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Abstract: In this paper, an add-on multirate adaptive control scheme is proposed for
compensation of uncertain mechanical resonant modes beyond the Nyquist frequency in
mechatronic systems. A polynomial transformation technique is applied to obtain the mixed-
rate model of the control system that is suitable for multirate adaptive control design.
To preserve the performance of the pre-designed nominal controller, an auxiliary error is
utilized in the parameter estimation process instead of tracking error. The proposed multirate
adaptive control combined with a Recursive Least-Squares (RLS) algorithm and a dead-zone
ensures boundedness of all the closed-loop signals and convergence of the auxiliary error. Our
simulation results on the model of the Voice Coil Motor (VCM) actuator in a commercial
Hard Disk Drive (HDD) demonstrate the effectiveness of our proposed compensation scheme
in attenuating the mechanical resonances beyond the Nyquist frequency.

Keywords: beyond the Nyquist frequency, adaptive control, multirate control, RLS with a dead-
zone

1. INTRODUCTION

In mechatronic systems, mechanical resonant modes can
be easily excited by various sources such as air-flow (Yam-
aguchi et al. [2013]). These excited resonant modes would
cause structural vibrations and degrade the control perfor-
mance. Hitherto, notch filters and peak filters have been
widely used to deal with structural vibrations. In practice,
mass manufacturing and various operation conditions can
lead to a shift in the resonant frequency, and fixed notch
or peak filters may not achieve the desirable performance.
To overcome this problem, adaptive notch filters or chasing
peak filters that follow the resonant frequency have been
developed (see Kang et al. [2005], Ohno et al. [2006], Levin
et al. [2011], and Masashi [2004]). In addition, several
adaptive control schemes were also proposed to compen-
sate for uncertain resonant modes (Wu et al. [2000], Tee
[2007], and Hong et al. [2010]). However, all these adap-
tive methods are designed for resonant modes below the
Nyquist frequency.

In industries, the output sampling rate in mechatronic
systems is often constrained by various factors such as
manufacturing cost. Due to the aliasing effect, mechanical
resonant modes beyond the Nyquist frequency can be
reflected back to low frequencies, and the performance of
the control system can be degraded when these low fre-
quencies are near the servo bandwidth. In response to this
problem, multirate notch filters have been proposed when
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the resonant mode beyond the Nyquist frequency is known
a priori (see Weaver et al. [1995] and Cao et al. [2006]).
By using the frequency response of the controlled plant, a
design method was presented in (Atsumi et al. [2008]) for
mechanical vibration control beyond the Nyquist frequen-
cy. However, to the best of our knowledge, no studies have
been reported for compensation of uncertain resonances
beyond the Nyquist frequency.

In this paper, a new multirate adaptive control scheme is
proposed to compensate for uncertain resonances beyond
the Nyquist frequency. A mixed-rate model catering for
multirate adaptive control design is obtained through a
polynomial transformation technique. To preserve proper-
ties of the nominal control, an auxiliary error instead of
tracking error is used to drive the adaptive control process.
A Recursive Least-Squares (RLS) algorithm with a dead-
zone is presented to estimate the unknown parameters,
and its convergence properties are analyzed in the presence
of the bounded disturbances. Our simulation results on
the model of the Voice Coil Motor (VCM) actuator in
a commercial Hard Disk Drive (HDD) demonstrate the
effectiveness of the proposed adaptive control.

The rest of the paper is organized as follows. Section 2 de-
scribes the problem formulation for multirate systems with
uncertain resonant modes beyond the Nyquist frequency.
Section 3 adopts the polynomial transformation technique
to model the multirate system for adaptive control de-
sign. Section 4 presents multirate adaptive compensation
scheme using a RLS algorithm with a dead-zone. Sec-
tion 5 analyzes the convergence properties of the proposed
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Fig. 1. Block diagram of the sampled-data control system.
Solid: continuous-time signals. Dashed: discrete-time
signals with sampling period JT . Dotted: discrete-
time signals with sampling period T .

adaptive control. The effectiveness of the proposed control
scheme is verified with simulations on a head-positioning
servo control system in Section 6. Our conclusions are
summarized in Section 7.

2. PROBLEM FORMULATION

Consider a sampled-data control system as shown in Fig. 1.
G(s) is a continuous-time Linear Time-Invariant (LTI)
mechanical plant consisting of the nominal plant Gn(s)
and the unknown resonant mode Gu(s). The pre-designed
nominal controller K(z) stabilizes Gn(s), and Gu(s) needs
to be compensated. r is the nominal reference, and d(t)
is the lumped output disturbances. The sampling period
of the input u0(kT ) is T , and the sampling period of the
output y(kJT ) is JT , where J ∈ Z+\{1}.
The overall plant G(s) can be represented by

G(s) = Gn(s) +Gu(s) =

Nr∑
j=1

Rj

s2 + 2ζjωjs+ ω2
j

, (1)

where Rj , ζj , and ωj are the residue, damping ratio, and
natural frequency ofNr resonant modes. It is assumed that
G(s) ∈ RH∞.

From Fig. 1, the Nyquist frequency of the output sampling
rate is 1

2JT . We consider that G(s) contains unknown

resonant modes with natural frequencies beyond 1
2JT but

below 1
2T . The objective of this paper is to design an add-

on multirate adaptive discrete-time controller with the
faster sampling period T to compensate for the unknown
resonances beyond the Nyquist frequency, while maintain-
ing the performance of the nominal controller.

The block diagram of the proposed multirate adap-
tive compensation scheme is illustrated in Fig. 2. Gn(z)
and Gu(z) are the discrete transfer functions of Gn(s)
and Gu(s), respectively, using the zero-order hold equiva-
lence method with period T . SJT is a down-sampler with
period JT . u1(kT ) is an add-on control input, and the
disturbance d(kT ) is bounded, i.e., |d(kT )| ≤ d̄, where | · |
denotes the absolute value operator. y∗(kT ) is the ideal
output if Gu(z) = 0 and d(kT ) = 0. To compensate for
the resonant mode Gu(z) and maintain the performance
of the nominal closed-loop system, u1(kT ) is designed to
make an auxiliary error e(kT ) = y(kT )− y∗(kT ) as small
as possible in the presence of the disturbance.

Let q−1 denote the backward shift operator with sampling
period T . The discrete transfer function G(z) can be
expressed by G(q−1) with the operator q−1. From Fig. 2,
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Fig. 2. Multirate adaptive discrete-time control system.
Dashed: discrete-time signals with sampling peri-
od JT . Dotted: discrete-time signals with sampling
period T .

y0(kT ) = G(q−1)u(kT ) + d(kT ), (2)

where

G(q−1) = Gn(q
−1) +Gu(q

−1) =
Bn(q

−1)

An(q−1)
+

Bu(q
−1)

Au(q−1)

=
B0(q

−1)

A0(q−1)
. (3)

Since y(kJT ) is generated from the fictitious output y0(kT )
through the down-sampler SJT , we have

y(kJT ) = y0(kJT ), k = 0, 1, 2, · · · . (4)

Replacing k with kJ in (2) and using (4),

y(kJ) =G(q−1)u(kJ) + d(kJ), (5)

where T = 1 is used for notational simplicity.

Furthermore, the auxiliary error can be expressed as

e(kJ) = y(kJ)− y∗(kJ)

=Gu(q
−1)u0(kJ) +G(q−1)u1(kJ) + d(kJ)

=
An(q

−1)Bu(q
−1)

An(q−1)Au(q−1)
u0(kJ)

+
An(q

−1)Bu(q
−1) +Au(q

−1)Bn(q
−1)

An(q−1)Au(q−1)
u1(kJ)

+d(kJ). (6)

The system dynamics in (6) can be written as

A0(q
−1)[e(kJ)− d(kJ)] =B0(q

−1)u1(kJ)

+C0(q
−1)u0(kJ), (7)

where A0(q
−1) is Hurwitz, and

A0(q
−1) = 1 + a1q

−1 + a2q
−2 + · · ·+ anq

−n,

B0(q
−1) = b1q

−1 + b2q
−2 + · · ·+ bnq

−n,

C0(q
−1) = c1q

−1 + c2q
−2 + · · ·+ cnq

−n. (8)

Based on (7), it is easy to design an indirect adaptive
controller when e(k) is available at each sampling point
with period T . However, { e(kJ + i), i = 1, 2, · · · , J − 1 } is
unavailable due to the slow output sampling rate. In the
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following section, a polynomial transformation technique
in (Lu et al. [1989]) is used to transform the model of (7)
into a mixed-rate model that is suitable for multirate
adaptive control design.

3. MODELING BASED ON POLYNOMIAL
TRANSFORMATION TECHNIQUE

Rewrite A0(q
−1) as

A0(q
−1) = 1 + a1q

−1 + a2q
−2 + · · ·+ anq

−n

=
n∏

l=1

[1− (λlq)
−1], (9)

where λl is a root of A0(q
−1).

Multiplying both sides of (7) with

n∏
l=1

[1 + (λlq)
−1 + (λlq)

−2 + · · ·+ (λlq)
1−J ], (10)

the following mixed-rate model

A(q−J)e(kJ) = B(q−1)u1(kJ) + C(q−1)u0(kJ) +D(kJ)

(11)

can be obtained, where D(kJ) = A(q−J)d(kJ), and

A(q−J) = 1 + αJq
−J + α2Jq

−2J + · · ·+ αnJq
−nJ

B(q−1) = β1q
−1 + β2q

−2 + · · ·+ βnJq
−nJ

C(q−1) = γ1q
−1 + γ2q

−2 + · · ·+ γnJq
−nJ . (12)

Rewrite the model in (11) as

e(kJ) = ϕT
0 (kJ − 1)θ0 + u1(kJ − 1)β1 +D(kJ), (13)

where

ϕ0(kJ − 1) = [−e(kJ − J), · · · ,−e(kJ − nJ),

u1(kJ − 2), · · · , u1(kJ − nJ),

u0(kJ − 1), · · · , u0(kJ − nJ)]T , (14)

and

θ0 = [αJ , α2J , · · · , αnJ , β2, β3, · · · , βnJ , γ1, γ2, · · · , γnJ ]T .
(15)

Define ϕ(kJ − 1) = [ϕT
0 (kJ − 1), u1(kJ − 1)]T ∈ Rn+2nJ

and θ = [θT0 , β1]
T ∈ Rn+2nJ . Rewrite (13) as

e(kJ) = ϕT (kJ − 1)θ +D(kJ). (16)

Based on the model in (13), an indirect multirate adaptive
control scheme is presented in the following section to
make e(k) as small as possible, while ensuring boundedness
of all the closed-loop signals.

4. MULTIRATE ADAPTIVE CONTROL DESIGN

To make the control problem solvable, two assumptions
are introduced as follows.

Assumption 1. The sign of β1 is known. Without loss of
generality, we assume β1 ≥ β > 0, i.e., the relative degree
of the system is one.

Assumption 2. The disturbance D(k) is bounded, i.e.,
|D(k)| ≤ D̄.

Let θ̂0(kJ) and β̂1(kJ) denote the estimates for θ0 and β1

at the time instant kJ , respectively. The proposed adap-
tive control law at the time instant (kJ − 1) is

u1(kJ − 1) = −ϕT
0 (kJ − 1)θ̂0(kJ − J)

β̂1(kJ − J)
, (17)

where all the elements in ϕT
0 (kJ − 1) at the current time

are all available.

For the time instants {kJ + i− 1, i = 1, 2, · · · , J − 1} , the
adaptive control law is

u1(kJ + i− 1) = − ϕ̂T
0 (kJ + i− 1)θ̂0(kJ − J)

β̂1(kJ − J)
, (18)

where

ϕ̂0(kJ + i− 1) = [0, · · · , 0,
u1(kJ + i− 2), · · · , u1(kJ + i− nJ),

u0(kJ + i− 1), · · · , u0(kJ + i− nJ)]T .

(19)

It is worth noting that the unavailable inter-sample er-
rors {e(kJ + i), i = 1, 2, · · · , J − 1} are replaced by zeros

in ϕ̂T
0 (kJ + i − 1). Such a choice is to ensure e(kJ + i)

converges to a small neighborhood of zero.

The RLS-based parameter update law with a dead-zone is

θ̂(kJ) = ℘

{
θ̂(kJ − J) +

µ(kJ)ν(kJ)P (kJ − J)ϕ(kJ − 1)e(kJ)

1 + µ(kJ)ν(kJ)ϕT (kJ − 1)P (kJ − J)ϕ(kJ − 1)

}
,

(20)

P (kJ) = P (kJ − J)−
µ(kJ)ν(kJ)P (kJ − J)ϕ(kJ − 1)ϕT (kJ − 1)P (kJ − J)

1 + µ(kJ)ν(kJ)ϕT (kJ − 1)P (kJ − J)ϕ(kJ − 1)
,

(21)

where µ(kJ) and ν(kJ) are given by

µ(kJ) =
|e(kJ)|D̄−1 − 1

1 + ϕT (kJ − 1)P (kJ − J)ϕ(kJ − 1)
, (22)

ν(kJ) =

{
0 , |e(kJ)| < D̄,
1 , |e(kJ)| ≥ D̄.

(23)

Let x = [xT
0 , x1]

T denote the vector θ̂(kJ − J) +
µ(kJ)ν(kJ)P (kJ−J)ϕ(kJ−1)e(kJ)

1+µ(kJ)ν(kJ)ϕT (kJ−1)P (kJ−J)ϕ(kJ−1)
. The operator ℘{x} is

℘{x} =

{
[xT

0 , x1]
T , x1 > β,

[xT
0 , β]

T , x1 ≤ β.
(24)
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It can be noted that the modification in (24) can avoid the
singularity problem of the control laws in (17) and (18).

5. CONVERGENCE ANALYSIS

In this section, the convergence properties of the proposed
adaptive control are summarized in the following theorem.

Theorem 1. For the system in (13), under Assumptions
1-2, the control laws in (17) and (18), and the parameter
update laws in (20)–(21) guarantee boundedness of all the
closed-loop signals. The following properties are ensured:

(i) For {e(kJ), k = 0, 1, · · ·} ,

lim
k→∞

sup |e(kJ)| ≤ D̄. (25)

(ii) For the tracking error ε(kJ) = r(kJ)− y(kJ),

lim
k→∞

sup |ε(kJ)| ≤ S̄(r̄ + D̄), (26)

where | 1
1+K(ejωT )Gn(ejωT )

| ≤ S̄ and |r(kJ)| ≤ r̄.

Proof. (i) From (17),

0 = ϕT
0 (kJ − 1)θ̂0(kJ − J) + u1(kJ − 1)β̂1(kJ − J)

= ϕT (kJ − 1)θ̂(kJ − J). (27)

By subtracting (16) from (27), we obtain

e(kJ) = −ϕT (kJ − 1)θ̃(kJ − J) +D(kJ), (28)

where θ̃(kJ) = θ̂(kJ)− θ.

According to the matrix inversion lemma, (21) implies

P−1(kJ) = P−1(kJ − J)

+µ(kJ)ν(kJ)ϕ(kJ − 1)ϕT (kJ − 1). (29)

Using β1 ≥ β in Assumption 1, it can be known that

(℘{x} − θ)T (℘{x} − θ) ≤ (x− θ)T (x− θ). (30)

Furthermore, since P−1(kJ) is symmetric positive definite,

(℘{x} − θ)TP−1(kJ)(℘{x} − θ)

≤ (x− θ)TP−1(kJ)(x− θ). (31)

Define V (kJ) = θ̃T (kJ)P−1(kJ)θ̃(kJ). Using (20) and
(28)–(31) yields

V (kJ)− V (kJ − J)

≤ µ(kJ)ν(kJ)D2(kJ)

− µ(kJ)ν(kJ)e2(kJ)

1 + µ(kJ)ν(kJ)ϕT (kJ − 1)P (kJ − J)ϕ(kJ − 1)
.

(32)

Based on (23), the following two cases are discussed.

Case 1: if |e(kJ)| < D̄, ν(kJ) = 0, hence

V (kJ)− V (kJ − J) ≤ 0. (33)

Case 2: if |e(kJ)| ≥ D̄, ν(kJ) = 1, µ(kJ) ≥ 0, hence

D2(kJ)[1 + µ(kJ)ϕT (kJ − 1)P (kJ − J)ϕ(kJ − 1)]

≤D2(kJ)
|e(kJ)|

D̄
≤ D̄|e(kJ)|. (34)

Using (32), (34) leads to

V (kJ)− V (kJ − J)

≤ µ(kJ)(D̄|e(kJ)| − e2(kJ))

1 + µ(kJ)ϕT (kJ − 1)P (kJ − J)ϕ(kJ − 1)

=− (|e(kJ)| − D̄)2

D̄
|e(kJ)| + ϕT (kJ − 1)P (kJ − J)ϕ(kJ − 1)

≤− (|e(kJ)| − D̄)2

1 + ϕT (kJ − 1)P (kJ − J)ϕ(kJ − 1)
. (35)

Summarizing these two cases, it can be concluded that

V (kJ)− V (kJ − J)

≤− ν(kJ)(|e(kJ)| − D̄)2

1 + ϕT (kJ − 1)P (kJ − J)ϕ(kJ − 1)
≤ 0, (36)

which indicates V (kJ) is non-increasing with respect to k.

It is straightforward to prove that

∥θ̃(kJ)∥2 ≤ λmax(P
−1(0))

λmin(P−1(0))
∥θ̃(0)∥2, (37)

which indicates boundedness of all the closed-loop signals.

In view of (36), we have

lim
k→∞

ν(kJ)(|e(kJ)| − D̄)2

1 + ϕT (kJ − 1)P (kJ − J)ϕ(kJ − 1)
= 0. (38)

Using the key technical lemma in (Goodwin et al. [1980]),
it is easy to obtain

lim
k→∞

ν(kJ)(|e(kJ)| − D̄) = 0. (39)

Furthermore, using (23) ensures that

lim
k→∞

sup |e(kJ)| ≤ D̄, (40)

which gives the property in (i).

(ii) The tracking error ε(kJ) can be rewritten as

ε(kJ) =
1

1 +K(q−1)Gn(q−1)
[r(kJ)− e(kJ)] (41)

which straightforwardly ensures (ii).

The property of the inter-sample auxiliary errors is given
in the following lemma.

Lemma 1. For the system in (13), if the conditions of The-
orem 1 hold and the system is persistently excited, then
the inter-sample errors {e(kJ + i), i = 1, 2, · · · , J − 1} are
bounded, i.e.,

lim
k→∞

sup |e(kJ + i)| ≤ d̄. (42)

Proof. If the system is persistently excited, we can easily
obtain from Theorem 1 that

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6840



lim
k→∞

θ̃(kJ − J) = 0. (43)

From (18),

0 = ϕ̂T
0 (kJ + i− 1)θ̂0(kJ − J) + u1(kJ − 1)β̂1(kJ − J)

= ϕ̂T (kJ + i− 1)θ̂(kJ − J), (44)

where ϕ̂(kJ + i− 1) = [ϕ̂T
0 (kJ + i− 1), u1(kJ − 1)]T .

Combining (11) and (44), e(kJ + i) can be expressed as

e(kJ + i) =−
n∑

l=1

αlJe(kJ + i− lJ) +D(kJ + i)

−ϕ̂T (kJ + i− 1)θ̃(kJ − J), (45)

which leads to

e(kJ + i) =− ϕ̂T (kJ + i− 1)θ̃(kJ − J)

A(q−J)
+ d(kJ + i).

(46)

Furthermore, ϕ̂T (kJ + i − 1) is bounded because all the
closed-loop signals are bounded. Since A(q−J) is strictly
stable and |d(k)| ≤ d̄, (43) implies that

lim
k→∞

sup |e(kJ + i)| ≤ d̄, (47)

which the property in Lemma 1 is ensured.

6. SIMULATION EXAMPLE

The model of the VCM actuator in a commercial HDD is
considered for our simulations. The model of the known
nominal plant Gn(s) is given by

Gn(s) =
5.6× 107

s2 + 414.7s+ 1.421× 105

+
−2.1× 108

s2 + 5121s+ 2.622× 109
. (48)

For the purpose of our simulations, the model of the
unknown resonant mode Gu(s) is assumed as

Gu(s) =
3.85× 108

s2 + 3072s+ 1.049× 1010
, (49)

where the natural frequency of Gu(s) is 16.3 kHz. The
frequency response of G(s) is plotted in Fig. 3. Without
loss of generality, the order n = 6 is known a priori.

Our proposed control scheme is carried out during track-
following mode, i.e., r(kJ) = 0. In our simulations,
T = 2.5 × 10−5 sec and J = 2 are chosen. As such, the
input and output sampling rates are 40 kHz and 20 kHz,
respectively. The nominal controller K(z) is designed as a
lead-lag filter, which is given by

K(z) =
z2 − 1.96z + 0.9607

z2 − 1.685z + 0.685
. (50)

The VCM actuator is subject to the disturbance model in
the HDD Benchmark Problem (Yamaguchi et al. [2011]),
which is represented by d(k) as shown in Fig. 2. The
disturbances satisfy Assumption 2 and include flutter dis-
turbance, Repeatable Run-Out (RRO), and measurement
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Fig. 3. Frequency response of the VCM actuator G(s).

noise. It should be noted that the RRO is removed in
our simulations. In practice, the RRO can be canceled by
averaging the Position Error Signal (PES) and injecting
sinusoidal signals with the inverse of the sensitivity func-
tion with respect to the output sampling rate. It is worth
noting that no external persistently exciting signals are
used in our simulations.

The proposed adaptive control scheme from (17) to (21)
is applied to compensate for Gu(s). The initial values

are θ̂0(0) = 029×1, P (0) = 1012I30×30, β̂(0) = 0.03,
β = 0.01, and D̄ = 5 × 10−10. Define ε(kJ) = −y(kJ)
as the PES. Fig. 4 shows the convergence history of the

components {α̂J , α̂2J , · · · , α̂nJ} in θ̂(kJ). Fig. 5 shows the
transient performance of the PES before and after the
adaptive compensation. It can be clearly seen that the
PES decreases using the proposed adaptive compensation,
as compared to that using the nominal control only.

When k = 80000, we stop updating the parameter esti-
mates. By calculating the power spectrum of ε(kJ), the
performance of the proposed scheme is investigated. The
power spectra of ε(kJ) before and after the compensation
are shown in Fig. 6. As can be seen, when only the nominal
control is used, much PES is trapped around the frequency
3.7 kHz corresponding to the VCM actuator’s mode at the
resonant frequency of 16.3 kHz (due to the aliasing effect,
the resonance at 16.3 kHz is reflected back on 3.7 kHz in
the spectrum with the output sampling rate 20 kHz). How-
ever, using the proposed scheme, the amplitude of PES
around this frequency is significantly attenuated, while
the amplitudes of PES at other frequencies are almost the
same as that using the nominal control only.

7. CONCLUSION

This paper has designed a multirate adaptive discrete-
time controller for compensation of uncertain mechanical
resonant modes beyond the Nyquist frequency. As com-
pared to the conventional adaptive control, the proposed
method utilizes an auxiliary error instead of tracking error
to drive the parameter estimation process. The multirate
adaptive control law has been designed using the poly-
nomial transformation technique and the RLS algorithm
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Fig. 6. Spectrum of PES before and after adaptive com-
pensation.

with a dead-zone. The proposed control scheme can guar-
antee that the auxiliary error converges to a small neigh-
borhood of zero, while all the signals in the closed-loop
system remain bounded. The simulation study conducted

on the model of the VCM actuator in a commercial HDD
has illustrated that the proposed adaptive compensator
can effectively suppress uncertain resonances beyond the
Nyquist frequency, while maintaining the nominal control
performance.
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