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Abstract: This paper deals with fault detection (FD) problem for linear discrete-time systems
subject to random intermittent measurements, probabilistic actuator failures, norm-bounded
model uncertainty, and stochastic model uncertainty. By taking into account the probabilistic
actuator failures, a new reference residual model is proposed to formulate the FD issue as an H∞
model-matching problem. The corresponding reference residual is generated through maximizing
a stochastic H−/H∞ or H∞/H∞ performance index via solving an algebraic Riccati equation
(ARE). By the aid of the linear matrix inequality (LMI) techniques, a fault detection filter (FDF)
is constructed such that the residual is sensitive to fault but insensitive to unknown inputs,
mixed model uncertainties, random intermittent measurements and stochastic actuator failures.
An illustrative example is given to demonstrate the effectiveness of the proposed method.

Keywords: Algebraic Riccati equation, discrete-time system, fault detection filter, intermittent
measurement, model uncertainty, probabilistic actuator failure.

1. INTRODUCTION

Owing to the increasing demands for system safety and
reliability, research on observer-based fault detection (FD)
has received much attention during the past three decades,
see Blanke et al. (2006); Ding (2008); Chadi et al. (2013);
Alwi and Edwards (2013) and references therein. Gen-
erally speaking, the basic idea behind model-based FD
is to design a fault detection filter (FDF) to generate a
residual signal which is sensitive to fault but robust to
unknown input. In reviewing of the development of FD,
one efficient scheme is to formulate the design of FDF
into an optimization problem which the so-called H−/H∞
or H∞/H∞ performance index is maximized, we refer to
the unified approach in Ding (2008); Li and Zhou (2009);
Zhong et al. (2010); Li and Zhong (2013) and related works
therein. Another scheme is the H∞ filtering formulation to
minimize the error between fault and residual in the H∞
norm sense, see e.g. Dong et al. (2011); Zhou et al. (2011);
Du et al. (2012).

In real-world applications, it is of significance to study
FD problems with model uncertainties since modeling
errors always exist in engineering practise, which has led
to considerable attention. In this literature, especially for
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discrete-time systems, the H∞ filtering based FD scheme
are widely utilized in the presence of norm-bounded un-
certainty, polytopic uncertainty, or stochastic uncertainty,
see e.g., Gao et al. (2008); Dong et al. (2011); Li and
Zhong (2011); Zhou et al. (2011) and related references.
In continuous-time domain, Zhong et al. (2003) proposes
an H∞ model-matching FD scheme for system with norm-
bounded model uncertainty, which generates a residual
to track an ideal residual obtained in the nominal case.
Wang et al. (2008) and Li et at. (2009) extend this idea to
systems with polytopic uncertainty.

On another front line, components’ failures such as ac-
tuator or sensor gain reductions may emerge in chemical
processes, distributed networks or when tracking a highly
maneuvering target, which may result in substantial dam-
age. It is worth pointing out that the phenomenon of in-
termittent measurements or missing measurements can be
viewed as a special class of sensor gain failures, and theH∞
filtering based FD approaches are addressed in Gao et al.
(2008); He et al. (2008); Dong et al. (2011); Zhou et al.
(2011); Du et al. (2012) and references therein. For systems
with actuator failures, some results of passive fault tolerant
control (FTC) methodology are published, e.g. Tian et al.
(2011); Gu et al. (2013). However, there exist few results on
designing a separate FD unit for potential application to
active FTC in the presence of intermittent measurements,
actuator failures, deterministic as well as stochastic model
uncertainties, which motivates the present study.
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Inspired by Zhong et al. (2003), this paper investigates FD
problem for linear discrete-time systems subject to inter-
mittent measurements, random actuator failures, norm-
bounded model uncertainty and stochastic model uncer-
tainty via the H∞ model-matching approach. The novelty
of this article are two-folds: (i). A new reference residual
model is established by taking random actuator failures
into consideration, which infers an algebraic Riccati equa-
tion (ARE) based FD algorithm for systems affected by
probabilistic actuator failures. (ii). An FDF is designed in
terms of linear matrix inequality (LMI) formulation such
that the generated residual tracks the reference residual
in a stochastic H∞ sense irrespective of intermittent mea-
surements, actuator failures and mixed uncertainties.

Notations. For a matrix X, XT and X−1 stand for the
transpose and inverse of X, respectively. X > 0 (X < 0)
denotes X is positive (negative) definite. Rn means the
set of n-dimensional real vectors. I and 0 denote identity
matrix and zero matrix with appropriate dimensions,
respectively. E{ϑ(k)}means the mathematical expectation
of ϑ(k).∥ζ(k)∥2,E stands for the l2-norm of ζ(k) with
∥ζ(k)∥22,E = E{

∑∞
k=0 ζ

T(k)ζ(k)}. ⟨(µ0, µ(k)), (ς0, ς(k))⟩ =
E{µT

0 Πς0}+E{Σ∞
k=0µ

T(k)ς(k)} gives the definition of the
inner product on a Hilbert space for vector µ(k) and ς(k)
with appropriate dimensions, where Π > 0 is a initial
weighting matrix. The symbol ∗ within a matrix stands for
the symmetric entries. δi,j represents the Kronecker delta
function, which is equal to unity for i = j and zero for i ̸=
j. diag{X1, X2, . . . , Xn} denotes a block diagonal matrix
with diagonal blocks X1, X2, . . . , Xn. Prob{a} represents
the probability of an event ‘a’.

2. PROBLEM FORMULATION

Consider the following linear discrete-time system{
x(k + 1) = (A+∆A+Avv(k))x(k) +BΞ(k)u(k)

+Bdd(k) +Bff(k)
y(k) = θ(k)Cx(k) +Ddd(k)

(1)

where x(k) ∈ Rn, u(k) ∈ Rq, y(k) ∈ Rny , d(k) ∈ Rnd , and
f(k) ∈ Rnf denote the state, control input, measurement
output, unknown input, and fault, respectively; u(k), f(k)
and d(k) are l2-norm bounded. A, B, Bd, Bf , C and Dd

are known constant matrices with appropriate dimensions.
∆A is the norm-bounded uncertain matrix described as

∆A = EHF

where E and F are known matrices and H satisfies

HTH ≤ I

Avv(k) represents the stochastic uncertainty (multiplica-
tive noise) where Av is known and v(k) is a standard
stochastic scalar sequence with zero mean and satisfies
E{v(i)v(j)} = εδij , where ε is a positive constant.

To describe intermittent measurements and multiple
stochastic actuator failures respectively, two categories of
random variables are introduced (Gao et al. (2008); Tian
et al. (2011)). A Bernoulli distributed binary stochastic
variable θ(k) depicts the measurement packet dropouts,
which satisfies Prob{θ(k) = 1} = E{θ(k)} = ϱ and
Prob{θ(k) = 0} = 1 − E{θ(k)} = 1 − ϱ with ϱ is a
known constant. For actuator failures, define Ξ(k) :=

diag{γ1(k), . . . , γq(k)} (i = 1, . . . , q), where γi(k) are
scalar independent identical distributed random variables
with the probability density function on the interval [0, 1].
Specifically, if γi(k) = 1 means the ith actuator is normal
and γi(k) ̸= 1 denotes the ith actuator fails with certain
reduction rate. The mathematical expectation and vari-
ance of γi(k) are ρi and σ2

i (i = 1, . . . , q) respectively. The
value of ϱ, ρi and σi can be obtained as prior knowledge
by statistical test technique (Zhou et al. (2011)).

Before describing the underlying problem, without loss of
generality, it is assumed that system (1) is exponentially
stable in mean square sense (ESMS, refer to Dong et al.
(2011) for details) for all deterministic and stochastic
uncertainties, and (C,A) is uniformly detectable with
(A,Bd) uniformly stabilizable. v(k), θ(k) and γi(k) (i =
1, . . . , q) are assumed to be uncorrelated with each other.

One of the main task of FD in this paper is to gen-
erate a residual such that the sensitivity of residual to
fault is enhanced with the robustness to disturbance and
model uncertainties is increased. According to Zhong et al.
(2003), the H∞ model-matching FD scheme is adopted,
which is to find an idealized reference model and minimize
the l2-induced gain from the exogenous inputs to the error
between the generated residual and the reference residual.
For this purpose, consider the following observer-based
FDF as a residual generator{

x̂(k + 1) = Ax̂(k) + L(y(k)− ϱCx̂(k)) +BΞ̄u(k)
r(k) = V (y(k)− ϱCx̂(k))

(2)

where x̂(k) ∈ Rn is an estimate for x(k), r(k) ∈ Rp is the
generated residual, Ξ̄ = E{Ξ(k)}, L is the observer gain
matrix and V is the post-filter to be determined.

Let e(k) = x(k)− x̂(k), it follows from (1) and (2) that
e(k + 1) = (A− ϱLC)e(k) + (Bd − LDd)d(k)

+Bff(k) +BΞ̃(k)u(k) + ν(k)LCx(k)
+Avv(k)x(k) + ∆Ax(k)

r(k) = V (ϱCe(k) + ν(k)Cx(k) +Ddd(k))

(3)

where Ξ̃(k) = Ξ(k)− Ξ̄ and ν(k) = θ(k)− ϱ.

To derive the reference residual model, we consider the
following modified nominal system, i.e., the case that
∆A = 0, Av = 0, while taking the term BΞ̃(k)u(k) into
account. The reference residual model is given as er(k + 1) = (A− ϱLrC)er(k) + (Bd − LrDd)d(k)

+Bff(k) +BΞ̃(k)u(k)
rr(k) = ϱVrCer(k) + VrDdd(k)

(4)

where er(k) ∈ Rn is the reference error state vector,
rr ∈ Rp is the reference residual, Lr and Vr are the
parameters of the reference model to be designed.

Let αi(k) = γi(k) − ρi (i = 1, . . . , q), by defining η(k) =
[eT(k) eTr (k) x

T(k)]T, it follows from (1), (3) and (4) that
the overall error dynamic is described as{

η(k + 1) = Aηη(k) +Bww(k)
re(k) = Cηη(k) +Dww(k)

(5)

where
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w(k) = [dT(k) uT(k) f(k)T]T, re(k) = r(k)− rr(k)
Aη = A0 +A1v(k) + ∆A2 +A3ν(k), Bw = B0 +B1

A0 = diag{A− ϱLC,A− ϱLrC,A}

A1 =

[
0 0 Av

0 0 0
0 0 Av

]
, B0 =

 Bd − LDd 0 Bf

Bd − LrDd 0 Bf

Bd BΞ̄ Bf


∆A2 =

[
0 0 ∆A
0 0 0
0 0 ∆A

]
, A3 =

[
0 0 −LC
0 0 0
0 0 0

]
B̄i = Bdiag{0, . . . , 0︸ ︷︷ ︸

i−1

, I, 0, . . . , 0︸ ︷︷ ︸
q−i

}

B1 =

q∑
i=1

αi(k)

 0 B̄i 0
0 B̄i 0
0 B̄i 0


Cη = C1 + C2ν(k), Dw(k) = [ (V − Vr)Dd 0 0 ]
C1 = [ ϱV C −ϱVrC 0 ] , C2 = [ 0 0 V C ]

Based on the preliminaries above, the FD problem can be
mainly formulated as: under zero initial condition, find L
and V such that (5) is ESMS for all uncertainties and the
following performance index is minimized

JF = sup
w(k)∈l2[0,∞),w(k) ̸=0

∥re(k)∥22
∥w(k)∥22

(6)

After designing the FDF, the remaining task is to evaluate
the generated residual signal. In this paper, we choose

J(k) = (
∑k=kT

k=0 rT(k)r(k))1/2 as the residual evaluation
function, where kT denotes the length of the evaluation
time window (Ding (2008)). The corresponding threshold
is adopted as Jth = supf(k)=0 E{J(k)} and hence the
occurrence of faults can then be recognized based on the
following logic{

J(k) > Jth, ⇒ A fault is detected,
J(k) ≤ Jth, ⇒ No faults.

Remark 1. It should be pointed out that the choice
of the reference residual model is not unique. By taking
the probabilistic actuator failures into consideration, our
proposed approach not only provides a reference model (4)
to synthesis the FDF (2), but also addresses a direct FD
way for systems with random actuator failures when the
model uncertainties are neglected. This will be interpreted
in the following section by extending the adjoint operator
based optimization techniques in Li and Zhong (2013).

3. MAIN RESULTS

3.1 Reference model design

To design the reference model, for (4), define

rf (k) = r(k)|d̃k=0, rd̃(k) = r(k)|fk=0

where d̃k = [dT(0) · · · dT(k); uT(0) · · · uT(k)]T and
fk = [fT(0) · · · fT(k)]T. Then, a linear operator that

maps f 7→ r and a linear operator that maps d̃ 7→ r can
be defined as follows

rf (k) = Grff(k), rd̃(k) = Grd̃d̃(k)

with the following induced norms (we refer to Wang et al.
(2006, 2007) for more details about these measures)

∥Grf∥∞ = sup
f∈l2, ∥f∥2 ̸=0

∥rf (k)∥22,E
∥f(k)∥22

∥Grd̃∥∞ = sup
d̃∈l2, ∥d̃∥2 ̸=0

∥rd̃(k)∥22,E
∥d̃(k)∥22

∥Grf∥− = inf
f∈l2, ∥f∥2 ̸=0

∥rf (k)∥22,E
∥f(k)∥22

Thus, the reference model can be obtained through solving
the following optimization problem: find Lr and Vr such
that (4) is ESMS and satisfies the following performance

max
Lr,Vr

∥Grf∥∞
∥Grd̃∥∞

or max
Lr,Vr

∥Grf∥−
∥Grd̃∥∞

(7)

For the purpose of deriving solution to (7), the following
definitions and lemmas should be given first.

Definition 1. (Li and Zhou (2009)) Let Gs denotes an
operator or a system mapping from l2-norm bounded space
S1 to l2-norm bounded space S2. An operator G∼

s is called
to be the adjoint operator of Gs from space S2 to S1 if
⟨Gs(µ0, µ), ς⟩ = ⟨(µ0, µ),G∼

s ς⟩ for all µ ∈ S1 and ς ∈ S2,
where µ0 stands for the initial vector.

Definition 2. (Li and Zhong (2013)) Let Gs denote an
operator or a system mapping from l2-norm bounded input
space S1 to l2-norm bounded output space S2, then, Gs is
said to be co-isometric if ⟨G∼

s φ(k),G∼
s φ(k)⟩ = ⟨φ(k), φ(k)⟩

for all φ(k) ∈ S1.

Lemma 1. (Li and Zhong (2013)) For two stochastic op-
erator A : y 7→ z and B : w 7→ y, where y, z, and w are
l2-norm bounded signals, we have

∥AB∥∞ ≤ ∥A∥∞∥B∥∞, ∥AB∥− ≤ ∥A∥∞∥B∥−
Lemma 2. Consider the following residual generators{
x̂m(k + 1) = Ax̂m(k) +BΞ̄u(k) + Lm(y(k)− Cx̂m(k))
rm(k) = V m(y(k)− C(θ(k)x̂m(k)), m = 1, 2

where Lm is the observer gain matrix such that A−LmC
is ESMS and V m is the post-filter. Then there exits an
operator Q such that

r2(k) = Qr1(k)

Proof. The proof is in the same line as Lemma 1 in Zhong
et al. (2010), and hence it is omitted here.

Based on the definitions and lemmas above, we are now
ready to give the solution to (7), which is summarized in
the following Theorem.

Theorem 3. For (4), the following matrix pair gives a
solution to (7){

Lr = (ϱAPCT +BdD
T
d )(ϱ

2CPCT +DdD
T
d )

−1

Vr = (ϱ2CPCT +DdD
T
d )

−1/2 (8)

where P > 0 satisfies the following ARE

P =APAT − Lr(ϱ
2CPCT +DdD

T
d )L

T
r

+BdB
T
d +

q∑
i=1

σ2
iBiB

T
i (9)

Proof. For (4), consider the operator Grd̃ which is realized
by the following linear discrete-time system
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{
e(k + 1) = Aee(k) +Bed̃(k)

rd̃(k) = Cee(k) +Ded̃(k)

where Ae = A − ϱLC, Be = Bd̃ − LDd̃, Ce = ϱV C,

De = V Dd̃ with Bd̃ = [Bd

q∑
i=1

αi(k)B̄i] and Dd̃ = [Dd 0].

Let G∼
rd̃

be the adjoint operator of Grd̃. According to

Definition 1 and Li and Zhong (2011), the state-space
realization of G∼

rd̃
is{

ηa(k − 1) = AT
e ηa(k)+CT

e rd̃(k)
da(k) = BT

e ηa(k)+DT
e rd̃(k)

(10)

where η(∞) = 0 and η(−1) = 0 under zero condition.

For (10), define

V(ηa(k)) = ηTa (k)Pηa(k), P > 0

then, we have

E{
∞∑
k=0

dTa (k)da(k)+V(ηa(k −1))

−V(ηa(k))}+ηa(∞)TPηa(∞)−ηa(−1)TPηa(−1)

= E{
∞∑
k=0

ηTa (k)[BeB
T
e +AePAT

e − P ]ηa(k)

+2ηTa (k)[BeD
T
e +AePCT

e ]rd̃(k)

+rT
d̃
[DeD

T
e +CePCT

e ]rd̃(k)} = E{
∞∑
k=0

dTa (k)da(k)}

(11)

From (11) and Definition 2, if the following equation is
satisfied

∥da∥22,E = ∥G∼
rd̃
rd̃∥

2
2,E = ∥rd̃∥

2
2,E

i.e. the following equations holds

P = BdB
T
d +APAT + ϱ2LCPCTLT

−ϱLCPAT − ϱAPCTLT +

q∑
i=1

σ2
iBiB

T
i

0 = (ϱAPCT − ϱ2LCPCT +BdD
T
d

−LDdD
T
d )V

T

I = V (DdD
T
d + ϱ2CPCT)V T

(12)

then Grd̃ is co-isometric.

Following a similar path in Li and Zhong (2013), by
applying Lemma 1 and Lemma 2, if Grd̃ is co-isometric,
we then have that

∥Grf∥∞
∥Grd̃∥∞

≤ ∥Grf,r∥∞,
∥Grf∥−
∥Grd̃∥∞

≤ ∥Grf,r∥−

with Grf,r = Grf |L=Lr,V=Vr , which gives the optimal value
of maximizing the performance index (7). Furthermore, by
solving the associated equations in (12), we can obtain (8)
and (9), respectively.

From Dragan et al. (2009), if (C,A) is uniformly detectable
with (A,Bd) uniformly stabilizable, the solution of the
ARE (9) is bounded, and the proposed reference model
is ESMS. This completes the proof.

Remark 2. It is worth mentioning that, by setting
V(ηa(k)) = ηTa (k)P (k + 1)ηa(k), Theorem 3 can be easily
extended to linear discrete time-varying systems suffering
from multiple random actuator failures, which is a gener-
alized form of Theorem 1 in Zhong et al. (2010). Detailed
computation of Grf or Grd̃ is unnecessary since the solution

to the optimization problem (7) is independent of the
specific form of these operators.

3.2 Synthesis of the FDF

We are now in position to design L and V of the FDF. To
proceed, the following two lemmas are given first.

Lemma 4. (Boyd et al. (1994)) Consider the following
discrete-time system with multiplicative noise

x(k + 1) = (A+
m∑
i=1

Aipi(k))x(k)+(B+
m∑
i=1

Bipi)d(k)

z(k) = (C+

m∑
i=1

Cipi(k))x(k)+(D+

m∑
i=1

Dipi)d(k)

where pi (i = 1, . . . ,m) are scalar standard stochastic
scalar sequences with zero mean and satisfies E{p(i)p(j)} =
ϵ2i δij with ϵi (i = 1, · · · ,m) are positive constants. For a
given scalar β > 0, (13) is ESMS and satisfies

sup
d∈l2, ∥d∥2 ̸=0

∥z(k)∥22,E
∥d(k)∥22

≤ β2

if and only if there exists Q > 0 such that[
A B
C D

]T [
P 0
0 I

] [
A B
C D

]
−
[
P 0
0 β2I

]
+

m∑
i=1

ϵ2i

[
Ai Bi

Ci Di

]T [
P 0
0 I

] [
Ai Bi

Ci Di

]
< 0

Lemma 5. (Dong et al. (2011)) Let W = WT < 0, E and
F be real matrices with appropriate dimensions, then the
following inequality

W + EHF + FTHTEHT < 0

holds for all H that satisfies HTH ≤ I if and only if there
exists a scalar µ > 0, such that

W + µEET + µ−1FTF < 0

Based on Lemma 4 and Lemma 5, the design of L and V
is presented in the following Theorem 6.

Theorem 6. Given a scalar β > 0. If there exist matrices
Q1 > 0, Q2 > 0, Q3 > 0, a matrix X and a scalar µ > 0,
satisfying the following inequality

R =



R11 R12 R13 R14 R15 0 R17

∗ R22 0 0 0 R26 0
∗ ∗ R33 0 0 0 0
∗ ∗ ∗ R44 0 0 0
∗ ∗ ∗ ∗ R55 0 0
∗ ∗ ∗ ∗ ∗ R66 0
∗ ∗ ∗ ∗ ∗ ∗ R77

 < 0

where

R11 = diag{−Q1,−Q2,−Q3,−β2I,−β2I,−β2I}
R22 = R33 = R44 = diag{−Q1,−Q2,−Q3,−I}
R55 = diag{R22, . . . , R22︸ ︷︷ ︸

q

}

R66 =R77=diag{−µI,−µI,−µI}, R15 =[R1
15, . . . , R

q
15]
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R12 =
ATQ1−ϱCTX 0 0 ϱCTV T

0 (A−ϱLrC)TQ2 0 −ϱCTV T
r

0 0 ATQ3 0
BT

d−DT
d X (Bd−LrDd)

TQ2 BdQ3 DT
d (V

T−V T
r )

0 0 BTΞ̄Q3 0
BT

f Q1 BT
f Q2 BT

f Q3 0



R13 =


0 0 0 0
0 0 0 0
0 0 0 κCTV T

0 0 0 0
0 0 0 0
0 0 0 0

 , R14 =


0 0 0 0
0 0 0 0

εAT
v Q1 0 εAT

v Q3 0
0 0 0 0
0 0 0 0
0 0 0 0



R16 = µ


FT 0 0
0 FT 0
0 0 FT

0 0 0
0 0 0
0 0 0

 , R25 = µ

[
Q1E 0 0
0 Q2E 0
0 0 Q3E

]

Ri
15 =

[
0 0 0 (σiBiQi)

T 0 0 0
]T

, (i = 1, . . . , q)

with κ =
√

ϱ− ϱ2. Then, (5) is ESMS and the following
H∞ performance is fulfilled

sup
w∈l2, ∥w∥2 ̸=0

∥re(k)∥22,E
∥w(k)∥22

≤ β2 (13)

with the filter gain matrix L = Q−1XT.

Proof. Remembering that for ν(k) and αi(k) (i =
1, . . . , q), we have

E{ν(k)} = 0, E{ν2(k)} = ϱ− ϱ2

E{αi(k)} = 0, E{α2
i (k)} = σ2

i

thus, Theorem 6 can be derived by applying Lemma 4,
Lemma 5 and Schur Complement Lemma (Boyd et al.
(1994)) with Q = diag{Q1, Q2, Q3}. Due to limitation of
space, the detailed proof is omitted here.

Remark 3. For system (5), Theorem 6 provides a feasible
solution to the FDF design problem that satisfies an
auxiliary H∞ performance (13). Notice that our original
target is to minimize the performance index (6). This can
be realized by a repeated application of Theorem 6 for
deriving the minimum of β. Furthermore, the conservatism
brought by the diagonalization of matrix Q can also be
reduced via this simple iterative optimization algorithm.

4. AN ILLUSTRATIVE EXAMPLE

To illustrate the effectiveness of the achieved result, con-
sider an industrial continuous-stirred tank reactor (CSTR)
system in Gao et al. (2008), which investigates chemical
species A reacts to form species B. Fig. 1 depicts the
physical structure of the system, where CAi is the input
concentration of a key reactant A; CA is the output con-
centration of A; T is the reaction temperature; Tc is the
cooling medium temperature. Define the state variable as
follows:

x = [CA T ]
T
, u = [Tc CAi]

T

and thus, a discrete-time model in the form (1) can be
obtained as follows (Gao et al. (2008))

Fig. 1. A CSTR model

A =

[
0.9719 −0.0013
−0.0340 0.8628

]
, B =

[
−0.0839 0.0232
0.0761 0.4144

]
Bd = diag{0.1, 0.3}, Bf = [−0.0839 0.0761 ]

T

C = [ 1 0.1 ] , Dd = [0 0.1]

The unknown input d(k) is set up by stochastic sequences
that are uniformly distributed in the interval [−0.5, 0.5].
A step-wise fault signal is assumed as follows

f(k) =

{
1, k ∈ [20, 40]
−1, k ∈ [40, 60]
0, otherwise

The input signal u(k) is selected as

u(k) =

{
[0.15 0.15]T, k ∈ [20, 60]
0, otherwise

In what follows, two cases are considered :
Case 1 : there is no model uncertainties and missing packet
dropouts in (1), while random actuator faults occur with
the following probabilistic density functions of γ1(k) and
γ2(k)

p(γ1)=

{
0 γ1 = 0
0.1 γ1 = 0.5
0.9 γ1 = 1

, p(γ2)=

{
0 γ2 = 0
0.2 γ2 = 0.5
0.8 γ2 = 1

which infers ρ1 = 0.95, ρ2 = 0.9, σ2
1 = 0.15 and σ2

2 = 0.2.
By applying Theorem 3, we have

L = [ 0.6538 0.4545 ]
T
, V = 6.8211

Fig. 2. displays the generated residual r(k) for Case 1.

Case 2 : there exists mixed model uncertainties, missing
measurement and random actuator failures simultaneously
with the following parameter matrices

Av = diag{0.01, 0.01}, E = [0.01 0.05]T, F = [0.1 0.1]

The probabilistic density functions of γ1(k) and γ2(k) are
the same as Case 1. v(k) is a zero mean white noise with
ε = 0.5. Set µ = 0.1 and apply Theorem 6, we have

L = [ 1.6775 1.1042 ]
T
, V = −0.1283

The minimum of β is βmin = 1.9351. Fig. 3 shows
the residual r(k) for Case 2. After 300 times Monte
Carlo simulations without fault, the threshold is obtained
as Jth =0.0199. Figure 4 gives the residual evaluation
function J(k) for both faulty and fault free case. It can
be seen from the simulation results that the residual can
deliver fault alarms in 1 second after the fault occurs.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8004



0 20 40 60 80 100
−3

−2

−1

0

1

2

3

k

G
en

er
at

ed
 r

es
id

ua
l r

(k
)

Fig. 2. Generated residual r(k) (Case 1 )
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Fig. 4. Residual evaluation function J(k)

5. CONCLUSION

In this paper, the FD problem for linear discrete-time
systems with intermittent measurements, actuator fail-
ures and mixed model uncertainties has been investigated
via the H∞ model-matching approach. A novel reference
model has been addressed in the presence of the proba-
bilistic actuator faults. An FDF has been designed in the
LMI formulation such that the residual is sensitive to fault
but robust to unknown inputs, mixed model uncertainties,
random intermittent measurements and probabilistic actu-
ator failures. The achieved result has been illustrated by
a practical example.
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