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Abstract: The aim of this paper is to extend iterative feedback tuning (IFT), which is a data-
based approach for controller tuning, with robustness constraints. Hereto a constrained IFT problem
is formulated that is solved by introducing a penalty function. Essentially, the gradient estimates
decompose into (a) the well-known IFT gradients and (b) the gradients with respect to this penalty
function. Experimental results obtained from the motion control systems of an industrial wafer scanner
confirm enhanced performance with guaranteed robustness properties.

1. INTRODUCTION

Control systems are designed by using either model-based
approaches or data-based approaches. Model-based approaches
refer to the system first being modeled, often through the
aid of system identification. Modeling, however, is usually
a time-consuming and difficult process. In this regard, data-
based approaches are appealing since they avoid the need
for modeling and enable the direct tuning of the controller
based on measurement data. This has led to a variety of data-
based control design methods, including unfalsified control
[Safonov and Tsao, 1997], virtual reference feedback tuning
[Campi et al., 2002], and iterative feedback tuning, which is
abbreviated as IFT [Hjalmarsson et al., 1994, Hjalmarsson,
2002]. Interestingly, in Hjalmarsson [2005] it is shown that
many of the data-based approaches can be interpreted as being
model-based, except for IFT. IFT is an iterative optimization
approach that aims at obtaining unbiased gradient estimates by
conducting multiple experiments. In a gradient-based update
scheme, the gradient estimates are used to compute a new
set of controller parameters. The optimal set of parameters
associates with a minimum of a performance-relevant cost
function in time domain. IFT has been successfully applied in
many applications, including process industry [Gevers, 2002],
robotics [Kosti¢, 2004, Rico et al., 2012], mechatronics [Al
Mamun et al., 2007, Liu et al., 2011], and stage control [Yang
and Koo, 2013].

An important field of application where data-based controller
tuning is appealing is in high-precision motion control. For
feed-forward control design, model-based approaches have led
to limited performance enhancements due to model uncertainty
[Boerlage et al., 2003]. This has led to the development of
data-based approaches in Van der Meulen et al. [2008] and
Heertjes et al. [2010] for the multivariable case, which induce
significant performance enhancements. It has recently been
shown in Boeren and Oomen [2013] that the IFT algorithm
employed in Van der Meulen et al. [2008] for feed-forward
control has a direct system identification interpretation, see
also Oomen et al. [2014]. In fact, the IFT algorithm deals
with a closed-loop identification problem, but comes at the
expense of efficiency. In Boeren and Oomen [2013], more
efficient algorithms have been proposed rendering the use of
IFT superfluous for feed-forward control design. Feedback
design seems more suited for IFT, however. This is because (a)
IFT requires no parametric system model, (b) unlike model-
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based synthesis algorithms IFT can deal with a predefined
controller structure, and (c) control performance is optimized
for the disturbance situation at hand so no disturbance model is
needed.

Despite these clear advantages, a direct IFT implementation
suffers from robustness issues as there are no guarantees that
the closed-loop system remains stable during the iterations.
This is evidenced by the development of IFT algorithms that
take into account robust stability, see for example Prochazka
et al. [2005], Veres and Hjalmarsson [2002]. These algorithms
typically use approximations of robustness measures, including
the v-gap metric and 7%, norms of relevant closed-loop transfer
functions, which may be rather conservative. Moreover, strong
guarantees for robust stability are not provided.

The main contribution of this paper is a new approach for
constrained IFT. Additionally, the effectiveness of the approach
will be tested through experimental results obtained from the
high-precision motion systems of an industrial wafer scanner.
To ensure robustness, a frequency-domain constraint is added to
the objective function that represents the robustness objective.
For the considered class of motion systems, non-parametric
frequency response function models are relatively inexpensive,
fast, and accurate to obtain. Although not directly usable for
controller synthesis, these models are well-suited to evaluate
robustness margins such as the modulus margin.

The central idea in this paper is to include a constraint, e.g.,
the modulus margin, in the optimization criterion. By means of
a penalty function, the gradient-based IFT scheme decomposes
into (a) the well-known IFT gradients and (b) the gradients with
respect to this penalty function. This is related to the work of
Hansson et al. [1999] where an interior-point method is adopted
to take into account signal constraints on the input. In our ap-
proach, the numerical differentiation is done off-line based on
the identified non-parametric model. During off-line optimiza-
tion, a modified optimal set of controller parameters is obtained
that satisfies the frequency-domain robustness specifications.
With this set, a new IFT experiment is performed. Given the
accuracy of the non-parametric model, it is fair to assume that
no experiments are done that involve (significant) violations
of the frequency domain robustness specifications, i.e. no con-
trollers are implemented that possibly lead to unstable control
design. This is important for high-precision motion systems like
wafer scanners where machine damage should be avoided at all
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times, but also for example for stages in electron microscopes,
or component mounters in pick-and-place machinery.

The remainder of the paper is organized as follows. In Section
2, we will discuss IFT in the context of stage systems, then
introduce the penalty function approach as a means to impose
frequency-domain specifications, and discuss the extended op-
timization algorithm underlying this approach. In Section 3,
simulation results with a 4th order stage model and experimen-
tal results on an industrial wafer stage system will be presented.
In Section 4, a summary will be given of the main conclusions.

2. CONSTRAINED ITERATIVE FEEDBACK TUNING

Constrained iterative feedback tuning is presented as a means
to impose frequency-domain specifications on the closed-loop
stage system. First, the stage system context will be explained.
Second, an overview of the IFT algorithm will be given that
includes an extra iteration loop to penalize violations of the
robustness specifications. Third, the derivation of the unbiased
gradient estimates obtained from the IFT experiments will be
discussed. Fourth, the derivation of the gradients with respect
to the penalty function will be presented.

2.1 Stage System Context

Consider the stage controller structure in Fig. 1 where the linear
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Fig. 1. Block diagram of the stage controller structure.

time-invariant stage system & has output y which is corrupted
by the unmeasured disturbances v. These disturbances are as-
sumed to be stochastic and uncorrelated with the other inputs
r and u. Moreover, & is assumed to be single-input single-
output and is controlled by a linear time-invariant feed-forward
controller ¢r¢ and feedback controller €. In this paper, €7 is
a function of the controller parameters p = [p(1)...p(m)]T to
be optimized, i.e. €, = €5 (p), with the number of parameters
m > 1. In conducting point-to-point motion, tracking perfor-
mance is reflected by the closed-loop error e = r —u —y, i.e. the
difference between the reference command r, the output y, and
an auxiliary input u used for the second IFT experiment only.
The latter will be explained in more detail in Section 2.3.

2.2 IFT overview

IFT will be used to find the optimal set of controller parameters
p* that minimizes the cost function J, = J,(p),

J, = %eTe, (1)
with the data sampled signal e = [e(1)...e(N)]T, e =e(p), and
the number of samples N > 0, under the constraint

<0, @
with g = g(p) defined by
g(p) =max (|- (@,p)| = (). 3)

Note that the particular choice of g in (3) is made to facilitate the
exposition. The theory that will be presented is general and can

be applied to other choices of g. . = . (w, p) is the closed-
loop sensitivity function which in frequency domain reads:

1
N FEr e

with z~! the unit-delay operator, whereas .7, = .%},(®) > 0
is a frequency-dependent function that for each frequency w
specifies the amplitude constraints imposed on .%.

“)

To transform the above-described constrained optimization
problem into an unconstrained problem, the cost function in (1)
is extended with a penalty J, = J4(®,p) that is based on the
constraint function in (3), or

1
Jg=50(2)¢", 5)
with piecewise linear function
_J0,ifg<0
0(s) = {l,otherwise. ©)

With (1) and (5), define the cost function J = J(w, p) as
J=J.+ o, (7
with @ > 0 a scaling factor. Equation (7) gives rise to the
following unconstrained optimization problem:
pr= minJ, ®)
which can be solved iteratively using the Gauss-Newton algo-
rithm:

%

Pir1=pPi— % ap

P=pi ’ (9)

where 0 < 7; < 1 is the step size at iteration i, the gradient
dJ/dp given by
aJ  dJe aJ,

ap ap  “op
1 del do(g) dg dg
—ﬁge—i-aﬂ)(g)g(a—g%g—i— (P(g)%)v (10)
0

and the approximation of the Hessian H = H(p) given by

1 9e” de 5 dg\?
—NW%HX(I) (8)(@) : (11
——— ~—_— —

He H,

From (10) and (11), it is clear that finding p* in (8) with (9)
requires the gradients de/dp and dg/dp.

To derive the gradients with the aim to find p*, the IFT algo-
rithm is used as shown in Fig. 2. The algorithm consists of the
following steps that only shortly will be addressed:

(1) Conduct three IFT experiments in the context of Fig. 1.

(2) Obtain the gradients dJ,/dp and when coming from step
(4) also compute the gradients dJ,/dp.

(3) With (9) compute the candidate parameter set p; .

(4) Check if g < € with € > 0, if satisfied, accept p;+; and
return to step (1), if not satisfied, proceed with step (2) to
find a candidate parameter set p;1| that does satisfy g < €.

The IFT algorithm aims at obtaining unbiased estimates for the
gradients de/dp. This will be explained in the remainder of
this section by discussing the steps from Fig. 2 in more detail.

2.3 IFT experiments and the gradients de/dp

In view of Fig.1 consider three IFT experiments under identical
point-to-point reference r and controller parameters p.
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Fig. 2. Overview of the IFT algorithm.

Experiment 1 ~ The result of the first experiment with no aux-
iliary input, i.e. uy = 0, the subscript indicates the experiment
number, satisfies the frequency-domain relation:

y1(z) = vi(2) + P(2)(Crr(2)r(2) + Cpp(2) (r(2) — y1(2))
_ rr(2)
=.7(2)vi(z) +-7(2) (ffb(Z) + 1) r(z),

with the sensitivity function . = . (w,p) from (4) and the
complementary sensitivity function .7, = .7.(®, p) defined in
frequency domain by

12)

() Z(2)
OG0 -
From the upper part in (12), it can be derived that
d 1 9%
ute) 28 7)) A%

dp  Cp(z) Ip
Given the fact that e; = r —y;, using (12) and (14) in (10)
normally gives rise to a biased update for dJ,/dp because the
disturbances v; contained in both e; and de;/dp are correlated.
Moreover, deriving the gradients using (14) requires a plant
model in .%,. To avoid bias in the gradient estimates, without
the need for a plant model, multiple experiments are performed
in the IFT algorithm, see Hjalmarsson [2002].

Experiment 2 Define the second experiment with the auxil-
iary input uj; = ey, i.e. use the closed-loop error signal from the
first experiment. The frequency-domain relation equals:
Crr(z
(@) =7 @n(e) + 76 (243 +1)
Crp(2)

— S (2)er(2),

5)

Experiment 3 From a third experiment, which is similar to
the first experiment, i.e. u;;; = 0, obtain

yint(2) = 7 @vin(2) + (2 (Zf; 8

+1) (). (16)

Subtracting (16) from (15) gives
() (r(2) = y1(2)) =y (2) —yu(z) + 7 (2) (Vi (2) — v ((Zl)

or in view of the properties of the disturbances v,

est{-7(2)(r(2) = y1(2))} = yu1(z) —yu(z).  (18)
Substitution of (18) in (14) therefore gives an estimate of the
gradients in (14):

9

)
7

19)

3y1(2) } L_9%m@) (1,0 0) — yu(2),

e“{ I | Tpe dp
which is based on measured data and known model relations
regarding the controller ¢y, (z). From (19) the step toward the
gradients de/dp is straightforward. From Fig. 1, it follows that

de dy
= 2
op 9p (20)
With (20) the gradients de/dp are defined in time domain by
de
Fr —[Ci(ynur —yur) - - Con(yur — yu)l, (2D

with C; =C(p),...,C, = Cp,(p) Toeplitz matrices containing
the impulse responses of the (stable) filters

1 9%p(z)
Cn(z) = : ,
@ Crp(z)  Ipm
and the data-sampled signals y; = [y;(1)...yy(N)]T, with
yu=yu(p), andyu = [yur (1) ...y (N)|T, with i =y (p).

In summary, experiment one provides e = e; and the auxiliary
input for experiment two. The estimate of the gradients in
(19) is obtained with experiment two and experiment three,
i.e. having the disturbances v;; and vyy;. Since vy and vy in
de/dp = dey i1 /dp do not correlate with v; in e, dJ./dp be-
comes unbiased. Note that this leaves the approximate Hessian
matrix H, in (11) biased. Unbiased estimates of the Hessian are
investigated in Solari and Gevers [2004].

(22)

2.4 Computation of the gradient dg/dp

Computation of the gradient dg/dp is done upon violation of
the constraint g > 0, see Fig. 2. For the necessary violation
detection a non-parametric model based on frequency response
data is used for the sensitivity function . = . (w, p) with the
candidate parameter set p = p;+1. Note that frequency response
data measurements are inexpensive and quickly obtained, but
cannot be used for controller synthesis, as model-based con-
troller synthesis requires a parametric model. Furthermore, by
imposing constraints, machine damage by using controller pa-
rameters that possibly induce severe violations of the closed-
loop frequency-domain specifications will be avoided. In fact,
no IFT experiments are done without reasonable assurance that
the candidate parameter set p = p;+; found in step (3) of the
IFT algorithm does not induce such violations.

To obtain the gradients dg/dp from model prediction, i.e. the
constrained part g, we use the center difference scheme:

d A
22 =22 o) for k] -0
p P=Pi+1 P P=Pi+1
N Ag Ag ‘|T (23)
Ap(l P=Pi+1 Ap(m) P=Pit+1

i.e. a perturbation method with step sizes i = [h ... hy|T where
h is related to the controller parameters obtained per iteration i,
i.e. h; =0.01p;, and

(24)

To predict the effect of the gradient dJ,/dp and approximate
Hessian H, coming from the unconstrained part e¢ (and for
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which we need to re-compute the candidate parameter set p =
pi+1) the fact is used that

aJ. aJe
E7s =—>|  +Hp)dp+O(|ap?]) for [Ap]| 0,
p P=Pi+1 p P=pi
(25)
with Ap = p;1 — p, which implies
He|p:/3i+l - He'P:Pi’ (26)

see also Gevers [2002] for a similar approach. With (25), (26),
and (23) substituted in (10) and (11) a new candidate set of
the controller parameters p = p; is computed with (9). In an
iterative way, we thus seek the set p = p; that satisfies g < €
with € > 0 a constant that can be chosen arbitrary small.

Remark I ~ The unconstrained optimization problem in (8) is
generally non-convex. With (9) it is therefore not realistic to
expect more than local convergence, i.e. a sufficiently good
initial parameter set py is required. To ensure convergence the
penalty g < € rather than g < 0 is used in the IFT algorithm of
Fig. 2. Namely, even if exponential convergence would occur,
it would take an infinite number of iterations to convergence
from g > € toward the boundary g = 0. Contrarily, g < € may be
reached in a finite number of steps. We thus accept a controlled
violation of the frequency-domain robustness specifications by
the amount of €; a limited amount of violation seems anyway
unavoidable since the estimate of the violation is done using
model prediction. Replacing the penalty function g by a barrier
function can partly solve for this problem but most likely at the
cost of performance.

Remark 2 In the unconstrained optimization problem the
time-domain part J, is mixed with the frequency-domain part
Jg. To scale both parts with respect to each other, the scaling

factor o is chosen at oo = 10 nm?. This is because ¢ ~ nm and
g ~ 1 such that both parts J, and J, become equally weighted
in (7). Similarly, the optimization window, i.e. the sampled data
interval used to define J, in (1), should be chosen with the
application specifics in mind. For the stage control case, the
data sampled signals e have N = 500 samples with 250 samples
in the acceleration phase and 250 samples in the scanning phase
of constant velocity, see Heertjes et al. [2010].

Remark 3 An important aspect in the optimization algorithm
is the choice of the iteration factor ;. The strategy that is
followed is to start with % = 1 and then do a step refinement
depending on the amount of violation encountered; see also
Huusom et al. [2009].

3. STAGE CONTROL RESULTS

In terms of stage control results, this section has two parts:
(a) the principles of wafer scanning and the properties of a
wafer stage system will be addressed, and (b) results from IFT
obtained with a 4th order simulation model and experimental
results obtained from an actual wafer stage system will be
discussed. It is emphasized that the model is used only for
simulation purposes. IFT does not require a plant model.

3.1 Wafer scanners

Consider the schematics of a wafer scanner in Fig. 3 where
(extreme) ultraviolet light containing an image of the integrated
circuits to be processed travels via a light path through an
optical column to expose the light sensitive layers of a wafer.
The image is obtained from the reticle which is part of the
reticle stage motion control system. Similarly, the wafer is
part of the wafer stage motion control system. During wafer
scanning both the reticle and the wafer stage systems track a
series of point-to-point motions in (scanning) y-direction.

light path

reticle stage

|

—

optical column
y
<
wafer stage

Fig. 3. Schematics of a wafer scanner.
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Fig. 4. Bode diagrams of the plant &7 with measured data and
with a 4th order fit on these data.

If we consider the wafer stage system only, it can be seen in the
Bode diagram representation of Fig. 3 by frequency response
measurement that & essentially is a double-integrator based
system. In addition, the result of a 4th order fit on the exper-
imental data is shown. Given a zero order hold discretization
scheme, the resulting parametric model equals

0.5272+0.5773
B(1—2cos(®,T)z ' +272)(1 -2z +272)’
with sampling time T = 10™*s, @, = 6.6 103 rad-s !, and B =

4.4210° kg-s~2; in (27) the dimensionless damping { = 0.009
is neglected.

P(z) = 27)

To ease the notation, let us adopt the continuous-time rep-
resentation. The wafer stage feedback controller €, has the
following structure:

Cri(s) = Cpip(s)ELp(s)EN(s), (28)

with s the Laplace variable. The PID-controller part ép;p, the
low-pass part 4zp, and the notch part €y are given by
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Fig. 5. IFT parameter convergence diagram either measured on
a wafer stage or simulated with the 4th order model; .#}, =
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N ;
%PID(S) =kp ((D_d +1+ i) )

wlz n 29)
Grp(s) = P ,and Gy (s) = | | A(s),
LP( ) s2+2CIpwlps+w12p N( ) 11;[1 l( )
with the notch filters
2 2
Wi\ §°+2C i s+ 0
Ails) = ( ””) e S i )
i) s +2Cp7iwp,is+ o, ;

Since the 4th order model in Fig. 3 has only one resonance
that possibly endangers closed-loop stability, one loop-shaping
notch filter 4] is used in €%, during simulations. Reversely,
in the experiments, five notch filters .47,...,.45 are used. The
parameters of 47p and ¥y are fixed and are given in Tabel
1. Given the structure of %, in (28), IFT such as used in

GLp | @ypin rad-s 1 Cip - -

2w - 1400 0.80 - -
A; | @;inrad- sT Ci wp,;inrad- s T Cpii
1 2w - 1100 0.12 21 -900 0.20
2 2w -430 0.01 2m-430 0.03
3 2m-718 0.01 2r-718 0.05
4 2m-812 0.01 2m-812 0.03
5 2w - 1950 0.01 21 - 1850 0.05

Table 1. Fixed controller parameters of €.

this paper boils down to tuning the PID-controller parameters
p = [k, wg/27 w;/27]"7, see also Lequin et al. [2003].

In both simulation and experiment, the results of the IFT
algorithm in terms of parameter convergence are depicted in
Fig. 5. Given an identical set of default controller parameters
po at iteration number i = 0, it can be seen that convergence
occurs in approximately ten iterations. The differences between
the simulation data and the experimental data is mainly caused
by the variation in disturbances and (plant) dynamics, hence the
need for a different number of notch filters.

The comparison of the default parameter sets py in Fig. 5 with
the final parameter sets pg in terms of the closed-loop sensitiv-
ity function . in (4) is shown in Fig. 6. For both the simulation
data (top figures) and the experimental data (bottom figures),
it can be seen that with IFT the final parameter sets at i = 10
induce improved low-frequency performance while satisfying

m
o
=}
.8
—
3
~
=
5} simulated, default
- simulated, IFT:
constraint, (@) + € = = =
-50 ! ‘
10 100 1000 5000
3 15
8 10
)
o O
k=
g
~~
=
3
= ;
3 meagsured, default
é}d measured, IFT
J constraint, ., (@) +¢€ = = =
-50 ! !

10 1000 5000

0
frequency in Hz

Fig. 6. Bode diagrams of the sensitivity function .# either
simulated with the 4th order model or measured on a wafer
stage system and both without IFT (default) and with IFT;

=9.5dB, oo =10nm?, yp =1, £ =0.5 dB.

25 4
— — — scaled reference r simulation data at i:= 0
simulation data at = 10
E
g =
= 0 :\ 2
£ pLi) s
v S 2
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AT 5 /_/_Fﬁ
-25 0
0.25 10 100 1000 5000
experimental data:at i =0
experimental data-at i = 10

100 . 1000 5000
frequency in Hz

time in seconds

Fig. 7. Time-series simulation data and experimental data at
iteration i = 0 and iteration i = 10 together with the results
from cumulative power spectral density analysis.

the (indicated) amplitude constraints ., (®) + € at 10 dB. Note
that the minor improvements shown at the bottom figure are
clearly the result of the high industrial standards already met
with the default controller set pg. Furthermore, note that the
amplitude constraints are approached at two distinct frequency
points, which could favor the introduction of frequency-varying
constraints. Regarding the loss of convexity properties in the
posed optimization problem, see Heertjes et al. [2014] where
local convexity properties are kept by tuning weighting filters,
but which comes at the cost of posing hard constraints.

The effect of IFT in terms of time-domain performance is de-
picted in Fig. 7. Performance is evaluated regarding represen-
tative point-to-point motions (dashed curves). In the top figures
simulation data is shown, whereas in the bottom figures exper-
imental data is shown. The left part of the figure shows time-
domain responses, whereas the right part shows a cumulative
power spectral density analysis of these responses. In simula-
tion, part of the improvements stem from reducing the error
signals caused by a feed-forward mismatch. This part should be
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handled by tuning an appropriate feed-forward controller €.
In experiment, such a controller is present, see also Heertjes
et al. [2010]. The improvement comes from a decreased level
of amplification in the interval of constant velocity between
0.05 and 0.2 seconds, i.e. the performance interval where wafer
scanning takes place. Decreasing the level of amplification in
the frequency interval from 150 to 300 Hz, see Fig. 6, thus has
a time-domain advantage that is identified by the IFT algorithm.
This machine-specific advantage was unknown in advance and
therefore not anticipated in the (manual) loop shaping tunings.
This confirms the potential benefit of IFT to account for actual
disturbance spectra in a control-relevant manner.

4. CONCLUSIONS

In this paper, a new approach for constrained IFT has been
presented and experimentally demonstrated on an industrial
high-precision stage system. The IFT algorithm is extended
with a frequency-domain penalty to penalize violations of the
frequency-domain specifications imposed on the closed-loop
sensitivity function. Using a non-parametric model, an adap-
tation is made to the candidate parameter set obtained from
IFT. The prediction involves a straightforward Taylor series
expansion part using the resulting unbiased gradient estimates.
Additionally, it involves a part that uses the perturbation method
in obtaining the gradients with respect to the penalty. With
the adaptation, a parameter set is obtained that from a model
point of view meets the frequency-domain specifications. As a
result, IFT is done under the assurance that frequency-domain
specifications are either satisfied or violations of the specifi-
cations stay within controllable levels. For the PID controller
parameters of a generally more advanced feedback controller
structure, it is demonstrated that machine-specific performance,
which is clearly disturbance-related, can be obtained with IFT.
More specifically, IFT is used to create the machine-specific
fine-tunings of the feedback control design in addition to the
nominal loop shaping tuning process that is done in frequency
domain. Tuning of the loop shaping filters themselves, which
may prove even more beneficial, is left for future work.
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