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Abstract: The energy storage system (ESS) plays a significant role in fulfilling the driving performance 

requirements and ensuring operational safety in an electric vehicle. Ultracapacitors (UCs) are being 

actively studied and used in parallel with batteries or fuel cells forming hybrid energy storage systems in 

electric vehicles. They show excellent potential in terms of the sourcing and sinking of power, particularly 

for the peak-power demand encountered in aggressive regenerative braking. Since there are an increasing 

number of ultracapacitor applications, which now includes commercial automotive applications, 

establishing a good model to represent their dynamics, especially the residual capacity estimation (RCE), 

is vital; but this is challenging. This paper presents a residual capacity estimation model which is based on 

an artificial neural network (ANN). This takes both charging and discharging current and temperature into 

consideration. The proposed ANN model comprises of three inputs and one output: the inputs are 

temperature, current and voltage, and the output is the residual charge. The model is trained and validated 

by feeding a test database which is extracted from experimental testing of ultracapacitors at different 

currents and temperatures on a well-established test rig. The training data should span the whole prediction 

scope, therefore the test currents and temperatures both vary over a wide range and cover all the possible 

operational conditions of the on-board ultracapacitors. The Back-Propagation (BP) algorithm, together 

with an early stopping strategy, is adopted to train the proposed ANN model to assure adequately accurate 

prediction while avoiding overfitting risks. The model performance is validated with experimental results 

over a set of test data randomly selected. 



1. INTRODUCTION 

Electric vehicles have been recognized as an important 

ingredient in a high-efficiency and clean transportation 

network. The Energy Storage System (ESS) largely affects 

the performance and cost of an electric vehicle. 

Ultracapacitors (UCs), also known as supercapacitors or 

electrochemical double-layer capacitors, are gaining 

increasing attention for use in an ESS since they are 

characterized by higher power density, higher energy 

efficiency and longer cycle life than batteries. UCs also have 

short charging time and wide operating temperature range. 

These advantages enable UCs to be a good augmentation to 

the batteries to constitute a hybrid energy storage system 

(HESS). The UCs are obliged to offer transient high-power 

delivery to alleviate battery stress during harsh accelerations 

and help store regenerative energy in aggressive 

decelerations.  

However, UCs can only store a limited amount of charge, 

which implies that the state of charge may have an acute and 

large variation when used. Temperature is also a concerning 

issue; their performance is highly sensitive to the operational 

ambient and overheatting may lead to safety hazards. 

Therefore, it is necessary to establish a model that can 

represent UC behaviour and estimate the residual capacity 

precisely under different temperatures. This will lead to the 

implementation of an efficient control strategy and ensure 

operational safety.  

Ultracapacitors consist of two electrodes and an ion-

permeable separator that prevents physical contact between 

the two electrodes. These are immersed in an electrolyte 

solution. When applying a small potential to the terminals, 

energy storage is primarily formed through electrostatic 

reaction rather than faradaic reaction, as is the case of 

batteries. The double-layer capacitor structure is at the 

interface between a solid electrode material surface and a 

liquid electrolyte. A pseudo-capacitance can be observed 

which contributes to the total capacitance of the 

ultracapacitor. UCs are different from conventional capacitors 

because they exhibit a nonlinear relationship between the 

terminal voltage and the residual charge. The performance of 

a specific UC is subject to its porous electrode materials, 

geometric structure, related electrolyte properties, as well as 

manufacturing technology. The physical and chemical 

equations are complicated and sometimes extremely difficult 

to derive. Some model parameters and variables are 

inaccessible without special facilities. Thus, it is challenging 

and even sometimes impractical to build an exact physics-

based model from a micro-scale viewpoint. 

In order to establish a simple but useful model that captures 

the dynamic behaviour of an UC well, researchers have 
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proposed a set of models based on either equivalent electric 

circuits or artificial neural networks (ANNs). Equivalent 

electric circuit methods have been widely used to emulate the 

dynamics of UCs. In 2000, Spyker and Nelms presented a 

classical equivalent circuit that includes a capacitor, an 

equivalent series resistance and an equivalent parallel 

resistance. The associated parameters were derived by 

measuring the UC response during charge and rest. Buller et 

al. used the electrochemical impedance spectroscopy (EIS) 

method to investigate the dynamics of UCs in the frequency 

domain. They measured and recorded the complex 

impedances of UCs under a wide range of frequency in order 

to identify an equivalent circuit model. In 2003, Gualous et 

al. also employed the EIS method to establish a second-order 

equivalent circuit model while introducing a polynomial 

equation to represent the temperature effects. In 2004, Nelms 

et al. proposed a ladder circuit model, whose parameters were 

also determined by ac impedance data. In 2007, Lajnef et al. 

presented a 4 RC-branch equivalent circuit model, where the 

relationship of the open-circuit voltage with respect to 

temperature and charging frequency was studied. In 2007, 

Rafik et al. presented a 14 Resistance-Inductance-Capacitor 

equivalent circuit demonstrating how the operating 

frequency, thermal conditions and voltage influence an UC. 

In 2009, Brouji et al. integrated health status into a 

comprehensive model using the EIS method. In 2010, 

Faranda et al. presented a new parameter identification 

procedure in order to calibrate a simple two-branch circuit 

model. In 2011, Zhang et al. proposed a three-branch model 

that can accurately simulate charge, redistribution, and self-

discharge processes. Wu et al. gave an on-line dynamic 

equivalent circuit model, in which the nonlinear relationships 

between the model parameters and influencing factors, such 

as environmental temperature and terminal voltage, were 

explored. 

The ANN technique has been extensively used to model 

complex nonlinear dynamic systems with great success. Its 

characteristics are such that it does not require the use of 

specific analytic formulations and physics-based derivations 

when modelling a nonlinear system. Instead, the system 

dynamics can be emulated by feeding a measured database 

into the configured network to train the ANN neurons until 

either an acceptable precision or the maximum iteration 

number is reached. Although an ANN is often trained using 

limited experimental data, it possesses an inherent ability to 

identify and respond to patterns that are not the same as the 

ones with which it was trained. A well-trained ANN can be 

resilient to highly uncertain and even noise-perturbed input 

data while still generating accurate outputs. Hence the ANN 

technique has been researched for use in electrical energy 

storage devices such as batteries. In 2000, Chan et al. applied 

the ANN technique to develop an available-capacity 

computation model for lead-acid batteries in electric vehicles. 

In 2002, Shen et al. presented an ANN model for lead-acid 

batteries, based on the battery discharge current and 

temperature. The ANN model for the battery available-

capacity indicator showed good agreement with the 

experimental results. Again, Shen et al. proposed a residual 

available-capacity indicator model for nickel-metal hydride 

batteries using ANN technique with defined training patterns. 

Cheng et al. used an evolutionary neural network to estimate 

a battery state-of-charge. Several studies have investigated 

the dynamics of various secondary batteries in electric 

vehicles using the ANN technique; however, few have 

applied this approach to UCs. In this paper, the ANN method 

is used to build a UC residual capacity estimation model 

which considers the impacts of temperature and 

charging/discharging currents. The voltage, current and 

temperature are selected as the inputs of the ANN network 

and the only output is assigned to the residual charge that is a 

direct indicator of the residual capacity. The back-

propagation method is employed to train the ANN model. An 

early stopping strategy is adopted to prevent overfitting and 

improve the generalization of the model. In order to prepare 

the database for ANN training, an UC test rig, capable of 

charging and discharging the UC, as well as recording the 

real-time data, is set up. A test procedure is carefully 

designed and then fully implemented with the purpose of 

eliminating the effects of charge redistribution and 

synchronizing the temperature of the test UC with its 

ambient.  

2. BACK-PROPAGATION BASED ANN MODEL 

FORMULATION 

2.1 The ANN technique description 

The residual charge of an UC is highly dependent on its 

temporal state in terms of its temperature and terminal 

voltage, as well as past experience such as its charging and 

discharging current. Because of this, it is reasonable to 

incorporate the effects of current and temperature when 

developing models for residual capacity estimation. The 

ANN technique is an effective and powerful tool for function 

fitting, pattern recognition, nonlinear system estimation and 

control. A typical ANN network is composed of an input 

layer, hidden layers and an output layer. The number of 

hidden layers and their neurons can be case-oriented. 

Generally speaking, one hidden layer with a considerable 

number of neurons can make the ANN network powerful 

enough to investigate any nonlinear system. 

...
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Fig. 1. Schematic depiction of information processing in an 

ANN neuron 

Fig. 1 shows the generic information treatment process 

through one ANN neuron. In this paper, a multi-input-single-

output ANN network is proposed. The three inputs are 

assigned to temperature, terminal voltage and charging/ 

discharging current. The only output is the residual charge.  

The neuron has a bias, which is summed with the weighted 
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inputs to form the net input. The process function can be 

expressed as 

 ,1 1 ,2 2 ,( )j j j i ia f w w p w bp p   
 

(1) 

Where p1, p2, …, pi are the outputs of neurons in the previous 

layer; wj,1, wj,2, …, wj,i are the weights connecting the j
th

  

neuron and all the neurons in the previous layer; b is the bias 

added to the j
th

 neuron; f is the transfer function of the j
th

 

neuron; and a is the output of the j
th

 neuron. 

 A bound and differentiable logistic sigmoid transfer function 

is used in all the neurons of the hidden layer. The relationship 

can be described by 
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where 
h

jnet denotes the sum of weighted input nodes of the j
th

 

neuron in the hidden layer. A linear function is usually chosen 

as the transfer function for the only neuron of the output 

layer. This is 

 ( )o of net net  (3) 

where net
o
 is the sum of the weighted input nodes of the 

neuron in the output layer. 

However, the logistic sigmoid function becomes saturated 

when the absolute value of the net input exceeds 3, which 

will significantly prolong the training time. Therefore, a pre-

processing function is applied to normalize the inputs. The 

pre-processing function processes each row of the input 

matrix by mapping each entity value into [-1, +1], and this is 

obtained from 
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where pu,v,pre is the entity of the normalized input matrix after 

pre-processing, pu,v is the entity of the input matrix before 

pre-processing, pu,min is the minimum of the u row of the 

input matrix, pu,max is the maximum of the u row of the input 

matrix. 

2.2 Bach-propagation training 

ANNs have been widely and successfully applied to many 

fields, most of which use a feed-forward ANN with the back-

propagation (BP) as the training algorithm. By using a BP 

algorithm, the weights are updated at each epoch in such a 

way that the error between the output of the ANN network 

and the forehand obtained target should always be diminished 

using the derivative information. The error is represented by 

the mean square error (mse), which can expressed as: 

  
1 N

k k

k

mse t o
N

   (5) 

where N denotes the number of patterns, tk denotes the k
th

 

target output and
 
ok denotes the k

th
 network output. 

In the training, the Levenberg-Marquardt algorithm is 

employed to calculate the update weights at each epoch, 

which uses a search direction that is a cross between the 

Gauss-Newton direction and the steepest descent direction. It 

inherits the speed advantage of the Gauss-Newton algorithm 

and the stability of the steepest descent method, which makes 

it more robust than the Gauss-Newton method and converges 

faster than the steepest descent method. The update rule of 

the Levenberg-Marquardt algorithm can be shown to be 

  
1( )T

k+1 k k k k k   w w J J I J e  (6) 

where wk+1 is the weight vector at the k+1
th

 epoch, wk is the 

weight vector at the k
th

 epoch, Jk is the Jacobian matrix at the 

k
th

 epoch, µ is the positive combination coefficient called 

Marquardt factor, and ek is the output error vector. 

The Jacobian matrix contains the first-order derivatives of 

total error function with respect to the weights at the k
th

 

epoch. It can be calculated from 
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where m is the number of neurons in the output layer; here m 

is 1; n is the number of weights within the network. 

2.3 Early stopping strategy 

The training error of an ANN model always decreases as the 

training process proceeds. However, the overfitting problem 

may emerge as the performance begins to deteriorate even 

though the training error continues to diminish, especially in 

the late stages of training. An early stopping strategy is a 

common countermeasure to avoid the overfitting problem and 

it is adopted in this paper. In this method, the training 

database is divided into training, validation and test subsets in 

accordance to an appropriate ratio. The training process will 

not terminate when the training error reaches its minimum 

value. Instead, the training is stopped when the validation 

error increases for a specified number of iterations, and the 

weights and bias at the minimum of the validation error is 

returned. It can be assumed that a period of successive 

increase in validation error indicates the beginning of the 

overfitting. 

3. EXPERIMENTAL SETUP 

In order to obtain a database for training and validation of the 

ANN ultracapacitor model, experimental tests were carried 

out on a randomly selected singleton cell of a commercially 

available ultracapacitor with 3000 F and 2.7 V; this is aimed 

at the electric vehicle market. The tests included charging and 

discharging of the ultracapacitor repeatedly at different 

currents and different temperatures. The experimental setup is 

shown in Fig. 2. It consists of a Digatron Battery Testing 

System (BTS-600) and Jufu Thermal Test Chamber, which 

are responsible for charging and discharging the 

ultracapacitor and creating the desired constant-temperature 

environment for tests. The Digatron Battery Testing System 
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can charge the ultracapacitor at any pre-set current within the 

range of 0 to 300 A as well as recording the online terminal 

voltage and charging current. The sample time can be set as 

small as 10 ms. The temperature that the thermal chamber 

can provide varies between -40℃ and +60℃. In order to 

offset the disturbing factors, a test procedure was designed 

and implemented deliberately in the laboratory. The 

experimental steps were 

• The ultracapacitor was first discharged to a terminal 

voltage of 0 V, and then short-circuited for 24 hours to 

eliminate the effect of the charge redistribution within the 

ultracapacitor. 

• The totally-discharged ultracapacitor was then held for 6 

hours in the thermal chamber where the temperature was 

carefully pre-set at certain values to synchronize the 

temperature of the ultracapacitor and its ambient 

environment.  

• Finally the ultracapacitor was charged at a constant 

current to the rated voltage while the terminal voltage and 

current were logged by the computer. 

 
Fig. 2. Experimental Setup 

The ultracapacitor was repeatedly charged and discharged 

using the procedure described above under different 

circumstances as shown in the Table 1. Three currents: 10A, 

25A, and 50A were selected to represent the possible working 

current levels, and a set of eleven different temperatures from 

-40℃ to +60 ℃ were used. The voltage evolutions as a 

function of time during the charging phase under the three 

currents levels are shown in Figs. 3 to 5; each with the 

highest, the medium and the lowest temperatures of the 

selected currents. All three figures show that the charging 

time becomes greater as the temperature increases. There are 

several reasons leading to such a difference. The first is that 

the variation of temperature results in the changes of the 

parameters within the ultracapacitor. The second is assigned 

to the capacitance variations with temperature. In fact the 

capacitance varies with temperature because the properties of 

activated carbon used in the ultracapacitor, the ionic 

conductivity of the electrolyte and the effective thickness of 

the formed double layer capacitor change under different 

temperatures.  

Table 1.  Test Scheme 

Current 

(A) 

Test Temperature (℃) 

-40 -30 -20 -10 0 10 20 30 40 50 60 

10 T T T T T T T T T T T 

25 T T T T T T T T T T T 

50 T T T T T T T T T T T 

T: test was applied under the column temperature and the row 

current. 

 

Fig. 3. Ultracapacitor charge curves at the current of 10A 

under different temperatures 

 

Fig. 4. Ultracapacitor charge curves at the current of 25A 

under different temperatures 

 

Fig. 5. Ultracapacitor charge curves at the current of 50A 

under different temperatures 

4. OUTCOME AND DISSCUSSION 

A database was built using the experimental tests presented 

previously. An ANN network with one hidden layer and 50 

neurons is considered. This configuration was chosen through 

a search for the best configuration of the network, which 

showed that the network performed best when its hidden 

layer hosted 50 neurons. The proposed model is shown in 

Fig. 6. The inputs of the proposed ANN model are assigned 

to terminal voltage (V), temperature (T) and charging/ 

discharging current (I). The only output of the model is the 

residual charge (q). The training termination condition was 

set and shown in Table 2.  
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Hidden layer

Input layer Output layer

q

V

T

I

 

Fig. 6. The configuration of the proposed ANN model for 

residual charge estimation for ultracapacitors 

Table 2.  Termination condition 

Maximum 

epoch 

Minimum 

Gradient 

Maximum  

validation increase 

1000 10e-5 6 

Fig. 7 shows the process of the training. The mean square 

errors of training, validation and test evolve in similar routes. 

Their values decrease as the training process proceeds until it 

terminates at epoch 846, where a 6-epoch successive increase 

of the validation mean square error is spotted. This means the 

model is more prone to compromise on the generalization if 

the training continues. Fig. 8 shows the evolution of the 

gradient, Marquardt factor and validation checks during the 

training process, respectively. The third subplot clearly 

illustrates that the validation check increased by 6 epochs 

successively when the training terminated.  

Fig. 7. The mean square error evolution during the training 

process 

 

Fig. 8. The evolution of the parameters during the training 

process 

Fig. 9 shows that the regressions of the model outputs and 

target outputs based on training, validation and test database, 

are all satisfactory with the regression factors all above 0.999. 

This means a robust capability of prediction as well as good 

generalization. 

 

Fig. 9. Regressions of training, validation and test based 

outputs. 

5. CONCLUSION 

In this paper, an ANN model is proposed in order to predict 

the residual capacity of an ultracapacitor as used in electric 

vehicle applications. The proposed model consists of input 

layer, output layer and one hidden layer with 50 neurons. 

Voltage, current and ambient temperature are selected as the 

inputs of the model, and the only output is assigned to 

residual charge. A test rig and a well-designed test procedure 

were set up and used to attain the training database. The 

back-propagation method, together with pre-processing and 

an early stopping strategy, is employed to train, validate and 

test the network. The result shows that the proposed model 

can provide an accurate prediction of residual charge while 

maintaining good generalization capability. The established 

model can be used to precisely monitor the state of charge of 

the ultracapacitors in ESS, and lays a reliable foundation for 

control strategy implementation and operation safety. 
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