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Abstract: Human preference over random outcomes may not be as rational as shown in the
expected utility theory. Such an “irrational” (as a matter of fact, closer to reality) behavior
can be modeled by distorting the probability of the outcomes. Stochastic control of such a
distorted performance is difficult because dynamic programming fails to work due to the time
inconsistency. In this paper, we formulate the stochastic control problem with the distorted
performance and show that the mono-linearity of the distorted performance, which claims that
the derivative of the distorted performance equals the expected value of the sample derivative
under a changed probability measure, makes the gradient-based sensitivity analysis suitable for
optimization of the distorted performance. We derive the first order optimality conditions (or
the differential counterpart of the HJK equation) for the optimal solution. We use the portfolio
allocation problem in finance as an example of application.
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1. INTRODUCTION

The goal of a standard control problem in finance is to
optimize the expected value of a utility function which
represents the investor’s different “satisfactions” to differ-
ent outcomes. The expectation is taken with respect to the
natural probability measure P and is a linear functional in
the utility space (E[f(x)+g(x)] = E[f(x)]+E[g(x)], with
x representing the outcomes). However, people’s “satisfac-
tion” is not always linear (e.g., E[f(x)+g(x)] 6= E[f(x)]+
E[g(x)]). In other words, the standard expected utility the-
ory cannot model and explain this nonlinearity of people’s
behavior. Examples include lottery and insurance; in both
cases, the expectation of the outcomes (benefit minus cost)
are negative and people still buy them; that is, two random
outcomes having the same expectation lead to different
satisfactions.

This problem has been attracting considerable interests
from the research community, especially in the financial
sector. A dual theory is proposed in Yaari (1987) to deal
with this non-linear behavior. The essential point of the
dual theory is that instead of distorting the outcomes
by a utility function, it distorts the probability of the
outcomes. Intuitively, the dual theory captures people’s
behavior that they usually enlarge the effects of rare events
and diminish those of common events. Some excellent
progress has been made in portfolio optimization based
on this performance model with distorted probabilities,
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or the “distorted performance” for short Tversky and
Kahneman (1992); Karatzas et al. (1991); He and Zhou
(2011); Jin and Zhou (2008); Cao and Wan (2013).
These works, however, depend on the special structure
of a financial market in which the stock prices are not
controllable. The formulation of the optimization of the
distorted performance and the approach to solve such an
optimization problem in a general setting of stochastic
control need to be developed.

The main difficulty is that dynamic programming fails in
optimization of distorted performance. Because if a policy
is optimal for a distorted performance when the process
starts from time t, this policy is no longer optimal from
time t onward if the process started from time t′ < t. This
property is called time-inconsistent; we need to look for
other approaches that do not require the time-consistent
property.

In the past decades, the author and his colleagues have
been working on the sensitivity-based optimization ap-
proach Cao (2007), which is an alternative to dynamic
programming. Unlike dynamic programming, which re-
quires time consistency, the sensitivity-based approach is
simply based on a direct comparison of the performance
of any two policies and therefore is not subject to time
consistency. When the two policies under comparison are
infinitesimally close to each other, the approach leads to
performance derivatives with respect to continuous pa-
rameters of policies. The performance and its derivatives
can usually be measured on a sample path and therefore
it is a sample-path based approach in the same spirit
of perturbation analysis (PA) Ho and Cao (1991); Cao
(2007). It has been shown that many results by dynamic
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programming can be obtained with the sensitivity based
approach Cao (2007).

On one side, the stochastic control with distorted perfor-
mance, which represents people’s preference pattern over
outcomes, cannot be solved by dynamic programming; on
the other hand, we have the sensitivity-based optimiza-
tion approach, which does not require the time-consistent
property. It comes naturally to try apply this approach to
the case with distorted performance. We have successfully
applied this approach to the portfolio management prob-
lem in Cao and Wan (2013), the results there rely heavily
on the simple structure of the market dynamics: the price
process of the stocks are not controllable. The goal of this
paper is to formulate and study the optimization with
distorted performance in a general setting of stochastic
control, with the sensitivity-based approach.

In Section 2, we define the performance with probability
distortion and formulate the stochastic control problem
with distorted performance. In Section 3, we review some
fundamental properties of the distorted performance Cao
and Wan (2013). It has been shown that the distorted
performance enjoys some sort of linearity, called “mono-
linearity”, which forms the basis of the sensitivity-based
approach applied to the problem. In Section 4, we present
the general optimality conditions in a differential form
(i.e., first order optimality condition); Applying the per-
turbation analysis principle, and with the mono-linearity,
we prove that derivative of the performance potential
of an optimal polity forms a martingale with respect to
the changed measure. In Sections 5, we discuss dynamic
systems described by the standard diffusion processes. We
derive the equations for determining the Radon-Nikodym
derivatives of the changed measure under any policy w.r.t
P, from which we obtain the first order optimality condi-
tion in terms of the sample-derivatives of potentials and
the system parameters.

In this paper, we show that the mono-linearity of the dis-
torted performance makes the gradient-based sensitivity
analysis suitable for optimization of the distorted perfor-
mance. We prove that at an optimal policy, the sample
derivative of the distorted performance is a martingale un-
der the changed measure. First order optimality conditions
(or the differential counterpart of the HJK equation) are
then obtained for systems with diffusion state processes
in terms of system parameters. These results cannot be
obtained by dynamic programming.

2. THE BASIC FORMULATION

2.1 The performance with distorted probability

Consider a non-negative, a.s. finite random variable Xθ

defined on a probability space (Ω,F ,P), with θ denoting a
parameter. With the expected utility theory, the objective
is to maximize the expected utility U(Xθ) : R+ → R+:

EP [U(Xθ)] =

∫
R+

P[U(Xθ) > x]}dx, (1)

where EP denotes the expectation under probability mea-
sure P.

However, people’s preference cannot always be measured
by the expected utility, e.g., they strongly dislike disasters

even if they happen rarely. This type of non-linear behav-
ior has been widely studied in the finance and economics
community. Widely used is the dual theory proposed in
Yaari (1987), which models the fact that people usually
subconsciously enlarge the chance of rare events (wining a
lottery or encountering a disaster) while diminishing the
effect of common evens. Therefore, in the dual theory, we
wish to maximize the following performance with a dis-
torted probability (or called the “distorted performance”):

ηXθ
:= ẼP [Xθ] :=

∫
R+

w{P[Xθ > x]}dx, (2)

where w is a nonlinear distortion function, which is as-
sumed to be strictly increasing and analytical, with w(0) =
0 and w(1) = 1. Compared with (2), the utility function
U in (1) “distorts” the outcome values; this explains the
meaning of “dual”. In finance, a convex distortion function
is used by risk aversion investors, and a concave distortion
function for risk taking ones.

2.2 The optimization problem

Consider a stochastic system whose state S(t) follows the
standard diffusion process

dS(t) = α(t, S(t))dt+ σ(t, S(t))dW (t), 0 ≤ t ≤ T, (3)

with S(0) = S0 ∈ RN , where S(t) ∈ RN , and W (t) ∈
RM represents a Brownian motion defined on (Ω,F ,P),

α(t, S) ∈ RN , σ(t, S) ∈ RN×M , and both α(t, S) and

σ(t, S) are smooth functions on [0, t]×RN . Let Ft, 0 ≤ t ≤
T, be the filtration generated by W (t), 0 ≤ t ≤ T ; we may
take ω ∈ Ω as a sample path of the system states generated
by a realization of W , denoted as ω := {W (t), 0 ≤ t ≤ T}.
Sometimes we add ω to indicate the dependence of a
random variable on the sample path, e.g., S(t, ω).

Let f(t, S), t ∈ [0, T ], S ∈ RN , denote the time-dependent
reward function, and F (T, S(T )) denote the terminating
reward. The performance concerned is

Xθ(T ) =

∫ T

0

f(r, S(r))dr + F (T, S(T )), S(0) = S0,

(4)
We wish to maximize the distorted performance

ẼP [Xθ] =

∫
R+

w(Hθ(x))dx, (5)

with Hθ(x) = P[Xθ(T ) > x], subject to α(t, S) ∈ A, and
σ(t, S) ∈ B, where A and B are given sets of n-dimensional
and n×m dimensional smooth functions, respectively; and
we use θ to denote any parameter of α(t, S) and σ(t, S). In
a stock market, we may have A = {all α(t, S) : αi(t, Si) =
µiSi} and B = {all σ(t, S) : σi,j(t, S) = δi,jσiSi}, with
n = m and δi,j = 0, if i 6= j, and δi,j = 1, if i = j; µi and
σi, i = 1, 2, · · · , N , are parameters.

3. FUNDAMENTALS

We first review some fundamental results in Cao and Wan
(2013) that motivate the study in this paper.

3.1 A weighted expectation form

Let Hθ(x) = P[Xθ > x] be the decumulative distribution
function of a random variable Xθ defined on (Ω,F ,P),
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and Gθ(·) := H−1
θ (·) be its left-continuous inverse. The

distorted performance (2) can be reformulated as

ẼP [Xθ] =

∫
R+

w(Hθ(x))dx

=

∫ 1

0

Gθ(w
−1(y))dy =

∫ 1

0

Gθ(z)
dw(z)

dz
dz

=EP

[{
Gθ(z)

dw(z)

dz

}∣∣∣
z=Z

]
(6)

where Z in (6) can be any uniform random variable on
[0, 1] defined on (Ω,F ,P).

It is advantageous to take a special form of uniform
random variable Z = Hθ(Xθ) in (6). Throughout the
paper we assume that Xθ has no atom (the case with
atoms is technically more involved and will be the topic
for further research). In that case, Gθ[Hθ(Xθ)] = Xθ, and
(6) and (5) become

ẼP [Xθ] = EP

[
Xθ

dw(z)

dz

∣∣∣
z=Hθ(Xθ)

]
. (7)

3.2 Change of measure

We may use the random variable Π = dw(z)
dz

∣∣∣
z=Hθ(Xθ)

in (7)

as a Radon-Nikodym derivative to define another measure
Qθ on Ω:

dQθ
dP

=
dw(z)

dz

∣∣∣
z=Hθ(Xθ)

. (8)

Indeed, w is strictly increasing and we have

EP [Π] =EP

[dw(z)

dz

∣∣∣
z=Hθ(Xθ)

]
=

∫ 1

0

dw(z)

dz
dz = w(1)− w(0) = 1.

Thus, (7) becomes

ẼP [Xθ] = EP

[
Xθ

dQθ
dP

]
= EQθ

[Xθ]. (9)

To define a sample derivative, we use a function-like
notation for a random variable: Xθ = Xθ(ω) := h(θ, ω). A
sample derivative ∂

∂θ{Xθ} is defined as a derivative with
ω = {W (t), 0 ≤ t ≤ T fixed for both θ and θ + ∆θ:

∂

∂θ
{Xθ}=

∂

∂θ
{Xθ(ω)} =

∂

∂θ
{h(θ, ω)}

= lim
∆θ→0

Xθ+∆θ(ω)−Xθ(ω)

∆θ
.

Assumption 1. For any θ, ∂
∂θ{Xθ} = ∂

∂θh(θ, ω) exist
a.s.; Hθ(x) is continuous differentiallable w.r.t. θ and x;
EP [ ∂∂θ{Xθ}|Xθ = x] is continuous in x; there exists a
random variable Kθ with finite expectation, such that,

|Xθ+∆θ −Xθ|
dw(z)

dz

∣∣∣
z=Hθ(Xθ)

≤ Kθ|∆θ|, a.s. (10)

for |∆θ| small enough.

If dw(z)
dz is bounded in [0, 1], then (10) requires Xθ uniform-

ly differentiable at θ. This assumption to needed to ensure

the interchangeability of expectation and derivative, a
well-known condition in perturbation analysis, and weaker
conditions exist Ho and Cao (1991).

Theorem 1. Under Assumption 1, we have

d

dθ
Ẽ[Xθ] =

d

dθ
[EQθ

(Xθ)]

=EP

[ ∂
∂θ
{Xθ}

dw(z)

dz

∣∣∣
z=Hθ(Xθ)

]
=EQθ

[ ∂
∂θ
{Xθ}

]
. (11)

This important property is called the mono-linearity in
Cao and Wan (2013). It shows that when we take deriva-
tives, we may only change the measure at one end of the
derivative direction; this property makes it possible to use
the sample derivative and is the foundation for our analysis
in optimization of distorted performance.

4. OPTIMIZATION OF DISTORTED
PERFORMANCE: AN OVERVIEW

4.1 Stochastic control revisited

When w ≡ 1, the problem becomes a standard control
problem. Let us briefly revisit the stochastic control prob-
lem with a sensitivity-based view and then derive the first
order optimality condition. On any sample path denoted
by ω, we define the sample performance

ηθ(ω) =

∫ T

0

fθ(r, Sθ(r), ω)dr + F (T, Sθ(T ), ω), (12)

and the sample potential function

gθ(t, ω) =

∫ T

t

fθ(r, Sθ(r), ω)dr + F (T, Sθ(T ), ω). (13)

Then ηθ(ω) = gθ(0, ω) and the system performance is

ηθ(S) = EP{ηθ(ω)|Sθ(0) = S},
and the performance potential function is

gθ(t, S) = EP{gθ(t, ω)|Sθ(t) = S}, 0 ≤ t ≤ T, ∀S.
(14)

We can easily prove that gθ(t, S) satisfies the Poisson
equation

Aθgθ(t, S) + fθ(t, S) = 0, 0 ≤ t ≤ T, ∀S, (15)

with gθ(T, S) = F (T, S), and the infinitesimal generator A
is defined with any smooth function h(t, S) (with subscript
θ omitted):

Ah(t, s) =
d

dτ
E
{
h(τ, S(τ))|S(t) = S

}
τ=t

=E
{ d
dt
h(t, S(t))|S(t) = S

}
. (16)

We have the performance derivative formula (which can
be derived by Dynkin’s formula, see Cao et.al (2011))

η̇θ(S) = ġθ(0, S) = EP{ġθ(0, ω)|Sθ(0) = S}

=EP

{∫ T

0

[Ȧθgθ + ḟθ](t, Sθ(t))dt
∣∣∣Sθ(0) = S

}
,(17)
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where η̇θ, etc, denote the partial derivative with respect
to θ. By setting η̇θ(S) = 0, we obtain the first order
optimality condition as Cao et.al (2011)

[Ȧθgθ + ḟθ](t, S) = 0, 0 ≤ t ≤ T, ∀ S. (18)

This is the differential version of the HJB equation, and
can also be obtained by taking derivative of the standard
HJB equation.

On the other hand, taking derivatives with respect to θ on
both sides of (15) yields

[Ȧθgθ + Aθ ġθ + ḟθ](t, S) = 0, 0 ≤ t ≤ T, ∀ S.
Thus, the performance derivative formula (17) becomes

η̇θ(S) = −EP
{∫ T

0

[Aθ ġθ(t, Sθ(t))]dt
∣∣∣Sθ(0) = S

}
, (19)

and the first order optimality condition is

Aθ[ġθ(t, S)] = 0, 0 ≤ t ≤ T, ∀ S. (20)

In addition, we need a sample path based condition. From
(20), we have

Aθġθ(t, S) = lim
τ→0

1

τ
EP

{[
ġθ(t+ τ, Sθ(t+ τ))

− ġθ(t, Sθ(t))
]∣∣∣Sθ(t) = S

}
=EP

{ d
dt

[ġθ(t, ω)]
∣∣∣Sθ(t) = S

}
, 0 ≤ t ≤ T, ∀ S.

Thus, the first order optimality condition takes the form

EP

{
d[ġθ(t, ω)]

∣∣∣Sθ(t) = S
}

= d
{
EP

[
ġθ(τ, ω)

∣∣∣Sθ(t) = S
]}

τ=t
= 0, 0 ≤ t ≤ T, ∀ S.(21)

4.2 The first order optimality condition for distorted
performance

Now, we turn to the optimization of distorted perfor-
mance. Define

ξT (ω) =
dw(z)

dz

∣∣∣
z=Hθ(ηθ(ω))

, (22)

and

ξt = EP [ξT |Ft], 0 ≤ t ≤ T,
with ξ0 = EP [ξT |F0] = 1. (23)

By definition, ξt is a martingale under P. We wish to
optimize the distorted performance defined as (cf. (7))

ηθ(S) =EP [gθ(0, ω)ξT (ω)|Sθ(0) = S]

=EQθ
[ηθ(ω)|Sθ(0) = S], (24)

with Q be a measure defined by the Radon-Nikodym
derivative

dQθ
dP

(ω) =
dw(z)

dz

∣∣∣
z=Hθ(ηθ(ω))

= ξT (ω). (25)

By mono-linearity (11) in Theorem 1, we have

η̇θ(S) = EQθ
[η̇θ(ω)|Sθ(0) = S].

The derivative of the distorted performance (19) is now

η̇θ(S) = −EQθ

{∫ T

0

[AQθ

θ ġQθ

θ (t, Sθ(t))]dt
∣∣∣Sθ(0) = S

}
,

(26)

in which AQθ

θ denotes the infinitesimal generator under

measure Qθ, and gQθ

θ (t, Sθ(t)) is defined in (14) under
measure Qθ.
Therefore, we obtain the first order optimality condition
for the distorted performance: If θ is an optimal policy and
Qθ is corresponding distortion measure, then

AQθ

θ ġQθ

θ (t, S) = 0, 0 ≤ t ≤ T, ∀ S. (27)

Before turning to the sample path based condition, we
need to reform ξT (ω). From (12), we have

ηθ(ω) =

∫ t

0

f(r, Sθ(r), ω)dr

+
[ ∫ T

t

f(r, Sθ(r), ω)dr + F (T, Sθ(T ), ω)
]

=Rθ(t, ω) + gθ(t, Sθ(t), ω),

with Rθ(t, ω) and gθ(t, Sθ(t), ω) denoting the two terms in
the sum. Rθ(t, ω) satisfies

dR(t, ω) = f(t, S(t), ω)dt. (28)

Set ẇ(z) = dw(z)
dz , then

ξT = ẇ{Hθ[ηθ(ω)]}
= ẇ{Hθ[Rθ(t, ω) + gθ(t, Sθ(t), ω)]}.

By the Markov property of S(t), given Rθ(t, ω) = R(t) and
Sθ(t, ω) = S(t),

ξt =EP [ξT |Ft]

=EP

{
ẇ{Hθ[Rθ(t, ω) + gθ(t, Sθ(t), ω)]}

∣∣∣Ft}
is a function of R(t) and S(t). We denote it as

ξt(ω) = ξt(S(t, ω), R(t, ω)). (29)

Now, by (21), the sample path based condition is

d
{
EQθ

[
ġθ(τ, ω)

∣∣∣Sθ(t) = S
]}

τ=t
= 0, 0 ≤ t ≤ T, ∀ S.

(30)
For τ ≥ t, we have

EQθ

[
ġθ(τ, ω)

∣∣∣Sθ(t) = S,Rθ(t) = R
]

=EP

[
ġθ(τ, ω)ξT (ω)

∣∣∣Sθ(t) = S,Rθ(t) = R
]

=EP

[
ġθ(τ, ω)ξτ (S(τ, ω), R(τ, ω))

∣∣∣Sθ(t) = S,Rθ(t) = R
]
.

Thus, (30) becomes

d
(
EP

{
EP [ġθ(τ, ω)ξτ (S(τ, ω), R(τ, ω))

|Sθ(t) = S,Rθ(t) = R]
∣∣∣Sθ(t) = S

})
τ=t

= 0,

and we have the optimality equation

EP

[
d[ġθ(t, ω)ξt(Sθ(t), Rθ(t))]

∣∣Sθ(t) = S,Rθ(t) = R
]

= 0,

(31)
or

EP

{
d
[
ġθ(t, ω)ξt(Sθ(t), Rθ(t))

]∣∣∣Sθ(0) = S
}

= 0,

0 ≤ t ≤ T, (32)

This equation implies the following theorem:
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Theorem 2. For an optimal policy θ, the process
ġθ(t, ω)ξt(Sθ(t, ω), Rθ(t, ω)) is a martingale with respect to
Ft and probability measure P.

In particular, when w ≡ 1, it is the standard stochastic
control problem and for an optimal policy θ, ġθ(t, ω) is a
martingale with respect to P.

Globally, we have∫ T

0

EP

{
d
[
ġθ(t, ω)ξt(Sθ(t), Rθ(t))

]∣∣∣Sθ(0) = S
}

= 0,

0 ≤ t ≤ T. (33)

In addition, the derivative of the distorted performance
(26) becomes

η̇θ(S) = −
∫ T

0

EP

{
d[ġθ(t, ω)ξt(Sθ(t), Rθ(t))]

∣∣∣Sθ(0) = S
}
.

(34)

Finally, if f(t, S) ≡ 0, then we have R(t, ω) = 0 and (29)
becomes

ξt(ω) = v(t, S(t, ω)). (35)

In the next two sections, we will derive optimality con-
ditions expressed explicitly in system parameters. The
potential-based optimality condition is based on (27); and
the sample derivative based conditions are based on (31)
or (32).

5. POTENTIAL-BASED OPTIMIZATION
CONDITION

5.1 Determining the martingale ξt

By the martingale representation theorem (see Karatzas
and Shreve (1991), Problem 3.4.16), there exists an Ft-
adapted and Rn-valued process ζ(t) = (ζ1(t), . . . , ζM (t))
with

M∑
m=1

∫ T

0

ξ2
t ζ

2
m(t)dt <∞,

such that

ξt = EP [ξT ] +

M∑
m=1

∫ t

0

ξrζm(r)dWm(r), 0 ≤ t ≤ T (36)

holds a.s. P. Therefore,

dξt = ξtζ(t)dW (t), (37)

and from which, we get

ξt(ω) = exp
{
− 1

2

∫ t

0

ζ2(s)ds+

∫ t

0

ζ(s)dW (s)
}
. (38)

We first assume f(t, s) ≡ 0 and use the form in (35)
ξt(ω) = v(t, S(t, ω)). Since ξt is a martingale, we have
Atξt = 0. Thus, the function v(t, S) satisfies the following
Poisson equation

∂

∂t
v(t, S) +

N∑
i=1

αi(t, S(t))
∂

∂Si
v(t, S)

+
1

2

N∑
i=1

N∑
j=1

(σσT )ij
∂2

∂Si∂Sj
v(t, S) = 0, (39)

with the boundary condition

v(0, S) = EP [ξT |F0] = 1, (40)

and

v(T, S) =
dw(z)

dz

∣∣∣
z=Hθ(ηθ(ω))

, (41)

where ηθ(ω) = F (T, S).

On the other hand, by the Ito rule, we have

dξt = d[v(t, S(t))]

=
∂

∂t
v(t, S)dt+

N∑
i=1

∂

∂Si
v(t, S)[αi(t, S(t))dt

+

M∑
j=1

σij(t, S(t))dWj(t)]

+
1

2

N∑
i=1

N∑
j=1

(σσT )ij
∂2

∂Si∂Sj
v(t, S)dt.

Comparing this equation with (39), we have

dξt =

N∑
i=1

∂

∂Si
v(t, S)

[ M∑
j=1

σij(t, S(t))dWj(t)
]

=

M∑
j=1

[ N∑
i=1

σij(t, S(t))
∂

∂Si
v(t, S)

]
dWj(t).

Comparing this with (37), we have

N∑
i=1

σij(t, S(t))
[ ∂

∂Si
v(t, S)

]
= v(t, S(t))ζj(t),

j = 1, 2 · · · ,M. (42)

Therefore, ζj(t), j = 1, 2, · · · ,M , can be obtained from
(41), with v(t, S) being the solution to (39) and (40).

When f 6= 0, we take the R(t) in (28) as a system state
and add (28) to the system equations:{

dR(t) = f(t, S(t))dt,
dS(t) = α(t, S(t))dt+ σ(t, S(t))dW (t).

(43)

Set S0(t) = R(t) and α0(t, S) = f(t, S), σ0,i(t, S) =
σj,0(t, S) = 0. This equation looks the same as a regular
system with one more dimension. With this notation, we
may denote

ξt(ω) = v(t, S(t)),

which has the same form as (35), with S(t) = (S0(t), S1(t),
· · · , SN (t))T .

With this modification, all the results (36-41) carries over
except that in the boundary condition (40), we have
ηθ(ω) = R+ F (T, S), R = S0(T ).

Furthermore, with this modification all the other results
for f ≡ 0 apply to the case f 6= 0. Therefore, in what
follow we only work on the form (35).

5.2 The optimality condition for (24)

Now, we calculate the sample derivative
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dE{ġθ[t, Sθ(t)]ξt[Sθ(t)]|Sθ(t) = S}
= E

{
d{ġθ[t, Sθ(t)]ξt[Sθ(t)]}|Sθ(t) = S

}
.

in the optimality condition (??). First, we have

d{ġθ[t, Sθ(t)]ξt[Sθ(t)]}
= d{ġθ[t, Sθ(t)]}ξt[Sθ(t)] + ġθ[t, Sθ(t)]d{ξt[Sθ(t)]}

+ d{ġθ[t, Sθ(t)]}d{ξt[Sθ(t)]}, (44)

where

ġθ(t, Sθ(t)) =
d

dθ

{
EP

[ ∫ T

t

f(r, Sθ(r), ω)dr

+ F (T, Sθ(T ), ω)
∣∣∣Sθ(t) = S

]}
.

By Ito rule, we have

dġθ(t, Sθ(t))

=
∂

∂t
ġθ(t, Sθ(t))dt+

N∑
i=1

∂

∂Si

[
ġθ(t, Sθ(t))

]
[
αi(t, S(t))dt+

M∑
j=1

σi,j(t, S(t))dWj(t)
]

+
1

2

N∑
i=1

M∑
j=1

(σσT )i,j(t, S(t))
∂2

∂Si∂Sj
ġθ(t, Sθ(t))dt.

Therefore,

EP
(
d{ġθ[t, Sθ(t)]}ξt[Sθ(t)]|Sθ(t) = S

)
=
{ ∂
∂t
ġθ(t, S)dt+

N∑
i=1

∂

∂Si

[
ġθ(t, S)

]
[αi(t, S)dt]

+
1

2

N∑
i=1

M∑
j=1

(σσT )i,j(t, S)
∂2

∂Si∂Sj
ġθ(t, S)

}
ξθ,t(S)dt.

From (37), we have

EP
(
ġθ[t, Sθ(t)]d{ξθ,t[Sθ(t)]}|Sθ(t) = S

)
= 0,

and

EP
(
d{ġθ[t, Sθ(t)]}d{ξt[Sθ(t)]}|Sθ(t) = S

)
=

N∑
i=1

{ ∂

∂Si

[
ġθ(t, S)

][ M∑
j=1

σi,j(t, S)ζj,θ,t(S)
]}
ξθ,t(S)dt.

Therefore, the first order optimality condition (31) is

d

dt

(
EP

{[
ġθ(t, Sθ(t))ξt(Sθ(t))

]∣∣∣Sθ(t) = S
})

=
{ ∂
∂t
ġθ(t, S) +

N∑
i=1

∂

∂Si

[
ġθ(t, S)

]
[αi(t, S)]

+
1

2

N∑
i=1

M∑
j=1

(σσT )i,j(t, S)
∂2

∂Si∂Sj
ġθ(t, S)

+

N∑
i=1

( ∂

∂Si

[
ġθ(t, S)

][ M∑
j=1

σi,j(t, S)ζj,θ,t(S)
])}

ξθ,t(S).

= 0, 0 ≤ t ≤ T, ∀S.

Because ξθ,t(S) > 0, so the first order optimality condition
(31) becomes

∂

∂t
ġθ(t, S) +

N∑
i=1

∂

∂Si

[
ġθ(t, S)

]
[αi(t, S)]

+
1

2

N∑
i=1

M∑
j=1

(σσT )i,j(t, S)
∂2

∂Si∂Sj
ġθ(t, S)

+

N∑
i=1

( ∂

∂Si

[
ġθ(t, S)

][ M∑
j=1

σi,j(t, S)ζj,θ,t(S)
])

= 0,

0 ≤ t ≤ T, ∀S. (45)

Condition (44) can also be obtained directly from (27).
From the Girsanov theorem, with (38), under measure Q,
the drift of the Brownian motion has to change according
to −ζ(t):

dWQ(t) = dW (t)− ζ(t)dt.

Under measure Q, the system equation has to be modified
according to the above equation:

dS(t) = [α(t, S(t)) + σ(t, S(t))ζ(t)]dt+ σ(t, S(t))dWQ(t),
(46)

with S(0) = S. Applying AQθ according to the system
equation (45) to ġθ(t, S) yields (44).
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