
Control of a Multi-Stage Continuous
Fermentor for the study of the wine

fermentation ?

C. Casenave ∗,∗∗ D. Dochain ∗∗∗ J. Harmand ∗∗∗∗,∗∗ M. Perez †

A. Rapaport ∗,∗∗ J-M. Sablayrolles †

∗ INRA, UMR INRA-SupAgro MISTEA, Montpellier 34060, France
(e-mail: {celine.casenave, alain.rapaport}@supagro.inra.fr)

∗∗ INRA-INRIA Project team MODEMIC, Sophia-Antipolis, France.
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Abstract: Yeasts play a central role in the wine making process. To study the yeasts in a
stable environment and physiological state, a Multi-Stage Continuous Fermentor (MSCF) has
been designed that mimics steps of the batch fermentation process. In this paper, the problem
of the control of the sugar concentrations in each of the four reactors of the MSCF is considered.
The cascade structure of the device leads to a constraint on the input flow rates (the control
variables). A control strategy based on a linearizing control law coupled with a state observer
and an anti windup component is proposed and finally implemented on the experimental process.
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1. INTRODUCTION

The alcoholic fermentation is a fundamental step of the
wine-making process. During the fermentation, which is
performed in a batch reactor, the sugar contained in the
grape juice is converted in ethanol and other compounds
which give the wine all its aroma. The control of the
fermentation process is therefore of importance; in partic-
ular, it requires a good knowledge of the yeasts and their
physiology. However, studying the yeasts during the batch
fermentation process is not easy because the physiological
state of the yeasts change all along the fermentation: in
particular, the yeasts go through a growth phase and
a stationary phase. In Clement et al. [2011] the use of
a Multi-Stage Continuous Fermentor (MSCF) has been
proposed to mimic the batch wine fermentation process.
It is composed of 4 reactors connected in series; at each
stage, the input of the reactor corresponds to a fraction of
the output of the preceding reactor. With such a device,
the yeasts obtained at equilibrium in each stage are in
a stable physiological state which corresponds to a key
transient state of the batch fermentation. Indeed, the
MSCF enables to pass from a time scale (the transient
states of the batch fermentation) to a space scale (the
equilibrium states of the 4 reactors of the MCSF). Thus, it
is possible to get simultaneously (in the 4 reactors) some
yeasts in the growth phase and others in the stationary
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phase, in a (time) stable environment and physiological
state. Some measurements and experimental tests can then
be performed on the yeasts; compared to results obtained
from batch fermentations, the obtained results are here
completely independent of the reaction kinetics.

The equilibrium points reached in each of the 4 reactors
of the MSCF can be characterized in term of the sugar
concentration. The problem considered in this paper is the
control of the sugar concentration of the 4 reactors. The
values of the sugar concentration at equilibrium depends
on the value of the input flow rates of the reactors, which
are therefore considered as the control inputs.

The control of a continuous bioreactor has been widely
studied in automatic control literature [Bastin and Dochain
1990]. This problem is currently encountered in practice, in
particular for bioengineering processes used, for example,
for the waste water treatment [Katebi et al. 1999, Olsson
and Newell 1999, Dochain and Vanrolleghem 2001]. In
comparison, only a few papers deal with the problem of
the control of a cascade of bioreactors [Vigie et al. 1990,
Simeonov et al. 2011], whereas such kind of devices is
often used in industrial engineering processes [Chen 1992,
Hill and Robinson 1989, de Gooijer et al. 1996, Harmand
et al. 1999]. Moreover, the control problems on multistage
continuous reactors which have already been studied deal
most of the time with the control of a unique quantity.
In [Vigie et al. 1990] for example, the authors indeed
design a controller for the glucose concentration in the
process outlet. In [Simeonov et al. 2011], the objective is
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the maximization of the biogas production in a two-stage
anaerobic bioreactor. However, the authors only propose
a strategy that maximizes the biogas flow rate of the first
reactor, the second one being not controlled.

In this paper, the goal is to control the sugar concentration
in each stage of the reactor with, as control inputs, the four
input flow rates. Because of the cascade structure of the
process, the values of the control inputs are constrained:
indeed, the input flow rate of a stage is necessarily smaller
than the output flow rate of the preceding stage. In
this paper, a control strategy is proposed, based on a
linearizing control law coupled with a state observer and
an anti-windup loop. The closed loop system stabilizes
faster than when a constant input is applied 1 . It has
been validated both in numerical simulation, and on the
experimental process.

The paper is organized as follows. In Section 2 the ex-
perimental set up is described. The model used for the
design of the control law is presented and validated in
Section 3. Section 4 deals with the design of the control
strategy. Finally in section 5, the results obtained on the
experimental process are presented.

2. PROCESS DESCRIPTION

The experimental set up has been developed by the re-
search unit SPO (Sciences for Oenology) of INRA (Mont-
pellier). It is composed of 4 reactors connected in series
(see Figure 1). The output flow rate of each reactor is
equal to its input flow rate, in such way that the volumes
Vi, i = 1 : 4 of the reactors remain constant (as in classi-
cal chemostats). The first reactor is fed with a synthetic
medium which simulates a grape juice. The other reactors
are fed by the outlet medium of the preceding reactor. The
input flow rate Qi, i = 1 : 4 of the reactors are controlled
independently by some piston pumps, the only constraint
(coming from the cascade structure of the device) being
that the input flow rateQi of the ith reactor has to be lower
than the output flow rate Qi−1 of the (i− 1)th reactor:

0 ≤ Q4 ≤ Q3 ≤ Q2 ≤ Q1 ≤ Qmax, (1)

with Qmax the maximal flow rate which can be applied
(i.e. each tank is fed from the input of the previous one
without any external addition, excepted for the first tank).
The temperature of the medium in each reactor is regu-
lated at 28◦C. Only the CO2 production rate (in each of
the 4 reactors) is measured on line. A scheme of the MSCF
is given in Figure 1.

3. MODEL DESCRIPTION AND VALIDATION

3.1 Model of the batch fermentation

The model of the batch fermentation considered in this
paper is the one described in David et al. [2010]. It is
based on the following reaction scheme:

• the yeasts X grow on the nitrogen N , with a yield
coefficient k1:

N −→ k1X (2)

1 The minimal time synthesis presents bang-bang and singular
arcs (see Bayen et al. [2013]). It is consequently sensitive to error
measurements and therefore difficult to implement in practice
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Fig. 1. Scheme of the Multi Stage Continuous Fermenter (MSCF).

• the sugar S is enzymatically degraded in ethanol E
and CO2, and inhibited by the ethanol, with a yield
coefficient k2:

S
X−→ k2E + k2CO2 (3)

The mass balance model is written as follows :
dX

dt
= µ1(N)X;

dN

dt
= −k1

dX

dt
;

dE

dt
= µ2(E,S)X;

dS

dt
= −k2

dE

dt
;

(4)

with:

µ1(N) =
µmax
1 N

KN +N
, µ2(E,S) =

µmax
2 S

KS + S

KE

KE + E
, (5)

where X, N, E and S are the concentrations of the yeast,
the nitrogen, the ethanol and the sugar (in g.L−1) re-
spectively; and k1, k2, µ

max
1 , µmax

2 , KE and KS are some
positive constants. To complete the model, the following
initial conditions are considered:

X(0) = Xin, N(0) = N in, E(0) = 0, S(0) = Sin. (6)

The CO2 production rate is indeed here equal to µ2(E,S)X.

3.2 Model of the MSCF

The model of the MSCF is obtained from the model of
the batch fermentation by addition of terms related to the
flow rates: ∀i = 1 : 4,

(P)



dXi

dt
= µ1(Ni)Xi +Di(Xi−1 −Xi)

dNi

dt
= −k1µ1(Ni)Xi +Di(Ni−1 −Ni)

dEi

dt
= µ2(Ei, Si)Xi +Di(Ei−1 − Ei)

dSi

dt
= −k2µ2(Ei, Si)Xi +Di(Si−1 − Si)

(7)

where Di = Qi

Vi
is the dilution rate of the ith reactor,

(X0, N0, E0, S0) = (0, N in, 0, Sin) with N in, Sin > 0,
and µ1, µ2, k1, k2, µ

max
1 , µmax

2 , KE and KS are the same
functions and parameters than the ones of the batch
fermentation model [Clement et al. 2011]. In the sequel,
we denote Ci the CO2 production rate of the ith reactor:

Ci := µ2(Ei, Si)Xi. (8)

3.3 Comparison between batch fermentation and multistage
continuous fermentation

The design of the experimental is indeed based on the
notion of equivalence between batch reactors and plug flow
reactors in steady state, and the related notion of space
time, widely used in reactor design (e.g. Levenspiel [1999]).
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If the input medium of the plug flow reactor is the same
than the initial medium of the batch fermentation, then
the equilibrium state reached inside the plug flow reactor
has the same space evolution than the time evolution of
the state variable during the batch fermentation.

The cascade of reactors is indeed aimed at approximating
the ideal plug flow reactor behavior (see also e.g. Leven-
spiel [1999]). In Clement et al. [2011], the concentrations
of yeast and nitrogen, and the CO2 production rate ob-
tained at equilibrium in the 4 reactors of the MSCF for
different values of the dilution rates Di are compared to
the time evolution of the same quantities obtained with
batch fermentation. The obtained results make the authors
conclude that the MSCF enables to mimic, at equilibrium,
the transient states of the batch fermentation.

From a modeling viewpoint, the MSCF corresponds to a
finite difference approximation of the plug flow reactor.
This discretization necessarily induces errors; the quality
of the approximation will in particular depend on the
number of reactors considered. Many numerical studies
have shown that in practice a small number of tanks
in series, typically 3, with possibly different volumes, is
sufficient to well approximate the behavior of a plug flow
reactor [Hill and Robinson 1989]. In Clement et al. [2011],
they consider that 4 reactors are enough to obtain a good
approximation (according to their needs).

There is indeed another source of errors in the approxima-
tion : the input medium of the MSCF is not exactly the
same than the initial medium of the batch fermentation.
They have the same nitrogen and sugar concentrations,
but the yeast concentrations are not equal. In fact there is
no yeast in the inlet of the MSCF: the yeasts are inoculated
in each reactor of the MSCF, at the starting of the process,
as for the batch fermentation. Fortunately this difference
does not decrease the quality of the approximation. This
is due to the small value of the initial yeast concentration
(around 106 cell/ml), and to the fact that the values of the
concentrations are compared in terms of functions of the

fermentation progress 1− S(t)
Sin instead of the time.

The same comparison as the one made in Clement et al.
[2011] with experimental data has been performed with
numerical simulations. In Figure 2, the yeast concentration
X and the CO2 production rate µ2(E,S)X are plotted
versus the fermentation progress 1 − S

Sin . The plotted
values correspond for one part to the transient states
of a batch fermentation and for the other part to the
equilibrium states reached in the 4 reactors of the MSCF
for dilution rates Di ∈ {0.05, 0.1, 0.15, 0.2, 0.25} ∀i = 1 : 4,
such that 2 D1 > D2 > D3 > D4. The results are similar
to the ones obtained on the experimental process.

3.4 Model parameter identification and comparison with
experimental data

The values of the parameters of model (7), except the
one of 3 k2, have been identified from experimental data:
a simplex method was used to minimize the sum of
the squares of the distances between the experimental
2 We consider here 4 reactors with the same volume V :=Vi, i=1:4.
3 The value of parameter k2 is considered as known; we used the
value given in David et al. [2010].
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Fig. 2. Numerical comparison between batch fermentation and
equilibrium states of the MSCF.

measurements of the sugar concentration at equilibrium
in the 4 stages of the MSCF and the values obtained by
numerical simulation of the model. We finally get :

kn = 1.57 [g.L−1], k1 =0.0606[−], µmax
1 =1.34 [h−1],

ks = 0.0154 [g.L−1], k2 =2.17 [−], µmax
2 =1.45 [h−1],

ke = 14.1 [g.L−1].

The comparison between the experimental data used for
the identification process, and the values obtained by
simulation with the above set of parameter values is
given in Figure 3 (top). For the cross validation, we also
compared simulated trajectories of a batch fermentation
with experimental data: the results are given in Figure 3
(bottom).
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Fig. 3. Comparison between experimental data and simulations of
the MSCF model. Top: sugar concentration values at equi-
librium. The experimental data are those have been used for
the identification process. Bottom: yeast, nitrogen, ethanol and
sugar concentrations of a batch fermentation (cross validation).

4. DESIGN OF THE CONTROL LAW

First recall that the objective is to control the sugar
concentration in each stage of the MSCF, the control
inputs being the input flow rates Qi, i = 1 : 4, of the
4 reactors. In the sequel, we denote S∗i the value of the
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sugar concentration setpoint in the ith reactor (for i =
1 : 4). We only consider setpoint values such that there
exist constant input control values (Q∗1, Q

∗
2, Q

∗
3, Q

∗
4) ∈

[0, Qmax]
4

verifying the constraint (1) and which, when
applied to system (7), stabilize the sugar concentration in
the 4 reactors at the values S∗i , i = 1 : 4. Note that this
implies that Sin > S∗1 > S∗2 > S∗3 > S∗4 > 0.

The control design is facing two main difficulties: on one
hand, no on-line measurement of the sugar concentration is
available, and on the other hand the control inputs Qi have
to verify the constraint (1). The proposed control strategy
is based on a linearizing control law, coupled with a state
observer and an anti-windup component. A scheme of the
control strategy is given in Figure 4.

In order to account for the system nonlinearities, a lin-
earizing control law is first considered. The equation of Si

has a relative degree equal to 1 (with respect to the control
input Qi); the control law is therefore written as follows :

Q̃i = Vi
k2Ci + vi
Si−1 − Si

:= Ψi(vi, S, C), (9)

where C = (C1, C2, C3, C4)
T

, S = (S1, S2, S3, S4)
T

and
vi is the expression of the desired closed loop dynamic of
Si. Here we consider a simple proportional-integral linear
dynamics:

vi = ai,1(S∗i − Si) + ai,2

∫ t

0

(S∗i (τ)− Si(τ)) dτ, (10)

with ai,1 and ai,2 some positive constants. The integral
term is introduced to compensate modeling and measure-
ments errors.

The linearizing control law (9) assumes a full knowledge
of both the sugar concentrations Si, Si−1 and the CO2

production rate Ci. However, only the CO2 production
rate is measured on-line. To get an on-line estimate of
the sugar concentration, we use the following asymptotic
observer [Bastin and Dochain 1990] : ∀i = 1 : 4,

(O)


dŜi

dt
(t) = −k2Cm

i (t) +Di(t)
(
Ŝi−1(t)− Ŝi(t)

)
Ŝi(0) = Ŝ0

i ,

with Ŝ0(t) = Sin, ∀t > 0 and Cm
i (t) the measurement

of Ci(t). The rate of convergence of such an observer
can not be adjusted: it depends on the value of Di.
However, several other observation strategies (high gain
observer, extended Kalman Filter, etc) have been tested,
and no ones give better results: the convergence rate is
always limited by the value of Di. We therefore have
chosen to consider the asymptotic observer (O) which
has the advantage to be very simple and robust because
it requires the only knowledge of the parameter k2 of
the model, the value of which is reliable. Note that the
observation problem with production rate measurement in
the chemostat is difficult because of the existence of “bad”
inputs. When an input Di(·) is set to zero, the estimator
does not converge asymptotically. One may then possibly
switch to another observer specifically designed for the
zero input (see [Rapaport and Maloum 2004] for a similar
situation), but one can check that even in this simpler case,
it is not possible to write the system in the observability
form [Gauthier and Kupka 2001]. Theoretically, there
should exists an observer of Kazantsis-Kravaris form (or an

approximation) [Andrieu and Praly 2006] but it remains
an open problem to write it explicitly.

Finally, the quality of the estimation of S will essentially
depend on the quality of the initialization of the observer.
In practice, the control law will be used to go from one
equilibrium point to another. As a consequence, we assume
that, at the observer initialization time t = 0, the system
is at equilibrium. Under this assumption, we get, from (7),

the following estimation Ŝ0
i of Si(0):

Ŝ0
i = −k2

C0
i,m

Di(0)
+ Ŝ0

i−1, i = 1 : 4. (11)

where C0
i,m is the measurement of Ci(0) and Ŝ0

0 = Sin.
In practice, some off-line measurements of the sugar con-
centration are available. The information given by these
measurements, even if they are available only a few hours
after the sampling, will be used to adjust the estimation
of the observer (see section 5).

The values Q̃i of Qi given by the control law (9) do not
necessarily meet the constraint (1). To take this constraint
into account, we use the following saturation operator :

sat(u;um, uM ) :=

{
uM if u > uM
u if um < u < uM
um if u 6 um.

(12)

Compared to problems often considered in the literature,
the constraints on the control inputs are coupled and
time-varying. We chose to apply the saturation operator
(12) to one control input after the other. The choice of
the saturation order of the 4 control inputs Qi is not
obvious: it can lead to very different control performances,
depending on the setpoints, the initial conditions, and the
experimental conditions. The 14 possible saturation orders
are given in Table 1, ni = j meaning that Qi will be the
jth control input to be saturated. For example, the order

1 2 3 4 5 6 7 8 9 10 11 12 13 14

n1 1 1 1 1 1 2 2 2 3 2 2 3 4 3
n2 2 2 3 3 4 1 1 3 2 3 4 2 3 4
n3 3 4 2 4 3 2 3 1 1 4 3 3 2 2
n4 4 3 3 2 2 3 2 2 2 1 1 1 1 1

Table 1. The 14 possible saturation orders.

n◦8 (which is the one used for experiments presented in
Section 2) has to be understood as follows:

1. n3 = 1 =⇒ Q3 = sat(Q̃3; 0, Qmax)

2. n1 = n4 = 2 =⇒
{

Q1 =
Q4 =

sat(Q̃1;Q3, Qmax)

sat(Q̃4; 0, Q3)
3. n2 = 3 =⇒ Q2 = sat(Q̃2;Q3, Q1)

The saturation strategy can be expressed as a recurrence
of the form:

Qi = sat
(
Q̃i; Q̃i,m(Qj,nj<ni), Q̃i,M (Qj,nj<ni)

)
,

where Q̃i,m and Q̃i,M depend on the chosen order.

It is well known that enforcing input control constraints
by application of a saturation operator can result in poor
closed-loop performance and overshooting of the integral
term. To minimize the performance loss, some anti-windup
control schemes have been developed. However, the prob-
lems studied in the literature are most of the time linear.
In Doyle III [1999] and Kendi and Doyle III [1997], the
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authors propose some anti-windup schemes for SISO and
MIMO control affine nonlinear systems with constrained
inputs. The anti-windup scheme we considered here comes
from these works. It is based on one hand on the trans-
formation of the constraint on Qi in a constraint on vi.
Indeed, as the function Ψi defined in (9) is linear with
respect to vi, we have:

Qi+1 <Qi < Qi−1
⇔ Φi,i+1(vi+1, S, C) <vi < Φi,i−1(vi−1, S, C), (13)

where Φi,j depends on Ψi and Ψj . In our case, we have:

Φi,j(vj , S, C) =
Si−1 − Si

Vi
Ψj(vj , S, C)− k2Ci. (14)

Consider some values (ṽ1, ṽ2, ṽ3, ṽ4) which do not verify
the transformed constraint (13). By applying the same
saturation order than for the Qi, i = 1 : 4 values, we can
express the transformed saturation strategy as follows :

vi = sat
(
ṽi; ṽi,m(vj,nj<ni , C, S), ṽi,M (vj,nj<ni , C, S)

)
,

where ṽi,m and ṽi,M depend on the chosen order.

The values of ṽi are then given by (see Figure 4) :

L(ṽi)(p) = K1(p)L(S∗i − Ŝi)(p)−K2(p)L(vi)(p) (15)

where L stands for the Laplace transform and with

K1(p) = ai,1 and K2(p) = − ai,2
ai,1p+ ai,2

, (16)

ai,1 and ai,2 being chosen in such way that the control
law obtained with vi given by (10) without saturation
constraint gives good performances.

O

K1 Ψi P

K2

observer

plant

constraint

transformed
constraint

controller

controller

input
transformation

S∗i + + ṽi vi

Q̃i
Qi

Ci+

-

Cm
i

Ŝ

Ŝi

-

Ŝj,j 6=i Cm
j,j 6=i

vj,nj<ni

Q̃j,nj<ni

Cm

noise

+
(t) (t)

Fig. 4. Control strategy diagram of the ith reactor.

5. EXPERIMENTAL VALIDATION

The proposed control strategy has been validated first on
numerical simulations, then on the experimental set up.

The synthetic media used for the experiments contained
Sin = 200 g.L−1 of glucose, and Nin = 0.465 g.L−1 of
assimilable nitrogen. At the beginning of the experiment,
the yeasts were inoculated in each reactor, with an initial
concentration Xin around 106 cell/ml which corresponds
to 0.04g.L−1 for the yeast strain used (the commercial
strain EC1118, Lallemand SA).
The values of the setpoints S∗i , the volumes Vi and the
initial dilution rates Di(0) are given in Table 2.

For the control law, the following parameters values were
considered: k2 = 2.17 [−], Qmax = 0.25 [L.h−1], and ∀i =
1 : 4, ai,1 = 1.2 [h−1], ai,2 = 1 [h−2].

For technical reasons (not detailed here), the constraint
(1) has been replaced by the stronger following one:

Q1 < Qmax and ∀i = 2 : 4, 0 < Qi < 0.9Qi+1. (17)

The saturation strategy presented in section 4 has there-
fore been modified consequently.

reactor Sugar concentration Volume Initial dilution
number [g.L−1] [L] rate [h−1]

i S∗
i Si S∗

i −S
∗
i−1 Si−Si−1 Vi Di(0)

1 184 177.9 16 22.1 1 0.17
2 160 152.9 24 25.0 0.7 0.19
3 140 131.2 20 21.7 0.5 0.18
4 50 43.3 90 87.9 0.7 0.12

Table 2. Sugar concentration setpoints and final
measurements, volumes and initial dilution rates of the

experiment. S0 = S∗
0 = 200 g.L−1

The experimental results are presented in Figure 5. The
estimated sugar concentrations given by the observer are
first plotted in Figure 5.a. In Figures 5.b and 5.c are given
the on-line measurement of the CO2 production rates Ci

and the computed control input values Di. During the
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Fig. 5. Experimental results of the control of the sugar concentra-
tions in the 4 reactors of the MSCF.

experiment, two off-line measurements of the sugar con-
centration were performed: one at the beginning of the ex-
periment, and the other one at the end. The measurements
of the initial sugar concentrations were available only at
time t1 = 4.33h, and have been taken into account in
the control strategy at this time, to adjust the estimation
of the observer. The effects of such an adjustment are
visible in Figure 5.a. The measurements of the final sugar
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concentrations are given in Table 2 for comparison with
the setpoint values.

As we can see, the qualitative behavior of the control law
is good and similar to the one obtained in numerical sim-
ulation. However, without any on-line sugar concentration
measurement, it is not possible to completely cancel the
control error, which is even though smaller than 8.8 g.L−1

in all the reactors.
The control strategy proposed in this paper does not
really control the sugar concentration in each reactor, but
rather the differences of sugar concentration between 2
consecutive reactors. The comparison between the values
of the difference between consecutive setpoints and mea-
surements (see Table 2) shows that the position error es-
sentially comes from the first reactor. Indeed, for i = 2 : 4,
the absolute value of the difference between Si−Si−1 and
S∗i −S∗i−1 is smaller than 2.1 g.L−1, whereas it is equal to

6.1 g.L−1 for i = 1. Two main reasons can be given to
explain the huge value of the error obtained in the first
reactor. Firstly, this error depends on the value of Sin

which can be ill-known. And secondly, the first reactor
of the MSCF corresponds to the starting of the batch
fermentation which is a complex and the most ill-known
stage of the fermentation. During this phase, a part of
the CO2 produced is dissolved in the medium and can
therefore not be measured.

6. CONCLUSION

In this paper, the problem of the control of the sugar
concentration in each of the reactors of a Multi-Stage
Continuous Fermenter (MSCF) is studied. Because of the
structure of the system (cascade), the control inputs (that
is the input flow rates of each reactor) are constrained:
the input flow rate of a reactor is necessarily smaller than
the one of the preceding reactor. To solve this problem, a
control strategy has been proposed: it is based on a lin-
earizing control law coupled with an observer and an anti-
windup component. The control law has been validated
first on numerical simulation and then on experiments.
The obtained results are convincing. However, we still have
a position error due to the lack of on-line sugar concen-
tration measurement. This error essentially comes from
the first reactor of the MSCF. To mitigate this problem,
a solution would consist in controlling the nitrogen or
yeast concentration instead of the sugar one in the first
reactor. Indeed, in the first reactor, the equilibrium state
can indifferently be characterized by the nitrogen, the
yeast or the sugar concentration, which is not the case of
the other reactors, in which the nitrogen concentration can
be too small and the yeast concentration at its maximum
value.
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