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Abstract: We consider the real-time optimization of static plants and propose a generalized
version of the modifier-adaptation strategy that relies on second-order adaptation of the cost and
constraint functions. We show that second-order adaptation allows checking whether a (local)
plant optimum is reached upon convergence. A sufficient convergence condition that is applicable
to first- and second-order modifier-adaptation schemes is proposed. We also discuss how second-
order updates can lead to SQP-like model-free RTO schemes. The approach is illustrated via
the simulated example of a continuous reactor.
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1. INTRODUCTION

The aim of real-time optimization (RTO) is to enforce
plant optimality despite uncertainty in the form of plant-
model mismatch and disturbances. Instead of searching for
a robust solution to the problem, RTO methods typically
rely on measurements to push the plant toward optimality.
In principle, one can (i) update the uncertain model
parameters and repeat the optimization with the updated
model (Jang et al., 1987; Chachuat et al., 2009), (ii)
compute correction terms to modify the optimization
problem and enforce plant optimality (Gao and Engell,
2005; Marchetti et al., 2009), or (iii) use feedback control
to adapt the inputs directly (Skogestad, 2000; Srinivasan
and Bonvin, 2007).

This paper considers option (ii) as it investigates the use
of modifier adaptation for solving static RTO problems.
The main idea of modifier adaptation is to perform (affine)
corrections to the cost and constraint functions based on
appropriate plant measurements (Marchetti et al., 2009,
2010). An appealing feature of modifier adaptation is
that the plant reaches a KKT point upon convergence.
The concept of modifier adaptation can be regarded as a
generalization of previous works (Roberts and Williams,
1981; Brdyś and Tatjewski, 2005; Gao and Engell, 2005;
Chachuat et al., 2008).

Although a necessary condition for local asymptotic con-
vergence is given in Marchetti et al. (2009), sufficient
conditions are still missing. Some elements toward suf-
ficiency have been proposed, for example by describing
the iterative scheme as a dynamical system and looking
for a local Lyapunov function (Chachuat et al., 2008).
Recently, Bunin (2014) proposed to look at the equivalence
between the modifier-adaptation and trust-region frame-
works. Modifier-adaptation is shown to be a special case of
the trust-region approach. This relation is then exploited
to propose a globally convergent modifier-adaptation al-
gorithm using already developed trust-region theory.

This paper proposes the use second-order corrections in
the context of modifier adaptation and investigates its
contribution in terms of convergence and accuracy. The
main contributions are as follows:

(1) It is shown that the presence of second-order cor-
rection terms allows assessing whether, upon con-
vergence, a local minimum of the plant is attained.
A sufficient condition for convergence of modifier-
adaptation schemes of varying orders is presented.

(2) We implement second-order modification by esti-
mating the plant Hessians via Hessian approxima-
tions known from quasi-Newton methods and finite-
difference approximations of the plant gradients.

(3) We sketch how second-order information can be used
to design SQP-like model-free RTO schemes.

The paper is structured as follows. Useful results from
fixed-point theory are briefly reviewed in Section 2. Section
3 presents an approach to second-order modifier adapta-
tion, while Section 4 illustrates the approach via a simu-
lated example.

2. TECHNICAL PRELIMINARIES

Notations

The Euclidean norm of the vector x ∈ Rnx is written
‖x‖. The sequence of real vectors xk, k ∈ N, is written
(xk)k∈N. I is the identity matrix. For A ∈ Rnx×nx , ‖A‖
denotes the induced 2-norm. The (minimal) vectorization
of the symmetric matrix A = AT ∈ Rnx×nx is written
vec (A) ∈ Rnx(nx+1)/2.

A Useful Result from Fixed-Point Theory

The convergence analysis of modifier-adaptation schemes
will rely on a well-known result from fixed-point theory.
We briefly review the necessary concepts and results here.
For a broad overview of fixed-point theory, the reader is
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referred to Dugundji and Granas (1982). For the sake of
simplicity, the special case of fixed-point maps that live on
a nonempty convex subset C of Rnx are considered.

Definition 1. (Contractive map). The map Γ : C → C is
called

• strictly contractive, if there exists k < 1 such that

∀x, y ∈ C : ‖Γ(x)− Γ(y)‖ ≤ k‖x− y‖, (1a)

• nonexpansive (contractive), if

∀x, y ∈ C : ‖Γ(x)− Γ(y)‖ ≤ ‖x− y‖. (1b)

Theorem 1. (Convergence of averaged operators).
Let Γ : C → C be a nonexpansive operator with at least one
fixed point on C and (αk)k∈N a sequence of real numbers
on [0, 1] such that∑

k∈N
αk(1− αk) = +∞.

Furthermore, let x0 ∈ C and set

xk+1 = (1− αk)xk + αkΓ(xk). (2)

Then, the sequence (Γ(xk)− xk)k∈N converges to 0.

This result is known as the Krasnoselski-Mann theorem,
see Theorem 5.14 in Bauschke and Combettes (2011).
Extensions for specific choices of the averaging sequences
(αk)k∈N can be found in Johnson (1972); Ishikawa (1974).

3. SECOND-ORDER MODIFIER ADAPTATION

This section will successively present modifier adapta-
tion of various orders, discuss the matching properties
between the plant and the modified model for second-
order modification, provide a guarantee that the plant
has reached a local minimum, provide sufficient conditions
for convergence, and discuss an approach for estimating
the experimental Hessians. Furthermore, we sketch how
second-order adaptation is linked to SQP methods.

3.1 Modifier Adaptation of Various Orders

Real-time optimization attempts to enforce optimal oper-
ation for a given plant despite the presence of uncertainty
(Chachuat et al., 2009). In the case of a static plant,
φp : U → R, with U ⊂ Rnu , this can be formally described
as

minimize
u

φp(u) (3a)

subject to

gp,j(u) ≤ 0, j = 1, . . . , ng (3b)

u ∈ [u, u] ⊂ Rnu . (3c)

In real applications, however, neither the plant cost func-
tion φp nor the constraint functions gp,j are known exactly.
One typically relies on the approximations φ and gj , which
leads to the following model-based optimization problem:

minimize
u

φ(u) (4a)

subject to

gj(u) ≤ 0, j = 1, . . . , ng (4b)

u ∈ [u, u] ⊂ Rnu . (4c)

However, due to plant-model mismatch and disturbances,
solving problem (4) does not guarantee that a KKT point

(local minimum) of the plant will be reached (Forbes
and Marlin, 1996; François and Bonvin, 2013a). For this
purpose, the optimization problem (4) is modified as
follows and solved iteratively:

minimize
u

φ(u) +

iφ∑
i=0

mi
φ

(
λiφ,k, u− uk

)
(5a)

subject to

gj(u) +

ig∑
i=0

mi
gj

(
λigj ,k, u− uk

)
≤ 0, j = 1, . . . , ng

(5b)

u ∈ [u, u] ⊂ Rnu , (5c)

with the subscript ·k indicating a value corresponding to
the kth iteration.

The scalar modifiers mi
l, i ∈ {0, 1, 2}, l ∈ {φ, gj} are:

m0
φ

(
λ0
φ,k, u− uk

)
= λ0

φ,k (6a)

m1
φ

(
λ1
φ,k, u− uk

)
= (λ1

φ,k)T (u− uk) (6b)

m2
φ

(
λ2
φ,k, u− uk

)
=

1

2
(u− uk)Tλ2

φ,k(u− uk) (6c)

m0
gj

(
λ0
gj ,k, u− uk

)
= λ0

gj ,k (6d)

m1
gj

(
λ1
gj ,k, u− uk

)
= (λ1

gj ,k)T (u− uk) (6e)

m2
gj

(
λ2
gj ,k, u− uk

)
=

1

2
(u− uk)Tλ2

gj ,k(u− uk) , (6f)

where the modifiers λil, i ∈ {0, 1, 2}, l ∈ {φ, gj} are
defined as follows: λ0

φ,k is the difference between the plant

and model cost functions, 1

λ0
φ,k = φp(uk)− φ(uk), (7a)

λ1
φ is the difference in cost gradient,

λ1
φ,k :=

∂φp
∂u

∣∣∣∣
uk

− ∂φ

∂u

∣∣∣∣
uk

, (7b)

and λ2
φ,k is the difference in cost Hessian,

λ2
φ,k :=

∂2φp
∂u2

∣∣∣∣
uk

− ∂2φ

∂u2

∣∣∣∣
uk

. (7c)

Similarly, λ0
gj ,k

:= gp,j(uk) − gj(uk) is the difference

between the measured value of the jth plant constraint
and its predicted value, λ1

gj ,k
is the difference in the jth

constraint gradient, and λ2
gj is the difference in the jth

constraint Hessian.

To simplify the notation, we collect all the modifiers in one

vector Λ ∈ RnΛ , nΛ = (ng + 1)
(
nu + nu(nu+1)

2

)
+ ng + 1,

Λk :=
(
λ0
φ,k, λ

1
φ,k, vec

(
λ2
φ,k

)
,

λ0
gj ,k, λ

1
gj ,k, vec

(
λ2
gj ,k

))T
, j = 1, . . . , ng. (8)

Note that the optimal solution to the modified problem (5)
is not applied as such to the plant but filtered, or averaged,
at each RTO iteration to account for noisy measurements:

1 The offset in cost function does not affect the solution to Problem
(5). It is merely introduced here to unify the presentation.
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uk+1 = (1− α)uk + αu? (uk,Λk) , α ∈ (0, 1], (9)

where u? denotes the solution to the modified problem (5)
for given values of uk and Λk. In order to simplify the
analysis to come, we use the scalar filter gain α ∈ (0, 1]. 2

We are now ready to formally define the order of a
modifier-adaptation scheme.

Definition 2. (Order of modifier adaptation). The 2-tuple

Ω = (iφ, ig), iφ, ig ∈ {0, 1, 2},
which defines the summation indices in (5a) and (5b), is
called the order of the modifier-adaptation scheme (9).

With the adaptation order Ω = (0, 0), the only difference
between Problems (4) and (5) are the cost and constraint
offsets λ0

φ,k and λ0
gj ,k

. This case is similar to (Forbes

and Marlin, 1994) and (Chachuat et al., 2008). Using
first-order adaptation with Ω = (1, 1) leads to affine
corrections to the cost and constraints as proposed in Gao
and Engell (2005) and (Marchetti et al., 2009). The case
Ω = (2, 2) brings second-order corrections to the cost and
constraints. Hence, we propose to call this scheme second-
order modifier adaptation. Furthermore, one could also
consider a mixed second- and first-order adaptation with
Ω = (2, 1), that is, one can use iφ = 2 for the cost function
adaptation and ig = 1 for the constraint adaptation.

3.2 Matching Properties for Second-Order Adaptation

To investigate the properties of second-order adaptation,
the following assumptions are made.

Assumption 1. (Cost and constraint functions). The plant
and model cost and constraint functions {φp, gp,j , φ, gj}, j ∈
{1, . . . , ng} are twice continuously differentiable.

Recall that the static optimization problem (5) is called
feasible if the set of inputs that satisfies the constraints
(5b-c) is non-empty. A set of inputs is called admissible
for Problem (5) if it satisfies the constraints. The feasible
set of Problem (5) at the (k+1)st iteration can be written
as

U(uk) =

u ∈ [u, u] | j ∈ {1, . . . , ng}

gj(u) +

ig∑
i=0

mi
gj

(
λigj ,k(uk), u− uk

)
≤ 0

 . (10)

Since the set U(uk) will typically change at each RTO
iteration, we require the following assumption.

Assumption 2. (Feasibility). Problem (5) is globally feasi-
ble, that is, ∀u ∈ [u, u] : U(u) 6= ∅.

This assumption does not imply that the RTO iterates
uk are admissible with respect to the plant constraints. 3

2 Similarly to Marchetti et al. (2009), one could also use the filter
gain matrix K ∈ Rnu×nu or filter the modifiers instead of the inputs.
3 Guaranteeing strict admissibility of the RTO iterates with respect
to the plant constraints is in general difficult. Bunin et al. (2013b)
presents one way of enforcing admissibility on the basis of Lipschitz
bounds for the plant.

A simple way of satisfying Assumption 2 is to consider
the constraints (5b) as soft constraints in the numerical
solution to Problem (5).

Assumption 3. (Uniqueness of solution). For all u ∈
U([u, u]), Problem (5) has a unique solution.

This ensures that, for all u ∈ U([u, u]), the optimal
solution u?(u,Λ(u)) is a singleton. Note that the use of
strictly convex models for first-order modifier adaptation
as suggested in François and Bonvin (2013b) ensures the
validity of Assumption 3.

It is well known that first-order modifier adaptation has
the property of meeting the plant KKT conditions upon
convergence (Marchetti et al., 2009). It is not surprising
that the second-order scheme has similar properties, which
are formalized in the next proposition.

Proposition 2. (KKT and Hessian matching).
Assume that the second-order modifier-adaptation scheme
given by Problem (5) with Ω = (2, 2) has converged with
limk→∞ uk = u∞. Let a linear independence constraint
qualification hold at u∞. Then, the following matching
properties hold:

(i) u∞ satisfies the KKT conditions for the plant opti-
mization problem (3);

(ii) the cost and constraint Hessians of the modified
problem (5) match those of the plant (3).

Proof. We recall the main steps presented in Marchetti
et al. (2009) for convergence of a first-order modifier-
adaptation scheme. Let us denote the converged values
of the modifiers as

Λ∞ :=
(
λ0
φ,∞, λ

1
φ,∞, vec

(
λ2
φ,∞
)
,

λ0
gj ,∞, λ

1
gj ,∞, vec

(
λ2
gj ,∞

))T
, j = 1, . . . , ng (11)

and rewrite the cost and constraints of the modified
problem as

φm(u) :=φ(u) +

iφ∑
i=0

mi
φ

(
λiφ,k, u− uk

)
gm,j(u) :=gj(u) +

ig∑
i=0

mi
gj

(
λigj ,k, u− uk

)
.

Using the definitions given in (6) and (7), one can write
for the converged point u∞:

∂φm
∂u

∣∣∣∣
u∞

=
∂φ

∂u

∣∣∣∣
u∞

+ λ1
φ,∞ =

∂φp
∂u

∣∣∣∣
u∞

gm,j(u∞) = gj(u∞) + λ0
gj ,∞ = gp,j(u∞)

∂gm,j
∂u

∣∣∣∣
u∞

=
∂gj
∂u

∣∣∣∣
u∞

+ λ1
gj ,∞ =

∂gp,j
∂u

∣∣∣∣
u∞

.

From this and the assumption that u∞ satisfies a linear
independence constraint qualification, it can be inferred
that u∞ meets the KKT conditions of the plant (Bazaraa
et al., 2006; Marchetti et al., 2009). This proves part (i).

Part (ii) follows similarly from
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∂2φm
∂u2

∣∣∣∣
u∞

=
∂2φ

∂u2

∣∣∣∣
u∞

+ λ2
φ,∞ =

∂2φp
∂u2

∣∣∣∣
u∞

∂2gm,j
∂u2

∣∣∣∣
u∞

=
∂2gj
∂u2

∣∣∣∣
u∞

+ λ2
gj ,∞ =

∂2gp,j
∂u2

∣∣∣∣
u∞

.

�

Remark 1. (Active set). As a consequence of Proposition
2, we can infer that Problem (5) and the plant optimum
share the same set of active constraints. Furthermore, the
Lagrange multipliers that solve the KKT conditions for
Problem (5) at u∞ are also solution to the KKT conditions
of Problem (3).

3.3 Convergence to Plant Optimum

We show next that second-order adaptation allows check-
ing whether, upon convergence, the plant indeed reaches
a (local) optimum. For this, consider the restricted La-

grangian function Lm : Rnu × Rĵ → R
Lm(u, µj) = φm(u) +

∑
j∈J

µj gm,j(u) ,

where J ⊂ N denotes the set of active constraints at u∞
and ĵ is the cardinality of J at u∞.

Next, let J+ and J0 denote the sets of strongly active and
weakly active constraints, respectively. The cone Cm(u) ⊂
Rnu is defined as

Cm(u) =

{
d ∈ Rnu | d 6= 0,∀j ∈ J+ :

(
∂gm,j
∂u

)T
d = 0,

∀j ∈ J0 :

(
∂gm,j
∂u

)T
d ≤ 0,

}
.

The corresponding function Lp : Rnu × Rĵ → R and the
cone Cp(u) ⊂ Rnu are defined mutatis mutandis for the
plant optimization problem (3).

Proposition 3. (Convergence to a local plant minimum).
Assume that the second-order modifier-adaptation scheme
given by Problem (5) with Ω = (2, 2) has converged with
limk→∞ uk = u∞. Let the converged value be a strict local
minimum that satisfies

∀d ∈ Cm(u∞) : dT
∂2Lm
∂u2

∣∣∣∣
u∞

d > 0. (12)

Then, u∞ is a local minimizer of the plant optimization
problem (3), and φp(u∞) is a strict local minimum of
φp(u).

Proof. Condition (12) is sufficient to guarantee that
φm(u∞) is a strict local minimum of Problem (5) (Bazaraa
et al., 2006, Thm. 4.4.2). We know from Proposition 2 that,
upon convergence, the modified optimization problem and
the plant will have matching cost and constraint gradients
and Hessians. Furthermore, the set of active constraints
and the Lagrange multipliers will also match, and thus
Cm(u∞) = Cp(u∞). It can be inferred from (12) that an
equivalent condition holds for the plant, i.e.

∀d ∈ Cp(u∞) : dT
∂2Lp
∂u2

∣∣∣∣
u∞

d > 0,

and thus u∞ is a strict local minimum of the plant. �

3.4 Sufficient Conditions for Convergence

A limited number of results are available regarding the
convergence of modifier-adaptation schemes. A necessary
condition based on a linearization of the algorithm around
a fixed point is presented in Marchetti et al. (2009). A
general framework that allows enforcing feasibility and
optimality (and thus also convergence) of a broad class
of RTO schemes is presented in Bunin et al. (2013b,c).
Next, we propose to use a well-known result from fixed-
point theory to state a fairly general sufficient condition
for the convergence of modifier-adaptation schemes.

Proposition 4. (Convergence of modifier adaptation).
Consider the modifier-adaptation scheme (9) with any
order Ω ∈ {(0, 0), (1, 1), (1, 2), (2, 2), (2, 1), (2, 0)}. Let As-
sumptions 1–3 hold and the filter gain α ∈ (0, 1] be used.

If the map u? : u 7→ u?(u,Λ(u)) is nonexpansive in the
sense of Definition 1 and has at least one fixed point on
[u, u], then the sequence (uk)k∈N of RTO iterates defined
by (9) converges to a fixed point, i.e.

lim
k→∞

‖u?(uk,Λ(uk))− uk‖ = 0.

Proof. The main idea of the proof is to show that the
stated assumptions allow using Theorem 1. Recall that
the modifier-adaptation scheme with input filtering given
by (9) can be understood as an averaged iteration of the
operator u? : u 7→ u?(u,Λ(u)).

Next, we know from (10) that, for all k ∈ N, U(uk) ⊂
[u, u]. Assumptions 2 and 3 ensure that, for all k ∈ N,
u?(uk,Λk) ∈ [u, u]. Furthermore, the modifier-adaptation
scheme (5) computes at each step a convex combination
of uk and u?(uk,Λk). Hence, we have (uk)k∈N ∈ [u, u]. It
follows that Theorem 1 applies, and the sequence (u)k∈N
converges to a fixed point. �

Remark 2. (Reasons for filtering). This result holds for
modifier-adaptation schemes of zeroth-, first-, second- and
mixed orders. Since Theorem 1 indicates that the averaged
(or filtered) iteration of an operator increases its domain of
attraction, filtering can be understood as a way to increase
the domain of attraction of modifier-adaptation schemes.
This comes in addition to dealing with noisy measurements
and the fact that large correction steps based on local
information should be avoided.

Note that the value of Proposition 4 is mainly conceptual
since it can be difficult to verify its assumptions and con-
ditions. Subsequently, we discuss a simple unconstrained
case and show how the main assumptions of Proposition
4 can be verified explicitly.

Illustrative Example: Consider uncertain quadratic pro-

grams. Assume that the plant is minu
1
2u

THpu+Fpu+ cp.

And the model is minu
1
2u

THu + Fu + c. This means
we consider unconstrained quadratic programs. Assume
furthermore that the Hessians Hp, H are positive definite
symmetric matrices.

Firstly, note that u = −H−1
p FTp is a fixed point of the first-

and second-order modifier-adaptation schemes. Secondly,
we show how nonexpansiveness of the argmin-operator
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can be verified. In the case of first-order modifiers, the
modified cost function φm(u) reads

φm(u) =
1

2
uTHu+Fu+c+

(
uTk (Hp−H)+Fp−F

)
(u−uk).

It follows that
∂φm
∂u

= uTH + F +
(
uTk (Hp −H) + Fp − F

)
,

which leads to

u?(uk) = H−1
(

(H −Hp)uk − FTp
)
.

Since

‖u?(w)− u?(v)‖ ≤ ‖I −H−1Hp‖‖w − v‖,
‖I − H−1Hp‖ ≤ 1 is sufficient to ensure convergence of
the first-order modifier-adaptation scheme (5) with input
filtering.

Now consider the application of a second-order modifier-
adaptation scheme. The modified cost function is

φm(u) =
1

2
uTHu+Fu+c+

1

2
(u−uk)T (Hp−H)(u−uk)

+
(
uTk (Hp −H) + Fp − F

)
(u− uk).

It is easy to show that

∂φm
∂u

= uTH + F + (u− uk)T (Hp −H)

+
(
uTk (Hp −H) + Fp − F

)
= uTHp + Fp

which yields
u?(uk) = −H−1

p FTp .

Since this is a constant, we immediately see that ‖u?(w)−
u?(v)‖ = 0. Hence, the second-order modifier-adaptation
scheme converges with input filtering. Furthermore, with-
out input filtering (α = 1), it converges in one step for any
choice of positive definite symmetric matrices Hp and H.

3.5 Hessian Approximation

So far, we have implicitly assumed that the plant gradients
and the Hessians are known. In practice, however, it is
difficult to obtain the plant gradients from measurements
(Bunin et al., 2013a). For the purpose of this paper, we will
assume that the gradients of the plant cost and constraints
are estimated via finite differences. For second-order adap-
tation, we consider Hessian approximation formulas that
are well-known in numerical optimization (Nocedal and
Wright, 2000).

Consider the two successive RTO iterations k − 1 and k.
Denote the differences between two successive RTO inputs
and the corresponding gradients of the general function
l ∈ {φ, gj} as

sk := uk − uk−1

tl,k := λ1
l,k − λ1

l,k−1.

For each of the functions l, we use the SR1 update formula

Bl,k+1 = Bl,k +
(tl,k −Bl,ksk)(tl,k −Bl,ksk)T

(tl,k −Bl,ksk)T sk
(13)

to approximate the corresponding Hessian matrix. Note
that the definition of tl,k implies that we approximate the
Hessian of the difference between the plant and model cost
and constraints. In other words, we set λ2

l,k := Bl,k, l ∈

{φ, gj} in the modifier-adaptation scheme represented by
(5) and (9).

The SR1 formula is well known in the context of quasi-
Newton methods, where it is used to compute Hessian
approximations to the cost functions (Nocedal and Wright,
2000, Chap. 6). In order to avoid singularities in (13), a
skipping rule is used. This means that the update (13) is
only applied if∥∥(tl,k −Bl,ksk)T sk

∥∥ ≥ ρ‖sk‖ ‖tl,k −Bl,ksk‖ , (14)

where ρ ∈ (0, 1] is a small positive number.

Note that one could as well consider other Hessian ap-
proximation formulas such as the BFGS update. Here, we
use the SR1 formula since the convergence of the Hessian
estimates Bl,k to the true Hessian can be guaranteed under
certain conditions (Nocedal and Wright, 2000, Chap. 6).

3.6 Link to SQP and Trust-Region Methods

The results of Propositions 2-4 also hold for the model
φ(u) = 0, gj(u) = 0, j = 1, . . . , ng, that is, the case of
no model. Hence, it is fair to ask whether second-order
corrections allow implementing model-free RTO schemes.
If one considers the case of no model and mixed second-
and first-order adaptation with Ω = (2, 1), each RTO iter-
ation then amounts to solving a QP based on the Hessian
approximation (13) and subject to affine approximations
of the plant constraints. In other words, at the (k + 1)st

iteration, one would solve the following QP:

min
u

1

2
(u− uk)TBφ,k (u− uk) + tTφ,k (u− uk) (15a)

subject to

tTgj ,k(u− uk) + gj(uk) ≤ 0, j = 1, . . . , ng (15b)

u ∈ [u, u] . (15c)

Obviously, such an approach leads to an SQP-like RTO
scheme. Since the approximations of the cost and con-
straints are of local nature, a trust-region constraint is
added,

‖u− uk‖ ≤ ∆k, (15d)

where the radius ∆k is adjusted according to the achieved
progress at each iteration. 4

4 Different procedures exist for updating the trust-region radius, cf.
(Nocedal and Wright, 2000; Conn et al., 2000).

Algorithm 1. SQP-like RTO scheme.

DATA: u0, B0, tφ,0, tgj ,0,∆0, ε, η, ∆̂

0. INITIALIZE uk = u0,∆k = ∆0, k = 0;

1. SOLVE the QP (15);

2. APPLY uk+1 = u? to plant and EVALUATE the
resulting plant gradients tl,k, l ∈ {φ, gj};

3. COMPUTE the gradient and Hessian updates (13);

4. UPDATE the trust-region radius

∆k+1 = f(∆k, ∆̂, φp(uk), φp(uk+1));

5. IF ‖φp(uk+1)− φp(uk)‖ ≤ η
THEN APPLY uk+2 = uk, k → k + 2 GOTO 1.
ELSE k → k + 1 GOTO 1.
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An SQP-like RTO scheme is described in Algorithm 1. The
algorithm is initialized with the guesses u0, B0, tφ,0, tgj ,0,∆0

for the inputs, the Hessian, the gradients and the trust-
region radius, respectively. Additionally, a solution toler-
ance ε > 0, an improvement requirement η > 0, and a
maximum trust-region radius ∆̂ > 0 have to be provided.

Note that the Hessians and gradients are updated even
along non-decreasing directions, which improves the qual-
ity of the Hessian approximation (Nocedal and Wright,
2000, Chap. 6). Furthermore, there is no need for Algo-
rithm 1 to filter the inputs, since the trust-region con-
straint already accounts for the local nature of the avail-
able plant data.

At this point, it is justified to mention several issues and
open questions:

(1) Does the consideration of second-order adaptation
bring any benefit in terms of convergence?

(2) Provided that sufficiently accurate gradient informa-
tion is available, does second-order adaptation bring
any advantage over the SQP-like RTO scheme given
in Algorithm 1?

(3) In a noise-free setting, the SR1-based Hessian up-
dates converge to the true Hessian (Nocedal and
Wright, 2000). However, one might wonder how SQP-
like RTO performs in the presence of measurement
noise. And more generally, how do the three schemes
compare in the presence of noise?

4. SIMULATED EXAMPLE

Subsequently, we investigate the first two questions via
a simulated example. An answer to the third question is
beyond the scope of this paper and subject of future work.

We consider the Williams-Otto reactor (Williams and
Otto, 1960) that is often used as a test problem for real-
time optimization techniques (Marchetti et al., 2010). The
plant (or simulated reality) is a continuous stirred-tank
reactor with the following reactions:

A+B → C, k̄1 = η̄1e
−ν̄1
TR (16a)

B + C → P + E, k̄2 = η̄2e
−ν̄2
TR (16b)

C + P → G, k̄3 = η̄3e
−ν̄3
TR (16c)

The species P and E are the desired products, while
C is an intermediate species. The reactor mass holdup
is W = 2105 kg. The two inputs, namely the reactor
temperature TR in K and the inlet mass flowrate FB in
kg/s, are constrained to [348, 368]× [3.5, 5].

To simulate plant-model mismatch, the model considers
a simplified reaction scheme that does not involve the
intermediate species C:

A+ 2B → P + E, k1 = η1e
−ν1
TR (17a)

A+B + P → G, k2 = η2e
−ν2
TR . (17b)

Since the reaction schemes for the plant and the model are
different, the kinetic parameters ν̄i, η̄i, i ∈ {1, 2, 3} and
νj , ηj , j ∈ {1, 2} also differ. Here, we consider the plant
values given in Marchetti (2009), whereas the model values
are η1 = 1.3 ·108, η2 = 1.1 ·1013, ν1 = 8.3 ·103, ν2 = 1.28 ·
104.

Table 1. Results 1st-order adaptation

Gain α
1st Order

īconv σ(iconv) δ̄

0.25 55.37 5.74 4.13 · 10−3

0.5 27.30 3.22 4.04 · 10−3

0.75 17.47 1.74 4.01 · 10−3

1.0 13.43 0.89 4.06 · 10−3

Table 2. Results 2nd-order adaptation

Gain α
2nd Order

īconv σ(iconv) δ̄

0.25 41.37 10.63 3.65 · 10−2

0.5 20.86 1.97 4.07 · 10−3

0.75 13.53 1.5 4.05 · 10−3

1.0 9.07 1.26 4.06 · 10−3

Table 3. Results SQP-like RTO

Gain α
Algorithm 1

īconv σ(iconv) δ̄

1.0 9.09 1.8 0.339

The plant profit to be maximized is

φp(u) = (c1X̄P + c2X̄E)(FA + FB)− c3FA − c4FB ,
where X̄P and X̄E are the mass fractions of species P and
E in the plant, and FA is the inlet mass flowrate of A
in kg/s. The constants are c1 = 1143.38, c2 = 25.92, c3 =
76.23, c4 = 114.34.

We will apply three RTO schemes to the Williams-Otto
reactor and compare their performance:

i) First-order modifier adaptation with finite-difference
approximation of the gradients;

ii) Second-order modifier adaptation based on finite-
difference approximation of the gradients and Hessian
approximation according to (13);

iii) The SQP-like RTO scheme of Algorithm 1 based
on finite-difference approximation of the gradients,
Hessian approximation according to (13) and trust
region update according to (Nocedal and Wright,
2000, Chap. 6).

For all three cases, a set of 100 randomly chosen initial
guesses u0 ∈ [348, 368] × [3.5, 5] and the filter gains α ∈
{0.25, 0.5, 0.75, 1.0} are considered. The SQP-like scheme
is simulated without any input filtering since the trust-
region constraint accounts for the local nature of the
available plant data. The schemes are stopped when the
difference between two successive RTO iterates is less than
10−4. The Hessian approximations are initialized with
B0 = −diag(1, 10).

Tables 1 and 2 summarize the result for first- and second-
order modifier adaptation: īconv is the mean of the number
of iterations and δ̄ is the mean of the difference δ =
‖u(iconv) − u?‖, where u? = (362.85, 4.79)T is the true
plant optimum.

For this example, the second-order adaptation leads to
slightly faster convergence. Furthermore, except for the
case of α = 0.25, the achieved accuracies are comparable.

Table 3 lists the result for the SQP-like scheme. We see
that convergence is typically faster than with nearly all
modifier-adaptation schemes. The price to pay for fast
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convergence is that the achieved average accuracy, as
measured by δ̄, is not as good. The reason for this is that, in
several of the 100 cases, the fixed initial Hessian guess B0

did not allow the computation of a direction with sufficient
cost decrease.

5. CONCLUSIONS

This paper has generalized first-order modifier adapta-
tion to include second-order corrections to the cost and
constraint functions. A sufficient condition for conver-
gence of modifier-adaptation schemes of various orders has
been presented. The consideration of Hessian terms allows
checking whether the plant has indeed reached (local)
optimality. Provided that sufficiently accurate gradient
information is available, the use of second-order correction
terms can speed up convergence. However, further research
is required to assess the applicability of second-order up-
dates in the presence of measurement noise.

This study conveys an additional, more abstract message,
namely the interplay between model quality and mea-
surements quality for the purpose of reaching the plant
optimum. The weight between the two sources of informa-
tion has to represent their relative quality. If sufficiently
accurate gradient information is available, one can even
discard the model completely and rely solely on local
QP approximations that are obtained from measurements.
Hence, in the presence of reliable measurements, one can
use approximate first- and second-oder data in an SQP-
like model-free RTO scheme. It turns out that, in the case
of modifier-adaptation schemes, the adaptation order may
well be a useful tuning knob that lets the designer weight
the relative importance to give to the model and to the
measurements.
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