i i i
0 12 24 36 48 60 72 84 96 108 120

control variable supply heat TABS
T

1
0 12 24 36 48 60 72 84 96 108 120

control variable supply heat FC
T

80F !
D6OV B

201 . . E 4

0 i i i i i H H H H
0 12 24 36 48 60 72 84 96 108 120

time in hours (sampling time 1h)

Fig. 2. Fuzzy MPC; reference and disturbance steps

of the underlying MI-MPC, which got as reference value
Qref = Qraps + Qrc from Fig.2. In the first plot of

Fig.3 the different Qs are shown. QHP and QDH rep-
resent the energy taken from different sources, in which

HP stands for heat pump and DH for district heating.
Also the controlled Qg..;, black line, and the reference
value from the FMPC control variables Q. is shown, red
line. There exists a perfect accordance between these two
lines. The green line shows the energy coming from the
district heating and the blue line energy from heat pump,
binary variable (on/off). It is obvious that an optimizer
for minimal costs always takes energy from the cheaper
resource (DH), except the upper bound is reached. Then
the heating pump is needed for the required Q However,
the problem switching HP ist not trivial since latency
times have to be considered, see eq.(18). In plot 2 and
3 of Fig.3 the control variables uyrr—ppo, = AU, are
shown, green line for district heating and blue line for heat

pump.

energy supply demand vs. actual

800 T Qwr
QpH
—— Qact
600 —— Qs
)
° 400
200
0
0 12 24 36 48 69 72 84 96 108 120
control variable mass flow m
20 T T T T T

g[z10 - -
5F i
0

0 12 24 36 48 69 72 84 96 108 120

control variable A9
50 T T T

401 1
= 30f . . : ]
< 201 : -
wof . S

HE i
0 12 24 36 48 69 72 84 96 108 120
time in hours (sampling time 15min)

Fig. 3. MI-MPC results; reference and disturbance steps

The second example shows a measured ambient tempera-
ture and a constant reference value for the controlled vari-
able. Fig.4 presents a simulation cutout. This cut was cho-
sen, because of the natural stochastic disturbance change
from —20°C up to 5°C, plot 2 of Fig.4. The results of the
FMPC are presented in Fig.4, the appropriate results of
the MI-MPC shown in Fig.5. The line colors and modes
are the same as in the first example.

Fig.6 shows the MPC trajectory of the second example in
the fuzzy space decomposition constructed by LOLIMOT.
The starting point is the red diamond, black points are
operating points. The trajectory changes between LLM 2
and 3 and after the stochastical disturbance change goes
to LLM 1. The green circle is the end, which is the area of
highest ambient temperature. The stochastic disturbance
change switches from LLM 2 to LLM 1. As shown in this
plot, FMPC is able to handle frequent transitions in the
local linear models without any problems.
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controled system output vs. reference value
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5. CONCLUSION AND FUTURE RESEARCH

The paper introduced a hierachical MPC concept for effi-
cient decoupled building heating control. For the optimiza-
tion of the user comfort on the high level a Fuzzy MPC is
presented which is a new technology to this field. Whereas
the Mixed-Integer-MPC solves the problem of minimizing

Fuzzy MPC trajectory in LLMs
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Fig. 6. Fuzzy MPC trajectory; disturbance step

energy at minimal costs seperatly in the lower supply
level of the building. Due to this hierarchic concept, two
optimization problems of different dynamics and sampling
frequency can be optimized decoupled but still connected
in a single coupling node within one control structure.
Although the hierachical MPC will only find local optima,
the implementation effort and formulation of the different
optimization problems can be significantly reduced. There
exists no global optimal solution to the given problem,
therefore a sub-optimal solution was presented. This sub-
optimal solution is difficult to measure or compare with
other control strategies as far as the real implementation
in the demonstration building is concerned.

Future work will deal with the extension to control cooling
cuircuits and heating circuits over a longer period of the
year and with the implementation in the real building.
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Appendix A. ACRONYMS

Notation Description
MPC model predictive control
FMPC fuzzy model predictive control
MI-MPC mixed-integer model predictive control
SMPC stochastic model predictive control
RMPC randomized model predictive control
MIQP mixed-integer quadratic program
LLM local linear model network
LOLIMOT local linear model tree
TS Takagi-Sugeno
MISO multi-input single-output
ARX autoregressive model structure
with exogeneous input

NARX nonlinear autoregressive model
structure with exogeneous input

HiLe high level
LoLe low level
AHU air handling unit
HVAC heat ventilation and air condition
FC fan coil
TABS thermally actived building system
HP heat pump
DH district heating




