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Abstract: This paper addresses the design of a state observer for networked systems with
random delays and dropouts. The model of plant and network covers the cases of multiple
sensors, out-of-sequence and buffered measurements. The measurement outcomes over a finite
interval model the network measurement reception scenarios, which follow a Markov distri-
bution. We present a tractable optimization problem to precalculate off-line a finite set of
gains of jump observers. The proposed procedure allows us to trade the complexity of the
observer implementation for achieved performance. Several examples illustrate that the on-line
computational cost of the observer implementation is lower than that of the Kalman filter,
whilst the performance is similar.

1. INTRODUCTION

Networked control systems are control systems where the
information (output measurements and/or control inputs)
is transmitted via a shared network. The use of networks
reduces the installation cost and increases the flexibility,
but leads to several network-induced effects such as time
delays and packet dropouts (see Hespanha et al. [2007]
and Chen et al. [2011]). Control and estimation through a
network must overcome these problems.

Considering the estimation problem, Kalman filter based
solutions may give optimal performance, but at the ex-
pense of significant on-line computational complexity. The
observer gain is time varying and must be computed
online, even for linear time invariant systems (e.g. Liu
and Goldsmith [2004], Sinopoli et al. [2004] and Schenato
[2008]). This motivates the search for computationally low
cost alternatives. In particular, the use of precalculated
gains decreases the need of the implementation computing
capacity, but increases the estimation error and requires
both storage and a mechanism to choose the appropriate
gain at each instant (e.g. Smith and Seiler [2003], Saheb-
sara et al. [2007], Peñarrocha et al. [2012a] and Han et al.
[2013]). The jump linear estimator approach proposed in
Smith and Seiler [2003] improves the estimation with a
set of precalculated gains which are chosen depending on
the history of measurement availabilities. A better perfor-
mance is achieved at the cost of increasing the estimator
complexity in terms of storage requirements and gain selec-
tion mechanism. An approach of intermediate complexity
is presented in recent work Han et al. [2013] where the
authors propose a gain dependency on the possible instant
and arrival delay for each measurement in a finite set.
Computing the gains off-line takes advantage from prior
⋆ This work has been funded by MICINN project number DPI2011-
27845-C02-02, and grants PREDOC/2011/37 and E-2013-02 from
Universitat Jaume I

statistical knowledge about the network behavior. When
the network behaves as a Markov chain, the design uses
the transition probabilities (Smith and Seiler [2003] and
Han et al. [2013]).

In this paper we face the estimator design problem for mul-
tisensor systems and networks with induced unbounded
time-varying delays with known distribution. We derive a
finite measurement outcomes parameter that models the
network effects and follows a finite Markov chain. Based
on this process, we propose a jump linear estimator that
gives favorable trade-offs between on-line computational
burden and estimation performance. Furthermore, we an-
alyze the effects of reducing the number of stored gains
(i.e., complexity) by means of sharing the use of each gain
for different values of the finite measurement outcomes
parameter.

The main contributions of our current work with respect
to Smith and Seiler [2003] and Han et al. [2013] are two.
First, we consider the multisensor with multiple delays
scenario. Second, we introduce a flexible way to han-
dle different strategies for the gain dependency to find
a compromise between implementation cost and estima-
tion performance. Moreover, the measurement reception
model derived here allows to handle more complex gain
observer dependencies that cannot be included in Han
et al. [2013]. The present work differs from our recent
manuscript Peñarrocha et al. [2012a] mainly in the consid-
eration of the stochastic network behavior with unbounded
consecutive dropouts instead of a deterministic approach.

The paper has the following structure. In Section 2 we
describe the process, model the network effects, present
the observer algorithm and derive estimation error ex-
pressions. In Section 3 we develop the observer design,
and demonstrate its convergence. In Section 4 we show
how gain grouping approaches can be used to find a com-
promise between implementation cost and performance.
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Simulation studies are given in Section 5, and Section 6
draws conclusions.

2. PROBLEM APPROACH

Let us consider linear time invariant discrete-time systems
of the form

x[t+ 1] = Ax[t] +Bu u[t] +Bw w[t], (1)

ys[t] = cs x[t] + vs[t], (2)

where x ∈ R
n is the state, u ∈ R

nu is the control input,
ys ∈ R is the s-th measured output (s = 1, . . . , ny) with

y[t] =
[

y1[t] . . . yny
[t]
]T

, w ∈ R
nw is the state disturbance

modeled as a white noise signal of zero mean and known
covariance E{w[t]w[t]T } = W , and vs ∈ R is the s-
th sensor noise assumed as an independent zero mean

white noise signal with known variance E{vs[t]
2
} = σ2

s .
Throughout this work we assume that the control input is
causally available at all times, see Fig. 1.

Observer

x̂[t]

u[t]

u[t]
Plant

Network

delays, dropouts

•
•
•

m1,0[t]

mny,d̄[t]

transmission outcome

y[t− d]

y[t]

m̄[t], α[t]

Fig. 1. Networked state estimator.

Let us assume that samples from several sensors are taken
synchronously with the input update and sent indepen-
dently to the estimator unit through a network with packet
dropouts and induced time-varying delays (see Fig. 1).
Let us assume synchronization between sensors and the
estimator unit and time-tagged message sending. We de-
note as τs[t] ∈ N the induced delay on the delivery of
the t-th sample of sensor s, where τs[t] = ∞ represents a
measurement loss. We assume that the delays are bounded
by d̄; otherwise, we discard the measurement. Then, the
network induced delay for all sensors can take values
in a finite range τ [t] ∈ {0, 1, . . . , d̄}

⋃

∞. The available
information at instant t at the estimator unit is the pair
(ms,d[t], αs,d[t]) for all s = 1, . . . , ny, d = 0, 1, . . . , d̄ being
the induced delay, where

ms,d[t] = αs,d[t] ys[t− d], (3)

and

αs,d[t] =

{

1 if ys[t− d] is received at instant t

0 otherwise
(4)

Note that αs,d[t] = 1 represents that the induced delay of
the measurement from sensor s sampled at instant t− d is
τs[t− d] = d. We consider ms,d[t] = 0 if ys[t− d] does not
arrive at instant t.

We introduce an aggregated model to deal with delayed
measurements. The aggregated model including the de-
layed states is

x̄[t+ 1] = Āx̄[t] + B̄uu[t] + B̄ww[t], (5)

where x̄[t] =
[

x[t]T · · · x[t− d̄]T
]T

and

Ā =











A 0 · · · 0

I · · · 0
...

...
. . .

...
...

0 · · · I 0











, B̄u =

[

Bu

0

]

, B̄w =

[

Bw

0

]

,

We incorporate d̄ additional fictitious sensors for each
actual sensor with a different constant delay, and express
the available measurements from real sensor s as

m̄s[t] = [ms,0[t] · · · ms,d̄[t]]
T , (6)

with ms,d[t] as defined in (3). With that, the number
of total (real and fictitious) sensors is n̄y = ny(1 + d̄).
This model handles out-of-sequence and buffered samples
(see Peñarrocha et al. [2012b]).

2.1 Network modeling

Let us define the process θ[t] which captures the mea-
surement transmission outcomes at times {t− d̄, . . . , t} as
follows:

θ[t] =
[

θ1[t] · · · θny
[t]
]T

, (7)
with θ[t] a binary column vector of length nθ =
(d̄+1)(d̄+2)

2 ny and where θs[t] represents the measurement

reception at times {t − d̄, . . . , t} from sensor s (cf. Han
et al. [2013])

θs[t] =
[

θs,0[t] · · · θs,d̄[t]
]

, (8)

θs,d[t] = [αs,0[t− d] αs,1[t− d+ 1] · · · αs,d[t]] . (9)

θs,d[t] represents the transmission outcome of measure-
ment ys[t−d] at times {t− d̄, . . . , t}. In real-time systems,
measurement ys[t− d] can only be received once. This im-

plies that ‖θs,d[t]‖1 ≤ 1 with ‖θs,d[t]‖1 =
∑d̄

d=0 αs,d[t− d̄+
d]. Clearly, θ[t] is an ergodic 1 Markov chain (see Brémaud
[1999]) that can take values in the finite set

θ[t] ∈ Θ = {ϑ0, ϑ1, . . . , ϑr}, r = ((d̄+ 2)!)
ny − 1, (10)

and where ϑi (for i = 0, . . . , r) denotes each possible
combination of the historical measurement transmission
outcomes. ϑ0 = 0 denotes the case where neither of the
samples from t− d̄ to t is received. To obtain the transition
probabilities, we use the following assumption.

Assumption 1. The delays τs[t] are i.i.d random variables

with βs,d , Pr{τs[t] = d} 2 for d = 0, . . . , d̄, and where
∑d̄

d=0 βs,d ≤ 1. �

Let us denote the tail probabilities as β̄s,d = Pr{τs[t] >
d} = Pr{‖θs,d[t]‖1 = 0}. Using Assumpion 1, the elements
from the transition probability matrix Λ = [pi,j ] with
pi,j = Pr{θ[t+ 1] = ϑj

∣

∣θ[t] = ϑi} are calculated as
ny
∏

s=1

g(t+ 1, d̄, s)/g(t, d̄− 1, s), (11)

where

g(t, d̄, s) =
d̄
∏

d=0
d: ‖θs,d[t+1]‖1=0

β̄s,d

d̄
∏

d=0
d:αs,d[t+1]=1

βs,d. (12)

Equation (11) is only valid for feasible transitions. A
transition is feasible if αs,d[t − h] have the same value in

1 In an ergordic Markov chain every state can be reached from every
state in a finite time.
2 Note that Pr{αs,d[t] = 1} = Pr{τs[t] = d} = βs,d.
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both θ[t] and θ[t+1], for all s = 1, . . . , ny, d = 0, . . . , d̄− 1
and h = 0, . . . , d̄− 1− d.

Moreover, we denote the total probability of being at a
given state i as πi[t] = Pr{θ[t] = ϑi}, where π[t] =
[π1[t], . . . , πr[t]] and π[t+ 1] = π[t]Λ.

Let us now define the measurement availability matrix at
instant t as

α[t] = f(θ[t]) =

ny
⊕

s=1





d̄
⊕

d=0

αs,d[t]



 , (13)

where
⊕

denotes the direct sum 3 . The possible values of
α[t] are within a known set

α[t] ∈ Ξ = {η0, η1, . . . , ηq}, (14)

where ηi (for i = 1, . . . , q) denotes each possible combi-
nation, being η0 the scenario without available measure-
ments, (i.e., η0 = 0). In the general case, any combination
of available sensor measurement and delay is possible,
leading to q = 2n̄y − 1. α[t] is the result of applying a
surjective function f : Θ → Ξ on θ[t] meaning that α[t] is
not a Markov variable neither i.i.d.
Example 2. Let us consider a system with one sensor and

d̄ = 1. Then Θ =

{[

0

0

0

]

,

[

1

0

0

]

,

[

0

1

0

]

,

[

1

1

0

]

,

[

0

0

1

]

,

[

1

0

1

]}

. Fig. 2

illustrates the relationship between θt and θt+1. θt = ϑ0

means that y[t] has not arrived at t (but can still arrive,
i.e. τ [t] > 0) and that y[t − 1] is lost (τ [t − 1] > 1).
Pr{θ[t + 1] = ϑ2|θ[t] = ϑ0} = 0 because θ[t + 1] = ϑ2

would imply that τ [t] = 0, and θ[t] = ϑ0 guarantees that
τ [t] > 0. However,

Pr{θ[t + 1] = ϑ1|θ[t] = ϑ0}

= Pr{τ [t + 1] = 0, τ [t] > 1|τ [t] > 0, τ [t− 1] > 1}

= Pr{τ [t + 1] = 0, τ [t] > 1|τ [t] > 0}

= Pr{τ [t + 1] = 0}Pr{τ [t] > 1|τ [t] > 0}

= Pr{α0[t + 1] = 1}Pr

{

‖θ1[t + 1]‖1 = 0
∣

∣‖θ0[t]‖1 = 0

}

= Pr{α0[t + 1] = 1}Pr{‖θ1[t + 1]‖1 = 0}/Pr{‖θ0[t]‖1 = 0}

= β0β̄1/β̄0.

The full transition matrix can be obtained in the same
way, leading to







β̄1 β0β̄1/β̄0 0 0 β1 β0β1/β̄0

0 0 β̄0 β0 0 0

β̄1 β0β̄1/β̄0 0 0 β1 β0β1/β̄0

0 0 β̄0 β0 0 0

β̄1 β0β̄1/β̄0 0 0 β1 β0β1/β̄0

0 0 β̄0 β0 0 0







.

In this case,

Ξ =
{[

0

0

]

,
[

1

0

]

,
[

0

0

]

,
[

1

0

]

,
[

0

1

]

,
[

1

1

]}

=
{[

0

0

]

,
[

1

0

]

,
[

0

1

]

,
[

1

1

]}

,

where only the diagonal terms of ηi have been represented.
�

Using α[t], we rewrite the received measurement informa-
tion at instant t as

m̄[t] = α[t]
(

C̄x̄[t] + v̄[t]
)

(15)

with m̄[t] = [m̄1[t]
T

· · · m̄ny
[t]

T
]T , v̄t = [v̄1[t] · · · v̄n̄y

[t]]T

and v̄s[t] = [vs[t] · · · vs[t − d̄]]. The rows of C̄ are
c̄s = [c̄s,0 · · · c̄s,d̄]

T with c̄s,d = [01×n·d cs 01×n·(d̄−d)]
T .

In (15), v̄[t] is the measurement noise vector with covari-

ance E{v̄[t]v̄[t]T } = V =
⊕ny

s=1

(

⊕d̄
d=0 σ

2
s

)

.

3 The direct sum between of two matrices, i.e. A
⊕

B, creates a
block diagonal matrix with A and B on the diagonal.

0

1

0

τ [t+ 1] > 0

τ [t] = 0

Pr{·} = β
0 β̄

1/β̄
0

1

0

0

τ [t+ 1] = 0

τ [t] > 1

1

0

1

τ [t+ 1] = 0

τ [t] = 1

Pr{·} = β0β1/β̄0

θ[t] = ϑ0

0

0

0

τ [t] > 0

θ[t+ 1] = ϑ2 θ[t+ 1] = ϑ1

θ[t+ 1] = ϑ5

Pr{·} = 0

τ [t− 1] > 1

Fig. 2. Markovian transitions example.

2.2 Proposed observer

Let us represent x[t] as xt. We propose the following state
estimation algorithm. At each instant t, the model is run
in open loop leading to the prior estimation

ˆ̄xt− = Ā ˆ̄xt−1 + B̄u ut−1. (16)

If no measurement is received, the best estimation of
the system state is the prior estimation, i.e., ˆ̄xt = ˆ̄xt− .
Otherwise, the estimation state is updated as

ˆ̄xt = ˆ̄xt− + L[t](m̄t − αtC̄ ˆ̄xt−), (17)

where L[t] is the updating gain matrix.

Considering (5) and (15)-(17), the dynamic of the estima-
tion error, defined as x̃t = x̄t − ˆ̄xt, is

x̃t = (I − L[t]αtC̄)
(

Āx̃t−1 + B̄wwt−1

)

− L[t]αtv̄t. (18)

The aim of this work is to compute the gain matrices L[t]
that minimize the state estimation error while requiring
low computing and storage capabilities. Thus, we propose
to relate the gains with θt as L[t] = L(θt).

In the motivating example in Smith and Seiler [2003], the
authors showed that the gains obtained with a Kalman
filter depend on the history of combination of sensor
availability. In the present work we extend their result
to delayed measurements and multisensor transmission
defining the gains as

L(θt) =

{

0 if f(θt) = η0, (no measurement received)

Li if θt = ϑi, f(ϑi) 6= η0
(19)

The matrices are computed off-line leading to the finite set

L(θt) ∈ L = {L0, . . . , Lr}. (20)

We will next show how to design such an observer when
imposing constraints over L.

3. OBSERVER DESIGN

As the Markov chain {θt} is ergodic, it has a stationary
distribution which satisfies π = πΛ. We assume the initial
condition π[0] = π, and in consequence π[t] = π ∀t. Based
on this assumption, the following theorem expresses the
evolution of the state estimation error covariance matrix.

Theorem 3. Let Pt−1,i = E{x̃t−1x̃
T
t−1|θ[t− 1] = ϑi} (with

i = 1, . . . , r) be the covariance matrix for the state
estimation error updated at the measurement instant t−1
with information θ[t− 1] = ϑi . The expected value of the
covariance matrix at the measurement instant t, E{x̃tx̃

T
t },

is given by
r

∑

j=0

E{x̃tx̃
T
t |θ[t] = ϑj}Pr{θ[t] = ϑj} =

r
∑

j=0

Pt,jπj , (21)
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where Pt,j is defined by
r

∑

i=0

pi,j
πi

πj

(

Fj(ĀPt−1,iĀ
T + B̄wWB̄T

w)F
T
j +XjV XT

j

)

,

(22)

with
Fj = I − Lj f(θj)C̄, Xj = Ljf(θj). (23)

Proof. See Appendix A

The previous theorem establishes a recursion for the co-
variance matrix. We thus write Pt = E{Pt−1}, where Pt ,

(Pt,0, . . . , Pt,r), E{·} , (E0{·}, . . . ,Er{·}), being Ei{·} the
linear operator that returns equation (22). In order to
compute the observer gains off-line, one must find the
stable solution to the Riccati equation E{Pt−1} = Pt−1.
In general, for cases where the observer gain depends on
each state of the Markov chain, an explicit expression on
the observer gain values can be found using the methods
of Smith and Seiler [2003] and Han et al. [2013]. However,
the methods applied in those works become untractable
for the design of an observer that share the same gain for
different states of the Markov chain. Hence, those methods
do not directly allow to explore trade-offs between stor-
age complexity and estimation performance. To address
this issue, we adopt the following alternative optimization
problem 4

min
L,P

tr(

r
∑

j=0

Pjπj) (24a)

s.t. E{P} − P � 0, (24b)

with P , (P0, . . . , Pr).

As we shall see next, the constraint in (24b) is instrumental
for guaranteeing boundedness of E{x̃tx̃

T
t }, and therefore

stochastic stability. Note that the next results are inde-
pendent on the constraints over L.

3.1 Boundedness of the covariance

We show in the following that if we apply the gains
L obtained from problem (24), then the sequence {Pt}
(and thus {E{xtx

T
t }}) converges to the unique solution

P̄ , (P̄1, . . . , P̄r) obtained in (24).

Let us first introduce the following lemma, extended
from Sinopoli et al. [2004], where P̄ ≻ 0 denotes P̄i ≻
0, ∀i = 1 . . . , r.

Lemma 4. Define the linear operator

Tj(Y) =

r
∑

i=0

pi,j
πi

πj
FjĀYiĀ

TFT
j

where T (·) , (T0(·), . . . , Tr(·)) and Y , (Y0, . . . , Yr).

Suppose that there exists Ȳ ,
(

Ȳ0, . . . , Ȳr

)

≻ 0 such that

T (Ȳ) ≺ Ȳ. Then, (a) for all W , (W0, . . . ,Wr) � 0,
limt→∞ T t(W) = 0 5 ; (b) let U � 0 and consider the
linear system Yt+1 = T (Yt) + U , initialized at Y0, then
the sequence {Yt} is bounded. �

4 A � 0 means that matrix A is negative semidefinite. Similar
applies to ≺, ≻ and �.
5 T t{·} represents the recursion of T {·}.

Using the above lemma, the following theorem proves the
boundedness of {Pt}.

Theorem 5. Under Assumption 1, suppose that the set L
in (20) fulfills restriction (24b), i.e., there exists P̄ ≻ 0 such
that E{P̄} � P̄. Then, for any initial condition P0 � 0
the sequence {Pt} is bounded, i.e., {Pt} � MP , with

MP , (MP0
, . . . ,MPr

).

Proof. See Appendix B

By means of the previous theorem, the next result estab-
lishes that {Pt} converges to the solution of problem (24).

Theorem 6. Under Assumption 1, suppose that the set L
in (20) solves problem (24). Then, for any initial condi-
tion P0 � 0, the iteration Pt+1 = E{Pt} converges to
the unique positive semi-definite solution P̄ obtained in
problem (24), i.e., limt→∞ Pt = limt→∞ E

t{P0} = P̄ � 0,
where P̄ = E{P̄}.

Proof. See Appendix C

3.2 Numerical issues

Problem (24) can be solved using the following linear
matrix inequalities and bilinear equality constraints,

min
L,P,R

tr





r
∑

j=0

Pjπj



 (25a)













Pj
¯̄Mj

¯̄A ¯̄Mj
¯̄W ¯̄Xj

¯̄V
¯̄AT ¯̄MT

j
¯̄R 0 0

¯̄WT ¯̄MT
j 0 ¯̄W 0

¯̄V T ¯̄XT
j 0 0 ¯̄V













� 0, ∀j = 0, . . . , r (25b)

¯̄P ¯̄R = I (25c)

with

¯̄Xj =

[

√

p0,jπ0/πjLjf(ϑj) · · ·
√

pr,jπr/πjLjf(ϑj)

]

,

¯̄Mj =

[

√

p0,jπ0/πjFj · · ·
√

pr,jπr/πjFj

]

, ¯̄A =
r

⊕

i=0

Ā,

¯̄W =

r
⊕

j=0

B̄wWB̄T
w ,

¯̄V =

r
⊕

j=0

V, ¯̄R =

r
⊕

j=0

Rj ,
¯̄P =

r
⊕

j=0

Pj ,

R , (R1, . . . , Rr) and Fj as defined in (23). Applying
extended Schur complements on (25b) makes problem (24)
and (25) equivalent.

The optimization problem (25) is a nonconvex optimiza-
tion problem because of the terms Rj = P−1

j in (25c).
We address this problem with the cone complementarity
linearization algorithm ( El Ghaoui et al. [1997]) over a
bisection algorithm. The algorithm is omitted for brevity;
an example can be found in Peñarrocha et al. [2013].

4. DESIGN TRADE-OFFS

In this work, we explore the trade-off between estimation
performance versus jump estimator complexity. Since the
gains are related to θt, the solution of the previous section
leads to a number of non zero different gain matrices equal
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to 6 |L| = (d̄+ 1)!
ny ((d̄ + 2)ny − 1) being L the non zero

gain matrices fulfilling L = L
⋃

{0} (see (20)). We can
reduce the observer complexity by imposing some equality
constraints over the set L as Li = Lj in problem (25). Re-
ducing the number of gains simplifies the numerical burden
of (25), as the number of decision variables are shortened.
To implement an observer with a simple online look-up-
table procedure and low storage requirements, we pro-
pose the following preconfigured sets of equalities over the
possible historical measurement transmission outcomes Θ
(see (10)):

• S1. The observer gain is independent of the measure-
ment scenario (cf. Schenato [2008]), |LS1| = 1.

• S2. The observer gains depend on the number of real
sensors from which measurements arrive successfully
at each instant, |LS2| = ny.

• S3. The observer gains depend on the number of real
and fictitious sensors from which measurements arrive
successfully at each instant, |LS3| = n̄y.

• S4. The observer gains depend on the measurement
recepetion at a given instant αt, |LS4| = 2n̄y − 1.

• S5. The observer gains are related to the histori-
cal measurement transmission outcomes θt, |LS5| =
(d̄+ 1)!

ny ((d̄ + 2)ny − 1).

These gain grouping approaches, allow us to trade-off
between implementation cost and estimation performance.
S1 leads to the lowest cost and largest estimation error
covariance, S5 gives the highest cost and best performance.
The example section explores this idea.

Remark 7. Han et al. [2013] proposed a gain that jump
with the possible instant and arrival delay for each mea-
surement in a finite set. Adapting their proposal to
ours and considering Example 2, would lead to L =
{[0 0] , [l1 0] , [0 0] , [l1 0] , [0 l2] , [l1 l2]}, with l1, l2 ∈ R

2×1 de-
cision variables. Defining L1 = [l1 l2] and extending to the
multisensor case, the method is equal to case S2.

Example 8. Considering Example 2, the proposed sce-
narios will impose LS1 = LS2 = {0, L1, 0, L1, L1, L1},
LS3 = {0, L1, 0, L1, L1, L5}, LS4 = {0, L1, 0, L1, L4, L5},
LS5 = {0, L1, 0, L3, L4, L5}.

5. EXAMPLES

We consider the following system (randomly chosen)

A =

[

0.73 + ρ −0.42 + ρ

0.42 + ρ 0.73 + ρ

]

, Bw =

[

0.01 0.13
0.01 0.08

]

, C =

[

0.53 0.39
0.72 0.35

]

,

with Bu = [−0.33 0.34]
T
, and where 0 ≤ ρ ≤ 0.5. ρ

makes the maximum absolute eigenvalue of A (denoted
by |λ(A)|max) vary between 0.8422 ≤ |λ(A)|max ≤ 1.5013.
The state disturbance and sensor noises covariances are

W =

[

0.26 −0.003
−0.003 0.25

]

,

[

σ2
1

σ2
2

]

=

[

0.0086
0.0079

]

.

The measurements are independently acquired through a
communication network that induces a delay that varies
between 0 and 1. Thus, the amount of fictitious sensors

is 4, |Θ| = (1 + 2)!
2
= 36 (see (10)), and |Ξ| = 24 = 16

(see (14)). The probabilities of delivering a measurement
with a given delay are β1 = [0.32 0.22 .46] and β2 =

6 |L| denotes the cardinal of the set L, i.e., the number of elements
of L.

[0.22 0.32 .46] (where βs =
[

βs,0 · · · βs,d̄ β̄s,d̄

]

, with s =
1, 2).

Let us compare the results of the implementation of the op-
timal Kalman filter algorithm for model (5)-(6) (adapted
from Schenato [2008]) and the proposed algorithm. Let
us define P = CxE{x̃tx̃

T
t }C

T
x , where Cx = [In 0n×(n·d̄)]

selects the covariance corresponding to x[t]− x̂[t|t]. Then,
let us introduce

ε(%) =
tr(PKal − PS)

tr(PKal)
· 100

as the factor that indicates how large the performance loss
is for a given strategy S (PS) w.r.t the one obtained with
the optimal Kalman filter (PKal).

Fig. 3 and Table 1 show that performance gets worse
when |λ(A)|max increases its value. For a stable open-loop
system, a good trade-off between performance and storage
requirement can be to choose case S1, where a single gain
leads to an estimation performance no more than 15%
worse than the optimum. However when the system is
unstable, a reasonable trade off could be to choose case S3,
where with 4 gains the performance is at most 19% worse
than the optimum. In the present case, the Kalman filter
needs at most 976 floating-point operations per instant
(including matrix inversion), while the off-line methods
only need 64, which implies a reduction of a 93% in the
online computing cost.

S5

S4

S3

S2

S1

ρ

ε
(%

)

|λ(A)|max < 1 |λ(A)|max > 1
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Fig. 3. Degradation of the estimation performance w.r.t.
the optimal Kalman filter.

Table 1. Observers comparison.

Case S1 S2 S3 S4 S5

|L| 1 2 4 15 32
ε for ρ = 0 2.7 1.9 1.3 0.9 0.05
ε for ρ = 0.5 231.6 65.7 22.5 18.9 10.3

6. CONCLUSIONS

In this work we develop a model for multisensor networked
estimation with time-varying delays and dropouts. We
introduce a Markovian finite process that stores the mea-
surement transmission outcomes on an interval, capturing
the behavior of the network. Using this process, we design
a jump state estimator for networked systems where its
complexity can be chosen as a trade-off between estimation
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performance and storage requirements. The result is a
finite set of gains that can be constrained to be equal for
different values of the finite measurement outcomes pa-
rameter. Numerical results confirm that the computational
cost of the on-line implementation can be much lower than
Kalman filter approaches, while the achieved estimation
performance is close to the optimum.

Further research may include studying Markovian delays,
determining a priori the feasibility of problem (25) and
analytical characterization of the performance and com-
plexity trade-offs.
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Appendix A. PROOF OF THEOREM 3

Equation (21) is obtained using the law of total probabil-
ities. Considering the independency between xt−1, v̄t and
wt−1, Pt,j = E{x̃tx̃

T
t |θt = ϑj} can be calculated as follows.

r
∑

i=0

Pr{θt−1 = ϑi|θt = ϑj}E{x̃tx̃
T
t |θt−1 = ϑi, θt = ϑj} =

=

r
∑

i=0

pi,j
πi

πj
Fj(ĀE{x̃t−1x̃

T
t−1|θt−1 = ϑi}Ā

T +E{wt−1w
T
t−1})F

T
j

+

r
∑

i=0

pi,j
πi

πj
XjE{v̄tv̄

T
t }XT

j

which leads to (22) after using Pr{θt−1 = ϑi|θt = ϑj} =
Pr{θt = ϑj |θt−1 = ϑi}Pr{θt−1 = ϑi}/Pr{θt = ϑj}.

Appendix B. PROOF OF THEOREM 5

Considering the linear operator in Lemma 4, Theorem 3
and constraint (24b), we have T (P̄) ≺ E{P̄} � P̄ . Thus,
T (·) meets the condition of Lemma 4. The evolution of
Pt is expressed as Pt+1 = E{Pt} = T (Pt) + U. Since
U contains the disturbance and noise covariance (both
positive definite and bounded), then U ≻ 0, leading that
{Pt} is bounded.

Appendix C. PROOF OF THEOREM 6

First, let us show the convergence of sequence {Pt} with

initial value Q0 = 0, where Qt , (Qt,0, . . . , Qt,r). Let
Qt = E{Qt−1} = E

t{Q0}, then from (22), Q1 � Q0 = 0
and Q1 = E{Q0} � E{Q1} = Q2. By induction, {Qt} is
non decreasing. Also, by Lemma 4, {Qt} is bounded and

by Theorem 5 there exists an MQ , (MQ0
, . . . ,MQr

) such
that Qt � MQ for any t. Hence, the sequence converges
and limk→∞ Qt = P̄ � 0, where P̄ is a fixed point, i.e,
P̄ = E{P̄}. Second, we state the convergence of Gt =

E
k{G0}, initialized at G0 � P̄ where Gt , (Gt,0, . . . , Gt,r).

Since G1 = E{G0} � E{P̄} = P̄ , then Gt � P̄ for any t.
Moreover 0 � Gt+1 − P̄ = E{Gt} − E{P̄} = T (Gt − P̄).
As Gt − P̄ � 0, following the results on Lemma 4, then
0 � limt→∞(Gt−P̄) = 0, i.e., the sequence {Gt} converges
to P̄ .

We demonstrate now that for any initial condition P0 � 0,
the iteration Pt = E{Pt−1} converges to P̄ . Since 0 �
Q0 � P0 � G0, we derive by induction that 0 � Qt � Pt �
Gt. Therefore, as {Qt} and {Gt} converge to P̄, then {Pt}
also converges to P̄ and the convergence is demonstrated.
Finally, we need to show that

P̄ = argmin
P

tr





r
∑

j=0

Pjπj



 subject to (24b).

Suppose this is not true, i.e. P̂ solves the optimiza-

tion problem, but P̂ 6= E{P̂}. Since P̂ is a feasible

solution, then P̂ ≻ E{P̂} =
ˆ̂
P . However, this implies

tr
(

∑r
j=0 P̂jπj

)

> tr
(

∑r
j=0

ˆ̂
Pjπj

)

, which contradicts the

hypothesis of optimality of matrix P̂. Therefore P̂ =
E{P̂}. Furthermore P̄ is unique since for a set of observer
gains such that

[P̄, L] = argmin
P,L

tr





r
∑

j=0

Pjπj



 subject to (24b),

we have shown that the sequence converges to P̄, and this
concludes the theorem.
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