
Distributed Sensor Fault Detection and
Isolation over Network

Michel Kinnaert and Jingjing Hao

Department of Control Engineering and System Analysis,
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Abstract: Consensus and diffusion based observers have been developed to address distributed
state estimation over a sensor network. In this paper, the way sensor faults affect the state
estimation of such distributed state observers is investigated. Next, a methodology to design
a distributed system for sensor fault detection and isolation (FDI) is proposed. The aim is
to achieve a specified fault detection (FD) performance while limiting the complexity of the
algorithm at each node of the sensor network. To this end, proper selection of the measurements
used for FDI at each node is performed thanks to a fault distinguishability measure based on
the Kullback-Leibler divergence.

1. INTRODUCTION

State estimation over distributed architectures has been
the object of an important research effort in the recent
years as surveyed in Farina et al. [2010]. The applications
of such sensor networks are numerous in environmental
monitoring, domotics and structural health monitoring
notably. Yet to be able to build a reliable state estimate,
one has to make sure that the measurements issued by
the different sensors are fault free. Therefore, our aim is
to build a distributed fault detection and isolation (FDI)
system that could be combined with a distributed state
observer in order to provide reliable state estimation. The
methodology should ensure that the FDI system perfor-
mance can be characterized in terms of false detection and
isolation probability and correct detection and isolation
probability and that the computing load at each node is
kept as small as possible.

In the present work, the focus lies on the situation where
each of the sensor node estimates the whole state vector
of the monitored system. Among the approaches consid-
ered in this framework one can distinguish distributed
Kalman filter based on consensus on measurements Olfati-
Saber [2005], on consensus on measurements and estimates
Olfati-Saber [2007], on consensus on estimates with opti-
mality properties Olfati-Saber [2009], as well as diffusion
Kalman filters Cattivelli and Sayed [2010]. All these ap-
proaches involve exchanging measurements and possibly
local state estimates between the different nodes. This
exchange of information also results in a propagation of
sensor faults over the whole sensor network, which can be
seen as a drawback of these approaches. This problem mo-
tivates the use of specific FDI systems for sensor faults in
this context. The output of the FDI system is expected to
induce a reconfiguration of the distributed state observer
in order to eliminate the faulty measurement or to correct
it.

Distributed fault diagnosis over sensor networks has been
the object of several research works. The methods can be

classified according to the prior information each node
has about the system model. Two main classes of FDI
problems are presently under investigation: distributed
FDI problems and partition-based FDI problems. In the
first category, each node has the full knowledge of the
whole system model while in the second category each
node only has information on a subsystem and the re-
lation with its neighbors. The problems stated in Franco
et al. [2006] and Reppa et al. [2012] correspond to the
distributed FDI problems while Davoodi et al. [2012] and
Reppa et al. [2013] solved partition-based FDI problems.
In Franco et al. [2006], a distributed fault diagnosis scheme
is proposed for detecting and isolating faults which induce
a change of dynamics. The dynamics of each node is the
same and a bank of Kalman filters is embedded into each
node to estimate the state. Then consensus filters are used
to synchronize the estimates at each node for the purpose
of fault diagnosis. The scheme can detect and isolate the
process faults under the assumption that the possible mod-
els of faulty nodes are known. But sensor fault diagnosis
is not considered in this paper. In Reppa et al. [2012],
a sensor fault diagnosis algorithm is proposed in which
each node monitors the whole non-linear system. Non-
linear observers are built with adaptive threshold for fault
detection and isolation but a hierarchical center is still
needed for decision, so this method is not completely dis-
tributed. A set of non-homogeneous nodes is considered in
Davoodi et al. [2012] in which each node has its own linear
dynamical system. A model of each node is built according
to all the measurement information from its neighbors
and itself. Next an optimal FDI filter is designed with
this model by solving a set of linear matrix inequalities.
However the hypotheses behind the problem statement
strongly limit the range of applications. Indeed, it is in
particular assumed that there is no coupling between the
dynamics associated to each node. In Reppa et al. [2013],
a multiple sensor fault detection and isolation scheme is
developed for interconnected nonlinear subsystems. Each
subsystem has a sensing system and a fault diagnosis
observer which does not exchange information with its
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neighbors. Therefore, this strategy can only solve the FDI
problem of the local subsystem, and it can not use the
sensing information from its neighbors for reconfiguration.

Here we depart from the previous works in the following
way:

• A parity space approach combined with a statistical
change detection and isolation algorithm monitors the
sensors of each node.
• The FDI system uses as little information as possible

from the neighboring nodes in order to limit computa-
tion burden while ensuring the required performance.
• The measurements used at each node are selected on

the basis of a recently proposed approach based on
Kullback-Leibler divergence in Eriksson et al. [2013].

The paper is organized as follows. In section 2, the prop-
agation of sensor faults in distributed observer schemes is
illustrated in the case of the diffusion Kalman filter. In
section 3, a centralized FDI scheme based on the parity
space approach and log-likelihood ratio tests is reviewed
and its performance is characterized. Next, the proposed
approach for distributed FDI system design is described
and illustrated in simulation respectively in section 4 and
section 5.

2. FAULT PROPAGATION IN A DIFFUSION
KALMAN FILTER

Let us consider the following discrete-time dynamic system

x(k + 1) = Ax(k) +Buu(k) +Bvv(k) (1)

where x(k) ∈ Rn , u(k) ∈ Rmand v(k) ∈ Rnv is a zero
mean white noise sequence with variance Q. The initial
state x(0) is assumed to be a zero mean random vector
with variance Π0 > 0. It is supposed to be uncorrelated
with v(k) . The system is monitored by a sensor network
of M nodes spatially distributed over some region. This
network is characterized by its adjacency matrix W , a
M × M matrix with Boolean entries. The (i, j)th entry
is equal to 1 if nodes i and j are connected, namely if they
can communicate directly with each other. Otherwise, the
entry is equal to 0. The neighborhood of a given node, say
i, is denoted by Ni. It is defined as the set of nodes that are
directly connected to node i. Each node is characterized
by its measurement equation:

yi(k) = Cix(k) +Du,iu(k) + fi(k) + εi(k) (2)

where yi(k) ∈ Rpi is the measurement vector at node i,
fi(k) ∈ Rpi is the fault vector and εi(k) is a zero mean
white noise sequence with variance Ri. It is assumed that
εi(k) and εj(l) are mutually uncorrelated for any i, j, k, l
with i 6= j and/or k 6= l, and the measurement noise is
uncorrelated with the process noise, as well as with the
initial state x(0).

In order to present the algorithm of the diffusion Kalman
filter for system (1) equipped with the sensor network
characterized by (2) together with matrix W , let us
introduce the M×M diffusion matrix Z with the following
properties 1TZ = 1T with zi,j = 0 if i /∈ Nj and 0 6
zi,j 6 1 otherwise. Here 1 is the M dimensional vector
with entries equal to 1 and zi,j denotes the (i, j)th entry
of Z. The latter represents weights used in the algorithm
of the diffusion Kalman filter to combine estimates from a

given neighborhood. This algorithm can now be described
as in Cattivelli and Sayed [2010]:

Initialization of the on-line algorithm at node i:

x̂i(0 | −1) = 0, Pi(0 | −1) = Π0

At every time instant k, compute at every node i:

Step 1: Incremental measurement update

ψi(k)← x̂i(k | k − 1)

Pi (k)← Pi(k | k − 1)

Then for every neighboring node l ∈ Ni , repeat

Re←Ri + CiPi(k)CT
i

ψi(k)← ψi(k) + Pi(k)CT
i Re

−1 (yl(k)− Clψi(k)−Dlu(k))

Pi (k)← Pi (k)− Pi (k)CT
l Re

−1ClPi (k)

Step 2: Diffusion update

x̂i(k | k)← Σ
l∈Ni

zi,lψl(k)

Pi(k | k)← Pi (k)

x̂i(k + 1 | k) = Ax̂i(k | k) +Buu(k)

Pi(k + 1 | k) = APi(k | k)AT +BvQB
T
v

The convergence of this algorithm to an unbiased state

estimate is ensured provided
(
A,BvQ

1
2

)
is stabilizable and(

Cloci , A
)

is detectable for all i = 1, . . . ,M . Here, Cloci =[
CT
i1, . . . , C

T
ini

]T
where nodes i1, . . . , ini

belong to Ni.

Upon occurrence of a fault at node i, namely the appear-
ance of a non zero entry in fi(k), the state estimate at
the nodes can become biased. Since both the considered
system and the diffusion Kalman filter are linear, the effect
of a fault can be characterized by an additive term in the
state estimation error, x̃i(k | k) = x(k)−x̂i(k | k). Namely,

x̃i(k | k) = x̃i,0(k | k) + βi(k) (3)

where x̃i,0(k | k) is the zero mean fault free estimation
error, and βi(k) is the bias introduced by the fault. An
expression for βi(k) is provided in Kinnaert and Hao
[2014]. Our aim is to develop a diagnostic system to
be implemented at each node in order to detect and
isolate sensor fault at this node. The corresponding faulty
measurements should then be eliminated or propagation
of the error should be avoided possibly by retuning the
weighting matrix Z.

3. CENTRALIZED FDI SYSTEM

In this section we briefly review the work presented in
Eriksson et al. [2013] and propose a statistical change de-
tection and isolation scheme which is compatible with the
approach. The considered setting is based on a standard
linear system instead of a descriptor system as in Eriksson
et al. [2013] to keep coherency with section 2.

3.1 Problem Statement

Let us consider the following state space model:
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{
x(k + 1) = Ax(k) +Buu(k) +Bvv(k)

y(k) = Cx(k) +Duu(k) + f(k) + ε(k)
(4)

The model can be reformulated by considering a fixed
time horizon N and introducing the following vectors
characterizing the system behavior over this time horizon:

zN (k) = [y(k−N+1)T,...,y(k)T,u(k−N+1)T,...,u(k)T]T

xN (k) = [x(k−N+1)T,...,x(k)T,x(k+1)T]T

fN (k) = [f(k−N+1)T,...,f(k)T]T

eN (k) = [v(k−N+1)T,...,v(k)T,ε(k−N+1)T,...,ε(k)T]T

where zN (k) ∈ RN(p+m),xN (k) ∈ R(N+1)n,fN (k) ∈ RNp

and
{
eN (k)

}
is a Gaussian zero mean random sequence

with known variance (directly deduced from the variance
of the state and measurement noise sequences). The vari-
ance of eN (k) will be denoted Λe.

Then a sliding window model can be written:

LzN (k) = HxN (k) + FfN (k) + EeN (k) (5)

where

L=

 0nN×pN
...− IN ⊗Bu

IN ⊗ Ip
...− IN ⊗Du


H =

[
Hup

IN ⊗ C
... 0pN×n

]

F =

[
0Nn×Np
IN ⊗ Ip

]

E =

 IN ⊗Bv ... 0Nn×Np

0Np×nv

... IN ⊗ Ip


with Hup =

[
IN ⊗A

... 0Nn×n

]
-
[

0Nn×n
... −IN ⊗ In

]
. In

these expressions ⊗ denotes matrix Kronecker product and
0l×q denotes an l × q matrix with null elements.

A fault on the ith sensor is represented by a non-zero ith

component in f(k). The term associated to the fault in (5)
will be rewritten as follows in this situation.

FfN (k) = Fif
N
i (k)

where fNi (k) = [fi(k −N + 1), . . . , fi(k)]
T

with fi(k)
denoting the ith component of f(k), and Fi is made of the
relevant columns of F (columns i, p+ i, . . . , (N − 1) p+ i).
In the sequel a vector θi ∈ Θi ⊂ RN will be used to
represent an admissible fault time profile of fNi (k).

Our aim is to detect and isolate sensor faults on the basis
of this sliding window model.

3.2 Residual generation

To generate a residual signal, an input-output model is
determined from (5) by multiplying this equations on the
left by NH , a matrix whose rows make an orthonormal
basis of the left null space of H. This yields:

NHLz
N (k) = NHFf

N (k) +NHEe
N (k) (6)

In order to ease the development to follow, a normalization
of (6) is performed so that the covariance matrix of the
noise term is the identity matrix. This can be achieved as
follows.

Let Σ be defined as: Σ = NHEΛeE
TNT

H and determine a
matrix Γ, by Cholesky factorization for instance, such that
Σ = ΓΓT. Then it is straightforward to show that left mul-
tiplication of (6) by Γ−1 yields the desired normalization.
The resulting residual vector can be written:

r(k) = Γ−1NHLz
N (k)

= Γ−1NHFf
N (k) + Γ−1NHEe

N (k)

Letting L = Γ−1NHL, F = Γ−1NHF, E = Γ−1NHE,
these expressions can be rewritten:

r(k) = LzN (k) = FfN (k) + EeN (k)

The probability law of r(k) can be described as follows
in fault free mode (hypothesis H0 ) and in the ith faulty
mode (hypothesis Hi ) :

H0 :r(k) ∼ N (0, Inr )

Hi :r(k) ∼ N (F iθi, Inr
)

(7)

where F iis made of column i, i+ p, . . . , (N − 1)p+ i of F .

In Eriksson et al. [2013], the possibility to distinguish a
fault i with given profile θi from a fault j with profile
θj ∈ Θj has been quantified thanks to the Kullback-Leibler
divergence. This notion has also proved useful for the
design of robust residual generators Romano and Kinnaert
[2006a], Romano and Kinnaert [2006b]. The main results
on distinguishability are reviewed next.

3.3 Distinguishability between two faults

The Kullback-Leibler divergence between the pdfs of the
residual in faulty modes i and j is defined as:

K
(
pi ‖ pj

)
=

ˆ +∞

−∞
log pi(r)

pi(r)

pj(r)
dr = Epi

[
log

pi

pj

]
where pi(r)(pj(r)) denotes the pdf of the residual vector
under fault i (fault j ) and Epi(�) is the expected value

when the pdf of the residual corresponds to pi.

More precisely, distinguishability Dij(θi) of a fault f i with
given fault time profile θi from fault mode f j is defined as

Dij (θi) = min
θj∈RN

K
(
piθi ‖ p

j
θj

)
where in our problem setting piθi is the pdf associated to

the Gaussian distribution N
(
F iθi, Inr

)
with nr denoting

the dimension of the residual vector.

In particular, distinguishability from the fault free case,
characterized by the pdf p0 is defined as Di,0 (θi) =
K
(
piθi ‖ p0

)
, and Dij (θi) ≤ Di,0 (θi).

The following result provides a straightforward way to
compute the distinguishability for the sliding window
model (6) (see Eriksson et al. [2013] and appendix):
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Dij (θi) =
1

2
‖ N[

H F̃j

] F̃iθi ‖2 (8)

where Γ−1NH = NHΓ with NH an orthonormal matrix

and F̃j = ΓFj , F̃i = ΓFi, NHH = 0 where H is an
orthonormal basis for the null space of NH . N[

H F̃j

] is

an orthonormal basis for the left null space of
[
H F̃j

]
.

This measure of fault diagnosibility will be used in the next
section to determine the best structure for the distributed
fault diagnosis system. θi is typically a design parameter
that can be chosen as a constant vector whose entries
correspond to the fault with the smallest magnitude to
be detected.

Let us now turn to the design of the statistical change
detection and isolation algorithm to be used for residual
processing.

3.4 Decision system

For fault detection, Neyman-Pearson lemma indicates that
choosing between hypothesis H0 and Hi in (7) can be
performed through the test Basseville and Nikiforov [1993]:

Λi,0 (θi) = log
piθi (r)

p0 (r)
= θTi F

T

i

(
r − 1

2
F iθi

)
≷ hd

where hd is the detection threshold. When Λi,0 (θi) > hd,
the decision Hi is issued, otherwise H0 is issued.

With regards to fault isolation, a GLR approach is con-
sidered, in accordance with the distinguishability measure
introduced before, namely:

Λi,j (θi) = log
piθi (r)

max
θj

pjθj (r)

=−1

2

(
r − F iθi

)T (
r − F iθi

)
+

1

2
rT
(
I − F j

(
F

T

j F j

)−1
F j

)
r

The test will then detect and isolate fault i when

Λi,0 (θi) > hd and min
j 6=i

Λi,j (θi) > hisol (9)

where hisol is an isolation threshold.

This test is known to be optimal in the case of simple
hypotheses Nikiforov [1998]. The properties of the change
detection and isolation algorithm (9) in terms of proba-
bility of false alarm, false isolation, correct detection and
isolation can be computed by Monte Carlo simulations on
the basis of the known distribution of the residual. The
Receiver Operating Characterized (ROC) curve associated
to (9) can thus be estimated, allowing to set hd and hisol
at best for a given horizon N of the residual. Notice that
increasing the horizon will normally increase the power of
the test for a given false detection and isolation proba-
bility. Yet this also increases the delay for detection if a
sliding window is considered for on-line implementation.
We now turn to the development of a method to design

a distributed diagnostic system on the basis of the above
described tools.

4. DISTRIBUTED SENSOR FAULT DETECTION
AND ISOLATION

Our aim is to ensure that each node is able to detect
any malfunction of its own sensors with a given level of
performance. The latter is specified for the ith node, by a
lower bound βi on the probability of correct detection, and
an upper bound αi on the probability of false detection. In
order to achieve this goal, when the instrumentation allows
for it, the minimum required data from neighboring nodes
will be used, so that the complexity of the FDI system at
each node is the lowest possible.

Remember that the following model corresponds to the
measurements available at node i:

{
x(k + 1) = Ax(k) +Buu(k) +Bvv(k)

yi(k) = Cix(k) +Du,iu(k) + f(k) + εi(k)
(10)

Let Yi denotes the set of measurements available in the
neighborhood of node i, namely, Yi = {yjl s.t. yjl ∈ Ni}.
Here, yjl stands for the jth measurement at node l.

Then our aim is to determine a vector yi(k) with the lowest
dimension whose components belong to Yi, and such that
any sensor fault at node i can be detected with the required
performance αi and βi on the basis of the following model:

x(k + 1) =Ax(k) +Buu(k) +Bvv(k)[
yi(k)
yi(k)

]
=

[
Ci
Ci

]
x(k)+

[
Du,i

Du,i

]
u(k)+

[
fi(k)
fi(k)

]
+

[
εi(k)
εi(k)

]
(11)

This problem statement is motivated by the fact that
increasing the number of measurements can only increase
the distinguishability of a fault w.r.t. the no fault situation
Kinnaert and Hao [2014].

To determine the components of yi, an iterative approach
is used. First a FDI system is built on the basis of model
(10) for each node, using the approach of section 3.2 and
3.4, and its performance is evaluated. This amounts to
checking whether the probability of correct fault detection,
βqi , for sensor q at node i fulfills βqi > βi for q = 1, · · · , pi,
and the probability of false alarm, αqi , fulfills αqi < αi.
If these inequalities are not verified, one looks for the
additional measurement that improves the most the lowest
fault detectability.

To explain the selection procedure, let us introduce the
notation Di,sq,0(θq) for the distinguishability between fault

q (q = 1, · · · , pi) and the no fault case at node i, based on
model (11), when yi(k) is made of s components. Then
the additional measured variable yjl ∈ Ni which makes
the first component of yi(k) is determined by solving

max
yjl∈Ni

min
q=1,··· ,pi

Di,1q,0(θq) (12)

More generally if the performance is not fulfilled at the sth

iteration, namely when yi is made of s components, the
additional measured variable yjl is determined by solving:
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max
yjl∈Ps+1

i

min
q=1,··· ,pi

Di,s+1
q,0 (θq) (13)

where Ps+1
i = Ni�

{
yi,1, · · · , yi,s

}
is the set of measured

variables that are still available for inclusion in yi. Here
yi,l denotes the lth component of yi. The algorithm stops

for node i either when βqi > βi and αqi < αi q = 1, · · · , pi
or when Ps+1

i = Ø.

5. SIMULATION

A sensor network made of 3 mutually connected nodes is
considered. The adjacency matrix of this network is thus

W =

[
1 1 1
1 1 1
1 1 1

]
. This network provides noisy measurements

of the position of a projectile. The states variables of
the system are the 3 components of the velocity and the
position of the projectile. At node 1 and node 3, the
two components associated with the displacement in the
horizontal directions are measured while at node 2, one
horizontal and the vertical displacement are measured.
The system can be described as:

{
x(k + 1) = Ax(k) +Buu(k) + v(k)

yi(k) = Cix(k) + εi(k) k = 1, ..., N
(14)

where A =

[
I3 0

0.1 ∗ I3 I3

]
,Bu = 0.1 ∗ I6,C1 = C3 =[

0 0 0 1 0 0
0 0 0 0 1 0

]
, C2 =

[
0 0 0 1 0 0
0 0 0 0 0 1

]
. The state noise

and measurement noise are white noise sequences with
respective covariance Q = 0.1 ∗ I6 and R = 0.1 ∗
I2. The simulations are performed for an initial state
x0 = [10; 2; 8; 0.1; 0.1; 0.1] and a constant input u =
[0; 0; 0;−10; 0; 0] which corresponds to the effect of grav-
ity on the projectile. The window size used for residual
generation is set to N = 6, and the fault profile is set to
θ = [0; 0; 1; 1; 1; 1] for all sensors.

The results presented next correspond to the application
of the procedure described in section 4 for the selection of
the sensors of the FDI system at node 1. The specifications
impose α1 = 0.05 and β1 = 0.9. Figures 1 and 2
show, in green, the ROC curves corresponding to a FDI
system that is based on the sensors at node 1 only. The
specifications are obviously not fulfilled in this case. The
distinguishability matrix obtained for a FDI system made
of the 2 sensors at node 1 is given in table 1.

The diagonal elements of the distinguishability matrix
indicate the detectability of the corresponding sensor,
namely D1,0

i,0 (θi), for i = 1, 2 and the other elements

characterize the isolability, namely D1,0
i,j (θi), for (i, j) =

(1, 2) and (2, 1). Solving the optimization problem stated
in (12) leads to the selection of sensor 2 at node 3 as an
additional measurement for building the FDI system at
node 1. The resulting distinguishability matrix is provided
in table 2, where D1,1

1,0(θ) and D1,1
2,0(θ) correspond to the

(1, 1) and (2, 2) elements. The ROC curves obtained for
the FDI system based on three sensors correspond to the

blue curves in Fig 1 and 2. The specifications are now
fulfilled with regard to sensor 2 but not for sensor 1. A
significant increase is observed in D1,1

2,0(θ).

Solving the optimization problem (13), for s = 1 and
for P2

1 made of sensor 1 at node 3 and the two sensors
of node 2, yields the distinguishability matrix of table
3 where again elements (1, 1) and (2, 2) correspond to

distinguishability w.r.t. the fault free mode. Now, D1,2
1,0(θ)

and D1,2
2,0(θ) both reach high values and the magenta ROC

curves depicted in Fig. 1 and 2 indicate that the required
performance is fulfilled.

It should be noticed that the proposed methodology does
not account for possible requirements of fault isolation per-
formance. However, the distinguishability matrix provides
information on this issue through its off-diagonal elements.

f1 f2
f1 1.2615 1.2615
f2 1.2615 1.2615

Table 1: Computed distinguishability at node 1 before
adding any measurement

f1 f2 f3
f1 1.2615 1.2615 1.2615
f2 10.4654 10.4654 1.2615

Table 2: Computed distinguishability at node 1 after
adding one extra measurement

f1 f2 f3 f4
f1 10.4654 10.4654 10.4654 1.2615
f2 10.4654 10.4654 1.2615 10.4654

Table 3: Computed distinguishability at node 1 after
adding two extra measurement

6. CONCLUSION

A systematic way to design a local FDI system at each
node of a sensor network has been presented. It allows
one to determine the minimum amount of data to be
exchanged between the different nodes in order to achieve
specified fault detection performance. It resorts to a distin-
guishability measure between faulty and fault free modes
based on the Kullback-Leibler divergence.

APPENDIX

Computation of the distinguishablity

We will resort to the following lemma below:

Lemma (see Eriksson et al. [2013]): For a matrix A ∈
Rn×mand a vector b ∈ Rn with n > m

min
x∈Rm

‖ Ax− b ‖2=‖ NAb ‖2

where the rows of NA consist of an orthonormal basis for
the left null space of A.

For two random vectors with Gaussian distribution pi and
pjwith unit variance and mean µi and µj respectively, the
Kullback-Leibler divergence is computed as:

K
(
pi ‖ pj

)
=

1

2
‖µi − µj‖2
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Fig. 1. ROC curves for sensor 1 at node 1. The green
curve with ′©′ represents the ROC before adding any
measurement; the blue curve with ′×′ stands for the
ROC after adding one measurement and the magenta
curve with ′∇′ denotes the ROC after adding one
more measurement.
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Fig. 2. ROC curves for sensor 2 at node 1. See caption of
Fig.1 for the meaning of the symbols and colors.

Applying this expression to compute the distinguishability
between fault nodes i and j on the basis of r(k) yields:

Dij (θi) =
1

2
min
θj
‖ F iθi − F jθj ‖2

=
1

2
min
θj
‖ Γ−1NHFiθi − Γ−1NHFjθj ‖2 (15)

To be able to apply the above lemma Γ−1NH has to be
factorized so that Γ−1NH = NHΓ where NH is made of
orthonormal row vectors, and can be seen as a basis for
the left null space of a matrix H. To achieve this goal, let
us consider the singular value decomposition of Γ−1NH .

Γ−1NH = U [ Σ 0 ]V T

where U and V are orthogonal matrices and Σ is a diagonal
matrix made of the singular values of Γ−1NH . This can be
rewritten

Γ−1NH = U [ I 0 ]

[
Σ 0
0 I

]
V T

Defining NH = U [ I 0 ] and Γ =

[
Σ 0
0 I

]
V T yields the

desired matrices. Following the notation introduced in the
main text, (15) can be rewritten:

Dij (θi) =
1

2
min
θj
‖ NH F̃iθi −NH F̃jθj ‖

2

A similar argument as in Eriksson et al. [2013] then yields
(8).
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