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Abstract: Nowadays automation systems are required to be flexible in order to cope with the ever 

changing requirements of the applications in terms of complexity, extensibility or dynamism. The use of 

reconfiguration techniques helps to meet these demanding requirements, but at the same time increase the 

complexity of the systems. This paper presents a supervisor architecture that allows maintaining the 

availability of a control system in spite of failures such as a node crash, by means of reconfigurations at the 

control level. To do this, the advantages that Model-Driven Development technology provides have been 

explored.  

 

1. INTRODUCTION 

Current manufacturing systems need to assure high 

productivity and a rapid response to fast changes in the 

market and customers needs. To meet these requirements the 

industry is evolving into more flexible and efficient 

manufacturing systems, for example providing them with 

reconfiguration mechanism. Hence, at it is stated in (Koren et 

al., 1999) the introduction of reconfigurations allows 

changing as quick and cost-effectively as possible from one 

configuration to another, without stopping. Additionally, 

reconfiguration also helps to keep system efficiency from 

sudden changes of costumer demands or unpredictable 

events, like failures or disruptions. Even more, the National 

Research Council identified reconfigurable manufacturing as 

one of the six key challenges in manufacturing for the year 

2020 (CVMC et al., 1998). 

Many works have been developed to provide manufacturing 

systems with the necessary reconfiguration techniques. Most 

implement new hardware equipments, such as modern soft 

Programmable Logic Controller (PLC), or try to incorporate 

technologies developed in other engineering fields, such as 

software engineering, model-driven development or 

distributed systems, to cover this necessity. Others have been 

focused in the reconfiguration of the whole plant like Fu-

Shiung Hsieh (Hsieh, 2010) that implements a holonic 

manufacturing system to deal with resource failures and 

maintain order in the system. 

However, in the last years there has been a tendency to 

implement Multi Agent Systems (MAS) (Weiß, 1999) in the 

manufacturing system. MAS have been used for agent-based 

control (Leitão, 2009), for concurrent design (Shen et al., 

2004), for collaborative process planning (Zhang and Xie, 

2006), and for agent-based distributed manufacturing process 

planning and scheduling (Weiming Shen et al., 2006; 

Ouelhadj and Petrovic, 2008). The use of MAS in 

reconfiguration can also be found in the lower levels of the 

control hierarchy. In this context, reconfiguration is based on 

function blocks (FB) of IEC 61499 standard (IEC, 2004), by 

changing the connections between FBs, changing their 

functionality, or adding and removing them (Brennan et al., 

2002; Lepuschitz et al., 2011; Xu et al., 2002). 

Since manufacturing systems are getting more and more 

complex, increasing in terms of distribution, size, and 

functionality, the use of model-driven development (Selic, 

2003) has been adopted to guide the user in the construction 

of the control system. For example, the use of Unified 

Modelling Language (UML) to describe the domain concepts 

is quite spread, as in the works focused on the IEC 61131 

standard (Estevez et al., 2005; Hästbacka et al., 2011), or on 

the IEC 61499 standard (Thramboulidis et al., 2006; Vyatkin 

and Hanisch, 2009). Another possibility is the use of SysML, 

an extended subset of UML 2, but applied to automation 

systems (Thramboulidis, 2011, Schütz et al., 2013). 

However, these works do not deal with the reconfiguration 

needs of the automation systems. 

This paper proposes the use of reconfiguration mechanisms 

together with model driven development techniques to tackle 

the issue of assuring the availability of control systems, in 

spite of PLC failures. Nowadays, the control functionality 

usually runs in a PLC, while the backup is another PLC that 

is waiting for the main to fail. This implies that the backup 

PLC underworks, as it is not being used until the main PLC 

fails. That is why there is a recent tendency to provide PLCs 

that not only run their own but also backup functionalities 

(Merz et al., 2012). In this line the paper presents a 

supervisor and its corresponding design methodology that 
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assures the availability of the control system by restoring the 

functionality of a failed PLC into an already running PLC.  

The layout of the paper is as follows: Section 2 describes the 

diagnosis and recovery processes proposed to maintain the 

availability of the control system. Section 3 details a model-

based approach that guides the user during the design phase. 

Section 4 presents the supervisor architecture that assures 

availability in a control system which is used in Section 5 to 

illustrate a case study related to an assembly cell for rotation 

mechanisms. Finally, Section 6 is dedicated to the concluding 

remarks and future work. 

2. AVAILABILITY OF THE CONTROL SYSTEM 

System availability is assured when liveliness of the control 

system is maintained. To achieve this goal, the system must 

be provided with the necessary mechanisms to recover the 

functionality of a failed controller into another one, known as 

backup controller. Indeed, this section proposes a diagnosis 

and recovery processes that assure the availability of the 

control system based on the existence of backup controllers 

that, apart from their own functionality, also contain the 

functionality related to another controller. These “extra 

functionalities” are not executed in normal conditions only in 

case of failures. 

A concrete point in the execution of a functionality is defined 

by the value of a set of relevant variables that represent the 

state of the functionality. A state can be composed by input 

and output variables, as well as internal variables like system 

variables, timers, counters, or variables representing 

GRAFCET (GRAphe Functionel de Commande Etape 

Transition) steps. When a fail is detected, a recovery process 

is started, i.e. the functionality of the failed PLC is restored in 

one of its backup PLCs. Three different ways to restore the 

functionality are distinguished, direct recovery, recovery to 

checkpoint, and non-recovery. (see Table 1). The type of 

recovery is determined by a previous diagnosis process. 

The diagnosis is based on the last known state of the failed 

functionality, identifying the corresponding recovery type. As 

a result, all the information necessary to perform the recovery 

is obtained: 

 Direct recovery: only the last known state is necessary, 

as nothing else needs to be done.  

 Recovery to checkpoint: the state that describes a 

previously defined checkpoint from where the 

functionality will be restarted. A recovery action that 

prepares the system to be recovered from this checkpoint 

could also be necessary. 

 Non-recovery: the necessary stop action that guides the 

functionality to stop in a safely manner. 

The recovery process selects one of the available backups for 

executing the functionality and the information obtained 

during the diagnosis is sent to it. 

Table 1 Recovery types 

Recovery type Definition 

Direct recovery The control functionality can be 

resumed directly launching it in a 

backup controller from the last known 

state. 

Recovery to 

checkpoint 

The control functionality is resumed in 

a previous known state (checkpoint) 

after executing recovery actions if 

needed. 

Non-recovery It may require a safe stop procedure. 

3. DESIGN PHASE 

As the information needed to perform the diagnosis and 

recovery processes is generated during the design phase, this 

section illustrates a model-based design methodology that 

guarantees the development of a proper control system in 

terms of availability. 

The different functionalities that conform a control system 

are designed and generated following the Methodology for 

Industrial Automation (MeiA) (Alvarez et al., 2013). As a 

result of applying this methodology the design of the 

execution of a plant is divided in a set of Design Organization 

Units (DOUs). These DOUs are the base for coding the 

Programmable Organization Units (POUs) which contain the 

code of a PLC functionality according to the IEC-61131-3 

standard (IEC, 2003). This design is not only referred to the 

execution of the plant in normal conditions, but it also takes 

into account the stop and recovery actions needed if a fail 

occurs, i.e. the critical execution points. 

The DOUs defined by the MeiA methodology are 

implemented as POU and deployed into different automation 

projects (one for each PLC in the system). These automation 

projects are generated following the XML schema provided 

by Technical Committee 6 of the PLCopen organization 

(Marcos et al., 2009; Von der Wal, 2009). However, every 

PLC can also be backup of others. This means that its 

automation project has to be extended with the backup 

functionalities and the corresponding stop and recovery 

actions. 

In summary, as it is shown in Fig. 1, during the design phase 

all the information related to the plant automation design is 

defined, identifying not only the DOUs but also the 

information about critical execution points. Additionally, the 

structure of the automation projects related to the PLCs that 

conform the control system is provided. Lastly, it is 

necessary to determine the backup functionalities that 

correspond to every PLC. All this information is transformed 

into the final automation projects that will run in the PLCs, 

and the necessary diagnosis information for assuring system 

control availability. 
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Fig. 2 depicts the meta-model related to the information 

coming from the design phase in Fig. 1. As it has been 

previously stated, the design of the execution of a plant is 

implemented in a set of DOUs and it has to take into account 

the different critical execution points. A critical execution 

point identifies a specific point in the execution that can not 

be directly recovered in case of failure. Therefore, they may 

be recovered to a checkpoint or even non-recoverable. 

A critical execution point can be related to one or more 

DOUs, and a DOU can have one or more critical execution 

points. An execution point is defined by a set of internal 

signals, I/O signals, or steps belonging to several DOUs. 

Each signal is characterised by its name, type, and value. 

When the execution point can be recovered to a checkpoint, it 

may be necessary to determine the DOU that performs the 

corresponding recovery action. Additionally, it is necessary 

to set the value of the internal signals, I/O signals, or steps 

which correspond to the checkpoint that is going to be 

restored. In the same way, non-recoverable execution points 

are provided with the DOU which stops the failed part or the 

whole plant in a safe way. 

It is important to remark that the diagnosis information 

related to each PLC functionality is composed by the critical 

execution points that belong to all the DOUs within the 

functionality. 

4. THE SUPERVISOR ARCHITECTURE 

Traditional supervisor systems are based on Supervisory 

Control And Data Acquisition (SCADA), which inform the 

user about the state of the process and alarm event. The 

supervisor architecture presented in this section is a high 

level supervision that assures system availability, 

implementing the diagnosis and recovery processes 

previously described. 

The supervisor architecture has been presented in (Priego et 

al., 2013) using components running under the Distributed 

Component Management Platform (DCMP). The DCMP is 

an extensible middleware that manages distributed 

components (Agirre et al., 2012). 

The architecture is distributed into a supervisor PC which 

contains the Manager of the application (part of the DCMP), 

and several soft PLCs. It has been decided to use this PLC 

type as they can run concurrently operating system 

applications and PLC applications, meaning that the 

supervisor component can run in the same machine as the 

PLC functionalities (see Fig. 3). Additionally, since the 

workload of the manager is one of the heaviest ones, in terms 

of computational power, running it in a PC reduces the 

execution time. 

The reconfiguration is decided by the manager, following the 

diagnosis and recovery processes previously described. But, 

the supervisor components are those in charge of performing 

 

Fig. 1 Transformation of information 

 

Fig. 2 Meta-model of the plant automation design 

 

Fig. 3 General scenario of supervisor architecture 
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it. This requires to know if the PLC is alive and the state of 

the different functionalities. 

The supervisor components link the PLC functionalities to 

the manager, sending the state that will be used during the 

diagnosis and recovery processes in case of failures. 

Alongside the state these components also send a heartbeat as 

a liveliness proof. Indeed, the lack of the heartbeat allows the 

manager to detect that a PLC has failed. After, the manager 

proceeds to perform the diagnosis and recovery processes. 

The manager uses the last known state of the failed 

functionality determining the correct recovery type and the 

associated recovery information (as explained in previous 

sections). This information is sent to the corresponding 

backup. The supervisor components restore the functionality 

by writing the value of the state received into the 

corresponding variables, and starting the functionality 

depending on the type of recovery: 

 Direct recovery: the functionality is restarted from the 

last known state.  

 Recovery to checkpoint: recovery action is performed. 

After, the functionality is resumed from the checkpoint 

state. 

 Non-recovery: stop action is performed which conducts 

the functionality to a safe stop. 

It is interesting to note that the DCMP also provides a safe 

communication channel (Agirre et al., 2013) that guarantees 

that the information has been received correctly. This safety 

channel is used to communicate the manager and the 

supervisor components. 

5. CASE STUDY: CONTROL AVAILABILITY 

 FOR A MANUFACTURING STATION 

The supervisor architecture has been tested in a station of an 

assembly line located in the Department of System 

Engineering and Automatics, in the University of the Basque 

Country. The assembly line produces different types of 

rotation mechanisms, composed of: a base, a bearing, an axis, 

and a cover. There are different types of, bearing, axis, and 

covers allowing the assembly of different types of 

mechanisms. The line is composed of four different stations: 

(1) the checking of the base, (2) the placement of the bearing 

and axis, (3) the selection of the cover, and (4) the storage of 

the final product. 

The architecture is tested in the first station which is a FMS-

201 from SMC (see Fig. 5). This station extracts a base from 

a gravity feeder moving it into the verification point, were the 

correct positioning of the base is checked. Then, the base is 

moved to the transfer point. If the base is incorrectly 

positioned it is removed from the station using the evacuation 

ramp. In the other case, it is moved to the transport pallet 

using vacuum pads. 

To maintain the availability, the supervisor architecture is 

implemented by a PC and two soft PLCs (Beckhoff 

CX1020). As the I/O of the station are connected using 

Profibus, a Siemens PLC has been used to allow the change 

of the master during run time. The communication between 

the Beckhoff PLC and the Siemens PLC is done using 

 

 

Fig. 4 Station 1: scenario 

 

Fig. 5 Station 1: plant automation design model 
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TCP/IP. 

During the design phase of the station, four critical execution 

points have been identified: three non recovery execution 

points and one recovery to checkpoint. Fig. 4 presents the 

plant automation design model for the station. This model is 

defined in an eXtensible Markup Language (XML) document 

that follows an XML Schema which implements the meta-

model illustrated in Fig. 2. The first non-recoverable 

execution point (number 1 in Fig. 4) is related to the 

extraction of the base from the gravity feeder. The extraction 

of the base is performed by a single action cylinder. If the 

cylinder loses the action signal during the fail of the 

controller, the cylinder goes to its initial condition, and the 

base that has been moved can be placed in a position which 

obstructs the output of another base. This is a non-recovery 

execution point since the execution cannot be recovered until 

an operator removes the fault base; therefore, the stop action 

consists on informing the operator. 

The second non-recoverable execution point (number 3 in 

Fig. 4) is associated to the movement of the base from the 

transfer point to the pallet. During this movement if a fail 

occurs the base is released from the vacuum pads and can fall 

in any position of the trajectory. In this case the operator also 

needs to remove the base and restart the process. The stop 

action is similar to the previous one, but in this case the 

cylinder that moves the base needs to be returned to its initial 

condition automatically. 

The last non-recoverable execution point (number 4 in Fig. 4) 

refers to the moment when the base is placed in the pallet. If 

a fail occurs, the base can fall into an incorrect position in the 

pallet. The operator also needs to clean the station so the 

recovery action is similar to the previous one, but it is also 

necessary to place the cylinder into its original position. 

The recovery to checkpoint execution point (number 2 in Fig. 

4) occurs during the listing of the base to be moved to the 

pallet. In case of a failure, the base falls into the transfer 

point. Operator intervention is not necessary as the base can 

be evacuated using the evacuation ramp. So, the 

corresponding recovery action moves the base into the 

evacuation ramp, cleaning the system. Then, the normal 

functionality is restored to the extraction of the base from the 

gravity feeder (the check point). 

Finally, all the information about these critical execution 

points is transformed into the diagnosis data used in the 

diagnosis process (see . Fig. 1). As commented before, when 

a fail occurs, the manager maintains the operation of the 

station, by recovering the functionality of failed PLC into the 

corresponding backup PLC. It performs the diagnosis of the 

last known state, giving as a result the recovery type. 

6. CONCLUSIONS AND FUTURE WORK 

The architecture proposed in this paper maintains the 

availability of a control system, by restoring the functionality 

of a controller into a backup, when a failure occurs. This 

allows optimizing the resources of the system, since it is not 

necessary the use of redundant PLCs 

It has been highlighted that the recovery of the functionality 

depends on the execution point in which it has failed. 

Therefore, a previous diagnosis process has been proposed 

which determines the suitable way to recover the 

functionality, based on its last known state. 

Aimed at guarantying availability, the paper also describes a 

model-based design methodology that assures the correct 

development of a control system. The starting point is the 

design of the control system, based on the MeiA 

methodology, which also contains the recovery and stop 

actions corresponding to each execution point. The plant 

automation model is obtained, which just contains the critical 

execution point of the system and the information needed for 

the recovery of these points. 

As proof of concept, the supervisor architecture has been 

validated in a station of an assembly line. This station 

presents four critical execution points with their 

corresponding stop, and recovery actions and checkpoint 

states.  

Future work will be focused on improving the generation 

process of the final code, by implementing a tool for defining 

the backup PLC, and generating the diagnosis information as 

well as the extended automation projects. Therefore, it will 

take as inputs the information provided during the design 

phase, the structure of the initial automation projects related 

to the functionalities, the plant automation design (DOUs, 

and critical execution points). Furthermore, other kinds of 

reconfiguration are been research in order to support other 

Quality Of Services (QoS) requirements, such as load 

balancing and energy efficiency  
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