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Abstract: We present in this paper a preliminary result on extremum seeking (ES)-based
adaptive trajectory tracking control for nonlinear systems. We propose, for the class of nonlinear
systems with parametric uncertainties which can be rendered integral Input-to-State stable
(iISS) w.r.t. the parameter estimation errors input, that it is possible to merge together
the integral Input-to-State stabilizing feedback controller and a model-free extremum seeking
algorithm to realize a learning-based indirect adaptive controller. We show the efficiency of this
approach on a mechatronic example.

1. INTRODUCTION

Classical adaptive control deals with controlling partially
unknown process based on their uncertain model, i.e.,
controlling plants with parameters uncertainties. Classical
adaptive methods can be classified as ‘direct’, where the
controller is updated to adapt to the process, or ‘indirect’,
where the model is updated to better reflect the actual
process. Many adaptive methods have been proposed over
the years for linear and nonlinear systems, we could not
possibly cite here all the design and analysis results that
have been reported, instead we refer the reader to e.g.
Landau et al. [2011], Krstic et al. [1995] and the references
therein for more details. What we want to underline here is
that these results in ‘classical’ adaptive control are mainly
based on the structure of the model of the system, e.g. lin-
ear vs. nonlinear, with linear uncertainties parametrization
vs. nonlinear parameterizations, etc.

On the other hand, Extremum seeking (ES) is a well known
approach by which one can search for the extremum of a
cost function associated with a given process performance
(under some conditions) without the need for a detailed
model of the process, e.g. Ariyur and Krstić [2003], Ariyur
and Krstic [2002], Nesic [2009]. Several ES algorithms with
their stability analysis have been proposed, e.g. Scheinker
[2013], Krstic [2000], Ariyur and Krstic [2002], Tan et al.
[2006], Nesic [2009], Tan et al. [2006], Ariyur and Krstić
[2003], Rotea [2000], Guay et al. [2013], and many appli-
cations of ES algorithms have been reported, e.g Zhang
et al. [2003], Hudon et al. [2008], Zhang and Ordez [2012],
Benosman and Atinc [2013a,c].

Another worth mentioning paradigm is the one which
uses ‘learning schemes’ to estimate the uncertain part of
the process. Indeed, in this paradigm the learning-based
controller, based either on machine learning theory, neural
network, fuzzy systems, etc. is trying either to estimate the
parameters of an uncertain model, or the structure of a
deterministic or a stochastic function representing part or
totality of the model. Several results have been proposed
in this area as well, and we refer the reader to e.g. Wang
and Hill [2006] and the references therein for more details.
We want to concentrate in this paper on the use of ES
theory in the ‘learning-based’ adaptive control paradigm.
Indeed, several results were recently developed in this
direction, e.g. Haghi and Ariyur [2011], Ariyur et al. [2009],
Guay and Zhang [2003], Adetola and Guay [2007], Zhang

et al. [2003], Hudon et al. [2008], Benosman and Atinc
[2013a,c]. For instance in Haghi and Ariyur [2011], Ariyur
et al. [2009] the authors used a model-free ES, i.e., only
based on a desired cost function, to estimate parameters
of a linear state feedback to compensate for unknown
parameters for linear systems. In Guay and Zhang [2003],
Adetola and Guay [2007] an extremum seeking-based con-
troller for nonlinear affine systems with linear param-
eters uncertainties was proposed. The controller drives
the states of the system to unknown optimal states that
optimize a desired objective function. The ES controller
is not model-free in the sense that it is based on the
known part of the model, i.e., it is designed based on
the objective function and the nonlinear model structure.
Similar approach is used in Zhang et al. [2003], Hudon
et al. [2008] when dealing with more specific examples.
In Benosman and Atinc [2013a], the authors used, for
the case of electromagnetic actuators, a model-free ES,
i.e., only based on the cost function without the use of
the system model, to learn the ‘best’ feedback gains of a
passive robust state feedback. Similarly, in Benosman and
Atinc [2013c], a backstepping controller was merged with
a model-free ES to estimate the uncertain parameters of a
nonlinear model for electromagnetic actuators. Although,
no stability analysis was presented for the full controller
( i.e., backstepping plus ES estimator), very promising
numerical results where reported.

In this work we propose to generalize the idea of Benosman
and Atinc [2013c], for the class of nonlinear system with
parametric uncertainties which can be rendered iISS w.r.t.
the parameters estimation error. The idea is based on a
modular design, where we first design a feedback controller
which makes the closed-loop tracking error dynamic iISS
w.r.t. the estimation errors and then complement this iISS-
controller with a mode-free ES algorithm that can mini-
mize a desired cost function, by tuning, i.e., estimating, the
unknown parameters of the model. The modular design
simplifies the analysis of the total controller, i.e., iISS-
controller plus ES estimation algorithm. We first propose
this formulation in the general case of nonlinear systems
and then show a detailed case-study on a mechatronic
example.

This paper is organized as follows: Section II is used to
recall some notations and definitions. In Section III we
present the main result of this paper, namely, the ES-based
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learning adaptive controller. Section IV is dedicated to an
application example, and the paper ends with a Conclusion
in Section V.

2. PRELIMINARIES

Throughout the paper we will use ‖.‖ to denote the Eu-

clidean norm; i.e., for x ∈ R
n we have ‖x‖ =

√
xT x. We

will use the notation |.| for the absolute value of a scalar

variable, and ˙(.) for the short notation of time derivative.
We denote by Ck functions that are k times differentiable.
A continuous function α : [0, a) → [0,∞) is said to belong
to class K if it is strictly increasing and α(0) = 0. A
continuous function β : [0, a) × [0,∞) → [0,∞) is said
to belong to class KL if, for each fixed s, the mapping
β(r, s) belongs to class K with respect to r and, for each
fixed r, the mapping β(r, s) is decreasing with respect to
s and β(r, s) → 0 as s → ∞.
Let us now introduce some useful definitions.

Definition. 1 [Local Integral Input-to-State Stability Ito
and Jiang [2009]]
Consider the system

ẋ = f(t, x, u) (1)

where x ∈ D ⊆ R
n such that 0 ∈ D, and f : [0,∞) ×

D × Du → R
n is piecewise continuous in t and locally

Lipschitz in x and u, uniformly in t. The inputs are
assumed to be measurable and locally bounded functions
u : R≥0 → Du ⊆ R

m. Given any control u ∈ Du and any
ξ ∈ D0 ⊆ D, there is a unique maximal solution of the
initial value problem ẋ = f(t, x, u), x(t0) = ξ. Without
loss of generality, assume t0 = 0. The unique solution is
defined on some maximal open interval, and it is denoted
by x(·, ξ, u). System (1) is locally integral input-to-state
stable (LiISS) if there exist functions α, γ ∈ K and β ∈ KL
such that, for all ξ ∈ D0 and all u ∈ Du, the solution
x(t, ξ, u) is defined for all t ≥ 0 and

α(‖x(t, ξ, u)‖) ≤ β(‖ξ‖, t) +

∫ t

0

γ(‖u(s)‖)ds (2)

for all t ≥ 0. Equivalently, system (1) is LiISS if and only
if there exist functions β ∈ KL and γ1, γ2 ∈ K such that

‖x(t, ξ, u)‖ ≤ β(‖ξ‖, t) + γ1

(
∫ t

0

γ2(‖u(s)‖)ds

)

(3)

for all t ≥ 0, all ξ ∈ D0 and all u ∈ Du. Note that if
system (1) is LiISS, then the 0-input system is locally
uniformly asymptotically stable (0-LUAS), that is, the
unforced system

ẋ = f(t, x, 0) (4)
is LUAS (Sontag and Wang [1996]).

Definition. 2 [ε- Semi-global practical uniform ultimate
boundedness with ultimate bound δ ((ε − δ)-SPUUB)
Scheinker [2013]]
Consider the system

ẋ = f ε(t, x) (5)

with φε(t, t0, x0) being the solution of (5) starting from
the initial condition x(t0) = x0. Then, the origin of (5) is
said to be (ε, δ)-SPUUB if it satisfies the following three
conditions:
1-(ε, δ)-Uniform Stability: For every c2 ∈]δ,∞[, there exists
c1 ∈]0,∞[ and ε̂ ∈]0,∞[ such that for all t0 ∈ R and for
all x0 ∈ R

n with ||x0|| < c1 and for all ε ∈]0, ε̂[,

||φε(t, t0, x0)|| < c2, ∀t ∈ [t0,∞[

2-(ε, δ)-Uniform ultimate boundedness: For every c1 ∈
]0,∞[ there exists c2 ∈]δ,∞[ and ε̂ ∈]0,∞[ such that for
all t0 ∈ R and for all x0 ∈ R

n with ||x0|| < c1 and for all
ε ∈]0, ε̂[,

||φε(t, t0, x0)|| < c2, ∀t ∈ [t0,∞[
3-(ε, δ)-Global uniform attractivity: For all c1, c2 ∈ (δ,∞)
there exists T ∈]0,∞[ and ε̂ ∈]0,∞[ such that for all t0 ∈ R

and for all x0 ∈ R
n with ||x0|| < c1 and for all ε ∈]0, ε̂[,

||φε(t, t0, x0)|| < c2, ∀t ∈ [t0 + T,∞[

3. LEARNING-BASED ADAPTIVE CONTROLLER

Consider the system (1), with parametric uncertainties
∆ ∈ R

p

ẋ = f(t, x,∆, u) (6)
We associate with (6), the output vector

y = h(x) (7)

where h : R
n → R

h.
The control objective here is for y to asymptotically track
a desired smooth vector time-dependent trajectory yref :
[0,∞) → R

h.
Let us now define the output tracking error vector as
ey(t) = y(t) − yref (t).
We then assume the following

Assumption 1. There exists a robust control feedback
uiss(t, x, ∆̂) : R

×
R

n × R
p → R

m, with ∆̂(t) being the
dynamic estimate of the uncertain vector ∆, such that,
the closed-loop error dynamics

ėy = f(t, ey, e∆) (8)

is iISS from the input vector e∆ = ∆ − ∆̂(t) to the state
vector ey.

Remark 2. Assumption 1 might seem too general, how-
ever, several control approaches can be used to design
a controller uiss rendering an uncertain system iISS, for
instance backstepping control approach has been shown
to achieve such a property for parametric strict-feedback
systems, e.g. Krstic et al. [1995]. This is a preliminary
report, and we do not pretend here to present a detailed
solution for all the cases. A more detailed study of how to
achieve Assumption 1 for specific classes of systems and
how to use it in the context of ES learning-based adaptive
control, will be presented in our future reports.

Let us define now the following cost function

Q(∆̂, t) = F (ey(∆̂), t) (9)

where F : R
h × R

+ → R
+, F (0, t) = 0, F (ey, t) > 0 for

ey 6= 0. We need the following assumptions on Q.

Assumption 3. The cost function Q has a local minimum
at ∆̂∗ = ∆.

Assumption 4. |∂Q(∆̂,t)
∂t

| < ρQ, ∀t ∈ R
+, ∀∆̂ ∈ R

p.

Remark 5. Assumption 3 simply means that we can con-
sider that Q has at least a local minimum at the true values
of the uncertain parameters.

We can now present the following Lemma.

Lemma 6. Consider the system (6), (7), with the cost
function (9), then under Assumptions 1, 3 and 4 , the

controller uiss, where ∆̂ is estimated with the multi-
parameter extremum seeking algorithm
˙̂
∆i = a

√

(ωi)cos(ωit) − k
√

ωisin(ωit)Q(∆̂), i ∈ {1, ..., p}
(10)

with a > 0, k > 0, ωi 6= ωj , i, j, k ∈ {1, ..., p}, and
ωi > ω∗, ∀i ∈ {1, ..., p}, with ω∗ large enough, ensures
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that the norm of the error vector ey admits the following
bound

‖ey(t)‖ ≤ β(‖ey(0)‖, t) + α(

∫ t

0

γ(‖e∆(s)‖)ds,

where α ∈ K, β ∈ KL, γ ∈ K, and ‖e∆‖ satisfies:

1-( 1
ω
, d)-Uniform Stability: For every c2 ∈]d,∞[, there

exists c1 ∈]0,∞[ and ω̂ > 0 such that for all t0 ∈ R and
for all x0 ∈ R

n with ||e∆(0)|| < c1 and for all ω > ω̂,
||e∆(t, e∆(0))|| < c2, ∀t ∈ [t0,∞[

2-( 1
ω
, d)-Uniform ultimate boundedness: For every c1 ∈

]0,∞[ there exists c2 ∈]d,∞[ and ω̂ > 0 such that for
all t0 ∈ R and for all x0 ∈ R

n with ||e∆(0)|| < c1 and for
all ω > ω̂,

||e∆(t, e∆(0))|| < c2, ∀t ∈ [t0,∞[

3-( 1
ω
, d)-Global uniform attractively: For all c1, c2 ∈ (d,∞)

there exists T ∈]0,∞[ and ω̂ > 0 such that for all t0 ∈ R

and for all x0 ∈ R
n with ||e∆(0)|| < c1 and for all ω > ω̂,

||e∆(t, e∆(0))|| < c2, ∀t ∈ [t0 + T,∞[
where d is given by: d = min{r ∈]0,∞[: ΓH ⊂ B(∆, r)},
with ΓH = {∆̂ ∈ R

n : ‖∂Q(∆̂,t)

∂∆̂
‖ <

√

2ρQ

kaβ0
}, 0 < β0 ≤ 1,

and B(∆, r) = {∆̂ ∈ R
n : ||∆̂ − ∆|| < r}.

Remark 7. Lemma 6 shows that the estimation error is
bounded by a constant c2 which can be tightened by
making the constant d small. The d constant can be tuned
by tuning the cardinal of the set ΓH , which in turns can
be made small by choosing large values for the coefficients
a and k of the ES algorithm (10).

Proof.
Consider the system (6), (7), then under Assumption 1,
the controller uiss ensures that the tracking error dynamic
(8) is iISS between the input e∆ and the state vector ey,
which by Definition 1, implies that there exist functions
α ∈ K, β ∈ KL and γ ∈ K, such that, for all e(0) ∈ De

and e∆ ∈ De∆
, the norm of the error vector e∆ admits the

following bound

‖ey(t)‖ ≤ β(‖ey(0)‖, t) + α(

∫ t

0

γ(‖e∆‖))ds (11)

for all t ≥ 0.
Now, we need to evaluate the bound on the estimation
vector ∆̃, to do so we use the results presented in Scheinker
[2013]. Indeed, based on Theorem 3 of Scheinker [2013],
we can conclude under Assumption 4, that the estimator
(10), makes the local optimum of Q; ∆∗ = ∆ ( see
Assumption 3), ( 1

ω
, d)-SPUUB, where d = min{r ∈]0,∞[:

ΓH ⊂ B(∆, r)}, with ΓH = {∆̂ ∈ R
n : |∂Q(∆̂,t)

∂∆̂
| <

√

2ρQ

kaβ0
}, 0 < β0 ≤ 1, and B(∆, r) = {∆̂ ∈ R

n :

||∆̂ − ∆|| < r}, which by Definition 2 implies that ‖e∆‖
satisfies the three conditions: ( 1

ω
, d)-Uniform Stability,

( 1
ω
, d)-Uniform ultimate boundedness, and ( 1

ω
, d)-Global

uniform attractively. 2

Remark 8. The upper-bounds of the estimated parame-
ters used in Lemma 6 are correlated to the choice of
the extremum seeking algorithm (9) and (10), however,
these bounds can be easily changed by using other ES
algorithms, e.g. Noase et al. [2011], which is due to the
modular design of the controller, that uses the iISS robust
part to ensure boundedness of the error dynamics and the
learning part to improve the tracking performance.

Remark 9. We point out here that ISS can be substituted
for iISS if we are dealing with time-invariant systems and
solving a regulation problem instead of a time-varying
trajectory tracking.

4. CASE STUDY

We study here the example of electromagnetic actuators
modelled with the nonlinear equations Peterson and Ste-
fanopoulou [2004]

m
d2x

dt2
= k(x0 − x) − η

dx

dt
− ai2

2(b + x)2

u = Ri +
a

b + x

di

dt
− ai

(b + x)2
dx

dt
, 0 ≤ x ≤ xf

(12)

where, x represents the armature position physically con-
strained between the initial position of the armature 0, and
the maximal position of the armature xf , dx

dt
represents the

armature velocity, m is the armature mass, k the spring
constant, x0 the initial spring length, η the damping coeffi-

cient, ai2

2(b+x)2 represents the electromagnetic force (EMF)

generated by the coil, a, b being constant parameters of
the coil, R the resistance of the coil, L = a

b+x
the coil

inductance (assumed to be dependent on the position of
the armature), ai

(b+x)2
dx
dt

represents the back EMF. Finally,

i denotes the coil current, di
dt

its time derivative and u rep-
resents the control voltage applied to the coil. We address
the control problem of the electromagnetic system with the
following parameters uncertainties: the spring constant k
, and the damping coefficient η.
Consider now the dynamical system (12), and let us define
the state vector z := [z1 z2 z3]

T = [x ẋ i]T . The objec-
tive of the control is to make the variables (z1, z2) robustly
track a sufficiently smooth (at least C2) time-varying

position and velocity trajectories zref
1 (t), zref

2 (t) =
dz

ref

1
(t)

dt
that satisfy the following constraints: zref

1 (t0) =

z1int
, zref

1 (tf ) = z1f
, żref

1 (t0) = żref
1 (tf ) = 0, z̈ref

1 (t0) =

z̈ref
1 (tf ) = 0, where t0 is the starting time of the trajectory,

tf is the final time, z1int
is the initial position and z1f

is
the final position.

To start, let us first write the system (12) in the following
form

ż1 = z2

ż2 =
k

m
(x0 − z1) −

η

m
z2 −

a

2m(b + z1)2
z2
3

ż3 =− R
a

b+z1

z3 +
z3

b + z1
z2 +

u
a

b+z1

(13)

It was proven in Atinc and Benosman [2013], that the
following controller
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u =
a

b+ z1

(

R(b+ z1)

a
z3 − z2z3

(b+ z1)

+
1

2z3

( a

2m(b+ z1)2
(z2 − z

ref
2 ) − c2(z23 − ũ)

)

)

+
2mz2

z3

(

k̂

m
(x0 − z1) − η̂

m
z2 + c3(z1 − z

ref
1 ) + c1(z2 − z

ref
2 )

+κ1(z2 − z
ref
2 )‖ψ‖2

2 − ż
ref
2

)

+
m(b+ z1)

z3

((

k̂

m
(x0 − z1) − η̂

m
z2 − a

2m(b+ z1)2
z23 − ż

ref
2

)

(

c1 + κ1‖ψ‖2
2 − η̂

m

)

− η̂

m
ż

ref
2

)

+
m(b+ z1)

z3

(

2κ1(z2 − z
ref
2 )

(

(x0 − z1)(−z2)
m2

+

z2

(

k̂
m

(x0 − z1) − η̂
m
z2 − az2

3

2m(b+z1)2

)

m2

))

−κ2(z23 − ũ)
∣

∣

2m(b+ z1)2

a

∣

∣

2
[

∣

∣c1

+κ1‖ψ‖2
2 − η̂

m

∣

∣

2
+

∣

∣2κ1(z2 − z
ref
2 )

∣

∣

2∣
∣

z2

m2

∣

∣

2
]

‖ψ‖2
2

−κ3(z23 − ũ)
∣

∣

2m(b+ z1)2

a

∣

∣

2‖ψ‖2
2

+
m(b+ z1)

z3

(

− k̂

m
z2 − z̈

ref
2 + c3(z2 − z

ref
2 )

)

(14)
with

ũ =
2m(b+ z1)2

a

(

k̂

m
(x0 − z1) − η̂

m
z2 + c3(z1 − z

ref
1 )

+c1(z2 − z
ref
2 ) − ż

ref
2

)

+
2m(b+ z1)2

a

(

κ1(z2 − z
ref
2 )‖ψ‖2

2

)

(15)

where, k̂, η̂ are the estimated values of the uncertain
parameters, makes the system (13) iISS with respect to
the estimation error input, which together with Lemma
6, ensures that the controller (14), and (15), with the ES
algorithm

Q(xk, xη) = q1(z1(tf ) − z1(tf )ref )2 + q2(z2(tf ) − z
ref
2 (tf ))2

ẋk = a
√

(ωk)cos(ωkt) − k
√
ωksin(ωkt)Q(∆̂)

ẋη = a
√

(ωη)cos(ωηt) − k
√
ωηsin(ωηt)Q(∆̂)

k̂(t) = knominal + xk(t)
η̂(t) = ηnominal + xη(t)

(16)

where, knominal, ηnominal are the nominal values of the
parameters, with ωk 6= ωη, k > 0, a > 0, q1, q2 > 0, leads
to bounded tracking and estimation errors.

We now illustrate numerically our approach using the
system parameters given in Table 1 Kahveci and Kol-
manovsky [2010]. The reference trajectory is designed to

be a 5th order polynomial, xref (t) =
∑5

i=0 ai(
t
tf

)i where

the coefficients ai are selected such that the following
conditions are satisfied: xref (0) = 0.2 mm, xref (0.5) =
0.7 mm, ẋref (0) = 0, ẋref (0.5) = 0, ẍref (0) =
0, ẋref (0.5) = 0. We consider the uncertainties given by

∆k = −5 N
mm

, and ∆η = −1 kg
s

. To make the simulation
case more challenging we also introduced an initial error
x(0) = 0.01 mm on the armature position. We imple-
mented the controller (14) and (15) with the coefficients
c1 = 100, c2 = 100, c3 = 2500, κ1 = κ2 = κ3 = 0.25,
together with the learning algorithm (16) with the co-
efficients k = 0.1, a = 0.1, ωη = 0.4 rad/sec, ωk =
0.5 rad/sec. Here due to the cyclic nature of the problem,
i.e., cyclic motion of the armature between 0 and xf , the

uncertain parameters estimate vector (k̂, η̂)T is updated

Parameter Value

m 0.27 [kg]
R 6 [Ω]

η 7.53 [ kg
s

]
x0 8 [mm]

k 158 [ N
mm

]

a 14.96 × 16�6 [Nm2

A2 ]

b 4 × 10�5 [m]

Table 1. System Parameter Values
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With ES
Without ES

Fig. 1. Obtained Armature Position vs. Reference

for each cycle, i.e., at the end of each cycle at t = tf , the
cost function Q is updated, and the new estimate of the
parameters is computed for the next cycle. The purpose of
using MES scheme along with iISS-backstepping controller
is to improve the performance of the iISS-backstepping
controller by better estimating the system parameters over
many cycles, hence decreasing the error in the parameters
over time to provide better trajectory following for the
actuator. As can be seen in Figures 1 and 2, the robusti-
fication of the backstepping control via extremum seeking
greatly improves the tracking performance. Figures 3 and
4 show that the cost function starts at 15, reaches to half
of the initial value within 20 iterations, and decreases
rapidly afterwards. Moreover, the estimated parametric
uncertainties ∆k, ∆η converge to regions around the ac-
tual parameter values, as shown on Figures 5 and 6.
The number of iterations for the estimate to reach the
actual value of the parameters may appear to be high.
The reason behind that is that the allowed uncertainties
in the parameters are large, hence the extremum seeking
scheme requires a lot of iterations to improve performance.
Furthermore, we purposely tested the challenging case
of multiple simultaneous uncertainties, which makes the
space search for the learning algorithm large (note that
this case of multiple uncertainties could not be solved with
other classical model-based adaptive controller Benosman
and Atinc [2013b], due to some intrinsic limitations of
model-based adaptive controller). However, in real-life ap-
plications uncertainties accumulate gradually over a long
period of time, while the learning algorithm keeps tracking
these changes continuously. Thus, the extremum seeking
algorithm will be able to improve the controller perfor-
mance quickly, meaning that it will enhance the backstep-
ping control within fewer iterations. Finally, the control
voltage is depicted on Figure 7, which shows an initial high
value due to the relatively large simulated initial condition
error on the armature position.
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Fig. 2. Obtained Armature Velocity vs. Reference Trajec-
tory
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Fig. 3. Cost function- zoom
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Fig. 4. Cost function

5. CONCLUSION

In this paper we have studied the problem of ES-based
indirect adaptive control for nonlinear systems with para-
metric uncertainties. We argued that for the class of non-
linear systems which can be rendered iISS w.r.t. the pa-
rameter estimation errors by a robust feedback controller,
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Fig. 5. Parameter k estimate
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Fig. 7. Control voltage- Case with uncertain k, η, fd

it is possible to combine the iISS feedback controller with a
model-free ES algorithm to obtain a learning-based adap-
tive controller. We showed an application of this approach
on a mechatronic example and reported encouraging nu-
merical results. In this preliminary paper, we introduced
the idea in a general setting, however, further investigation
are needed to analyze specific nonlinear systems classes
which can be stabilized (in the iISS sense) w.r.t. to the
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estimation error of the uncertain parameters, and show
for these specific classes a constructive control design ap-
proach, in the context of the learning-based adaptive con-
trol presented here. Further work will also deal with using
different ES algorithms with less restrictive conditions on
the dither signals amplitude and frequencies, e.g. Guay
et al. [2013], and comparing the obtained controllers to
the available classical adaptive controllers.
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