

A Model-based Approach for Achieving Available

Automation Systems

R. Priego* A. Armentia* D. Orive* E. Estévez** M. Marcos*

*University of the Basque Country, Department of System Engineering and Automatics, Bilbao, 48013 Spain

(e-mail: rpriego001, aintzane.armentia , dario.orive, marga.marcos@ehu.es)

** Universidad de Jaén, Dept. Of Electronics and Automatic Control , Jaen, Spain

 (e-mail: eestevez@ujaen.es)

Abstract: Nowadays automation systems are required to be flexible in order to cope with the ever

changing requirements of the applications in terms of complexity, extensibility or dynamism. The use of

reconfiguration techniques helps to meet these demanding requirements, but at the same time increase the

complexity of the systems. This paper presents a supervisor architecture that allows maintaining the

availability of a control system in spite of failures such as a node crash, by means of reconfigurations at the

control level. To do this, the advantages that Model-Driven Development technology provides have been

explored.

1. INTRODUCTION

Current manufacturing systems need to assure high

productivity and a rapid response to fast changes in the

market and customers needs. To meet these requirements the

industry is evolving into more flexible and efficient

manufacturing systems, for example providing them with

reconfiguration mechanism. Hence, at it is stated in (Koren et

al., 1999) the introduction of reconfigurations allows

changing as quick and cost-effectively as possible from one

configuration to another, without stopping. Additionally,

reconfiguration also helps to keep system efficiency from

sudden changes of costumer demands or unpredictable

events, like failures or disruptions. Even more, the National

Research Council identified reconfigurable manufacturing as

one of the six key challenges in manufacturing for the year

2020 (CVMC et al., 1998).

Many works have been developed to provide manufacturing

systems with the necessary reconfiguration techniques. Most

implement new hardware equipments, such as modern soft

Programmable Logic Controller (PLC), or try to incorporate

technologies developed in other engineering fields, such as

software engineering, model-driven development or

distributed systems, to cover this necessity. Others have been

focused in the reconfiguration of the whole plant like Fu-

Shiung Hsieh (Hsieh, 2010) that implements a holonic

manufacturing system to deal with resource failures and

maintain order in the system.

However, in the last years there has been a tendency to

implement Multi Agent Systems (MAS) (Weiß, 1999) in the

manufacturing system. MAS have been used for agent-based

control (Leitão, 2009), for concurrent design (Shen et al.,

2004), for collaborative process planning (Zhang and Xie,

2006), and for agent-based distributed manufacturing process

planning and scheduling (Weiming Shen et al., 2006;

Ouelhadj and Petrovic, 2008). The use of MAS in

reconfiguration can also be found in the lower levels of the

control hierarchy. In this context, reconfiguration is based on

function blocks (FB) of IEC 61499 standard (IEC, 2004), by

changing the connections between FBs, changing their

functionality, or adding and removing them (Brennan et al.,

2002; Lepuschitz et al., 2011; Xu et al., 2002).

Since manufacturing systems are getting more and more

complex, increasing in terms of distribution, size, and

functionality, the use of model-driven development (Selic,

2003) has been adopted to guide the user in the construction

of the control system. For example, the use of Unified

Modelling Language (UML) to describe the domain concepts

is quite spread, as in the works focused on the IEC 61131

standard (Estevez et al., 2005; Hästbacka et al., 2011), or on

the IEC 61499 standard (Thramboulidis et al., 2006; Vyatkin

and Hanisch, 2009). Another possibility is the use of SysML,

an extended subset of UML 2, but applied to automation

systems (Thramboulidis, 2011, Schütz et al., 2013).

However, these works do not deal with the reconfiguration

needs of the automation systems.

This paper proposes the use of reconfiguration mechanisms

together with model driven development techniques to tackle

the issue of assuring the availability of control systems, in

spite of PLC failures. Nowadays, the control functionality

usually runs in a PLC, while the backup is another PLC that

is waiting for the main to fail. This implies that the backup

PLC underworks, as it is not being used until the main PLC

fails. That is why there is a recent tendency to provide PLCs

that not only run their own but also backup functionalities

(Merz et al., 2012). In this line the paper presents a

supervisor and its corresponding design methodology that

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 3438

assures the availability of the control system by restoring the

functionality of a failed PLC into an already running PLC.

The layout of the paper is as follows: Section 2 describes the

diagnosis and recovery processes proposed to maintain the

availability of the control system. Section 3 details a model-

based approach that guides the user during the design phase.

Section 4 presents the supervisor architecture that assures

availability in a control system which is used in Section 5 to

illustrate a case study related to an assembly cell for rotation

mechanisms. Finally, Section 6 is dedicated to the concluding

remarks and future work.

2. AVAILABILITY OF THE CONTROL SYSTEM

System availability is assured when liveliness of the control

system is maintained. To achieve this goal, the system must

be provided with the necessary mechanisms to recover the

functionality of a failed controller into another one, known as

backup controller. Indeed, this section proposes a diagnosis

and recovery processes that assure the availability of the

control system based on the existence of backup controllers

that, apart from their own functionality, also contain the

functionality related to another controller. These “extra

functionalities” are not executed in normal conditions only in

case of failures.

A concrete point in the execution of a functionality is defined

by the value of a set of relevant variables that represent the

state of the functionality. A state can be composed by input

and output variables, as well as internal variables like system

variables, timers, counters, or variables representing

GRAFCET (GRAphe Functionel de Commande Etape

Transition) steps. When a fail is detected, a recovery process

is started, i.e. the functionality of the failed PLC is restored in

one of its backup PLCs. Three different ways to restore the

functionality are distinguished, direct recovery, recovery to

checkpoint, and non-recovery. (see Table 1). The type of

recovery is determined by a previous diagnosis process.

The diagnosis is based on the last known state of the failed

functionality, identifying the corresponding recovery type. As

a result, all the information necessary to perform the recovery

is obtained:

 Direct recovery: only the last known state is necessary,

as nothing else needs to be done.

 Recovery to checkpoint: the state that describes a

previously defined checkpoint from where the

functionality will be restarted. A recovery action that

prepares the system to be recovered from this checkpoint

could also be necessary.

 Non-recovery: the necessary stop action that guides the

functionality to stop in a safely manner.

The recovery process selects one of the available backups for

executing the functionality and the information obtained

during the diagnosis is sent to it.

Table 1 Recovery types

Recovery type Definition

Direct recovery The control functionality can be

resumed directly launching it in a

backup controller from the last known

state.

Recovery to

checkpoint

The control functionality is resumed in

a previous known state (checkpoint)

after executing recovery actions if

needed.

Non-recovery It may require a safe stop procedure.

3. DESIGN PHASE

As the information needed to perform the diagnosis and

recovery processes is generated during the design phase, this

section illustrates a model-based design methodology that

guarantees the development of a proper control system in

terms of availability.

The different functionalities that conform a control system

are designed and generated following the Methodology for

Industrial Automation (MeiA) (Alvarez et al., 2013). As a

result of applying this methodology the design of the

execution of a plant is divided in a set of Design Organization

Units (DOUs). These DOUs are the base for coding the

Programmable Organization Units (POUs) which contain the

code of a PLC functionality according to the IEC-61131-3

standard (IEC, 2003). This design is not only referred to the

execution of the plant in normal conditions, but it also takes

into account the stop and recovery actions needed if a fail

occurs, i.e. the critical execution points.

The DOUs defined by the MeiA methodology are

implemented as POU and deployed into different automation

projects (one for each PLC in the system). These automation

projects are generated following the XML schema provided

by Technical Committee 6 of the PLCopen organization

(Marcos et al., 2009; Von der Wal, 2009). However, every

PLC can also be backup of others. This means that its

automation project has to be extended with the backup

functionalities and the corresponding stop and recovery

actions.

In summary, as it is shown in Fig. 1, during the design phase

all the information related to the plant automation design is

defined, identifying not only the DOUs but also the

information about critical execution points. Additionally, the

structure of the automation projects related to the PLCs that

conform the control system is provided. Lastly, it is

necessary to determine the backup functionalities that

correspond to every PLC. All this information is transformed

into the final automation projects that will run in the PLCs,

and the necessary diagnosis information for assuring system

control availability.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3439

Fig. 2 depicts the meta-model related to the information

coming from the design phase in Fig. 1. As it has been

previously stated, the design of the execution of a plant is

implemented in a set of DOUs and it has to take into account

the different critical execution points. A critical execution

point identifies a specific point in the execution that can not

be directly recovered in case of failure. Therefore, they may

be recovered to a checkpoint or even non-recoverable.

A critical execution point can be related to one or more

DOUs, and a DOU can have one or more critical execution

points. An execution point is defined by a set of internal

signals, I/O signals, or steps belonging to several DOUs.

Each signal is characterised by its name, type, and value.

When the execution point can be recovered to a checkpoint, it

may be necessary to determine the DOU that performs the

corresponding recovery action. Additionally, it is necessary

to set the value of the internal signals, I/O signals, or steps

which correspond to the checkpoint that is going to be

restored. In the same way, non-recoverable execution points

are provided with the DOU which stops the failed part or the

whole plant in a safe way.

It is important to remark that the diagnosis information

related to each PLC functionality is composed by the critical

execution points that belong to all the DOUs within the

functionality.

4. THE SUPERVISOR ARCHITECTURE

Traditional supervisor systems are based on Supervisory

Control And Data Acquisition (SCADA), which inform the

user about the state of the process and alarm event. The

supervisor architecture presented in this section is a high

level supervision that assures system availability,

implementing the diagnosis and recovery processes

previously described.

The supervisor architecture has been presented in (Priego et

al., 2013) using components running under the Distributed

Component Management Platform (DCMP). The DCMP is

an extensible middleware that manages distributed

components (Agirre et al., 2012).

The architecture is distributed into a supervisor PC which

contains the Manager of the application (part of the DCMP),

and several soft PLCs. It has been decided to use this PLC

type as they can run concurrently operating system

applications and PLC applications, meaning that the

supervisor component can run in the same machine as the

PLC functionalities (see Fig. 3). Additionally, since the

workload of the manager is one of the heaviest ones, in terms

of computational power, running it in a PC reduces the

execution time.

The reconfiguration is decided by the manager, following the

diagnosis and recovery processes previously described. But,

the supervisor components are those in charge of performing

Fig. 1 Transformation of information

Fig. 2 Meta-model of the plant automation design

Fig. 3 General scenario of supervisor architecture

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3440

it. This requires to know if the PLC is alive and the state of

the different functionalities.

The supervisor components link the PLC functionalities to

the manager, sending the state that will be used during the

diagnosis and recovery processes in case of failures.

Alongside the state these components also send a heartbeat as

a liveliness proof. Indeed, the lack of the heartbeat allows the

manager to detect that a PLC has failed. After, the manager

proceeds to perform the diagnosis and recovery processes.

The manager uses the last known state of the failed

functionality determining the correct recovery type and the

associated recovery information (as explained in previous

sections). This information is sent to the corresponding

backup. The supervisor components restore the functionality

by writing the value of the state received into the

corresponding variables, and starting the functionality

depending on the type of recovery:

 Direct recovery: the functionality is restarted from the

last known state.

 Recovery to checkpoint: recovery action is performed.

After, the functionality is resumed from the checkpoint

state.

 Non-recovery: stop action is performed which conducts

the functionality to a safe stop.

It is interesting to note that the DCMP also provides a safe

communication channel (Agirre et al., 2013) that guarantees

that the information has been received correctly. This safety

channel is used to communicate the manager and the

supervisor components.

5. CASE STUDY: CONTROL AVAILABILITY

 FOR A MANUFACTURING STATION

The supervisor architecture has been tested in a station of an

assembly line located in the Department of System

Engineering and Automatics, in the University of the Basque

Country. The assembly line produces different types of

rotation mechanisms, composed of: a base, a bearing, an axis,

and a cover. There are different types of, bearing, axis, and

covers allowing the assembly of different types of

mechanisms. The line is composed of four different stations:

(1) the checking of the base, (2) the placement of the bearing

and axis, (3) the selection of the cover, and (4) the storage of

the final product.

The architecture is tested in the first station which is a FMS-

201 from SMC (see Fig. 5). This station extracts a base from

a gravity feeder moving it into the verification point, were the

correct positioning of the base is checked. Then, the base is

moved to the transfer point. If the base is incorrectly

positioned it is removed from the station using the evacuation

ramp. In the other case, it is moved to the transport pallet

using vacuum pads.

To maintain the availability, the supervisor architecture is

implemented by a PC and two soft PLCs (Beckhoff

CX1020). As the I/O of the station are connected using

Profibus, a Siemens PLC has been used to allow the change

of the master during run time. The communication between

the Beckhoff PLC and the Siemens PLC is done using

Fig. 4 Station 1: scenario

Fig. 5 Station 1: plant automation design model

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3441

TCP/IP.

During the design phase of the station, four critical execution

points have been identified: three non recovery execution

points and one recovery to checkpoint. Fig. 4 presents the

plant automation design model for the station. This model is

defined in an eXtensible Markup Language (XML) document

that follows an XML Schema which implements the meta-

model illustrated in Fig. 2. The first non-recoverable

execution point (number 1 in Fig. 4) is related to the

extraction of the base from the gravity feeder. The extraction

of the base is performed by a single action cylinder. If the

cylinder loses the action signal during the fail of the

controller, the cylinder goes to its initial condition, and the

base that has been moved can be placed in a position which

obstructs the output of another base. This is a non-recovery

execution point since the execution cannot be recovered until

an operator removes the fault base; therefore, the stop action

consists on informing the operator.

The second non-recoverable execution point (number 3 in

Fig. 4) is associated to the movement of the base from the

transfer point to the pallet. During this movement if a fail

occurs the base is released from the vacuum pads and can fall

in any position of the trajectory. In this case the operator also

needs to remove the base and restart the process. The stop

action is similar to the previous one, but in this case the

cylinder that moves the base needs to be returned to its initial

condition automatically.

The last non-recoverable execution point (number 4 in Fig. 4)

refers to the moment when the base is placed in the pallet. If

a fail occurs, the base can fall into an incorrect position in the

pallet. The operator also needs to clean the station so the

recovery action is similar to the previous one, but it is also

necessary to place the cylinder into its original position.

The recovery to checkpoint execution point (number 2 in Fig.

4) occurs during the listing of the base to be moved to the

pallet. In case of a failure, the base falls into the transfer

point. Operator intervention is not necessary as the base can

be evacuated using the evacuation ramp. So, the

corresponding recovery action moves the base into the

evacuation ramp, cleaning the system. Then, the normal

functionality is restored to the extraction of the base from the

gravity feeder (the check point).

Finally, all the information about these critical execution

points is transformed into the diagnosis data used in the

diagnosis process (see . Fig. 1). As commented before, when

a fail occurs, the manager maintains the operation of the

station, by recovering the functionality of failed PLC into the

corresponding backup PLC. It performs the diagnosis of the

last known state, giving as a result the recovery type.

6. CONCLUSIONS AND FUTURE WORK

The architecture proposed in this paper maintains the

availability of a control system, by restoring the functionality

of a controller into a backup, when a failure occurs. This

allows optimizing the resources of the system, since it is not

necessary the use of redundant PLCs

It has been highlighted that the recovery of the functionality

depends on the execution point in which it has failed.

Therefore, a previous diagnosis process has been proposed

which determines the suitable way to recover the

functionality, based on its last known state.

Aimed at guarantying availability, the paper also describes a

model-based design methodology that assures the correct

development of a control system. The starting point is the

design of the control system, based on the MeiA

methodology, which also contains the recovery and stop

actions corresponding to each execution point. The plant

automation model is obtained, which just contains the critical

execution point of the system and the information needed for

the recovery of these points.

As proof of concept, the supervisor architecture has been

validated in a station of an assembly line. This station

presents four critical execution points with their

corresponding stop, and recovery actions and checkpoint

states.

Future work will be focused on improving the generation

process of the final code, by implementing a tool for defining

the backup PLC, and generating the diagnosis information as

well as the extended automation projects. Therefore, it will

take as inputs the information provided during the design

phase, the structure of the initial automation projects related

to the functionalities, the plant automation design (DOUs,

and critical execution points). Furthermore, other kinds of

reconfiguration are been research in order to support other

Quality Of Services (QoS) requirements, such as load

balancing and energy efficiency

ACKNOWLEDGMENTS

This work was supported in part by the MCYT&FEDER

under grant DPI- 2012-37806-C02-01, the Government of the

Basque Country (GV/EJ) under grant BFI-2011-251 and

Project IT719-13 and by UPV/EHU under grant UFI11/28.

REFERENCES

Agirre, A., Perez, J., Priego, R., Marcos, M. and Estévez, E.

(2013). SCA Extensions to Support Safety Critical

Distributed Embedded Systems. In: IEEE 18th

Conference on Emerging Technologies Factory

Automation (ETFA), Cagliari, Italy.

Agirre, A., Marcos, M. and Estévez, E., (2012). Distributed

applications management platform based on Service

Component Architecture. In: IEEE 17th Conference on

Emerging Technologies Factory Automation (ETFA), pp.

1–4, Krakow, Poland.

Alvarez, M. L., Estévez, E., Sarachaga, I., Burgos, A. and

Marcos, M. (2013). A novel approach for supporting

the development cycle of automation systems. In: The

International Journal of Advanced Manufacturing

Technology, vol. 68, pp.711–725.

Brennan, R.W., Fletcher, M. and Norrie, D.H. (2002). An

agent-based approach to reconfiguration of real-time

distributed control systems. In: IEEE Transactions on

Robotics and Automation, vol. 18, pp.444–451.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3442

Committee on Visionary Manufacturing Challenges,

Commission on Engineering and Technical Systems,

National Research Council (1998) Visionary

Manufacturing Challenges for 2020. (National

Academies Press) Washington, DC.

Estevez, E., Marcos, M., Gangoiti, U. and Orive, D. (2005).

A Tool Integration Framework for Industrial

Distributed Control Systems. In: Proceedings of the

44th IEEE Conference on Decision and Control. IEEE,

pp. 8373–8378.

Hästbacka, D., Vepsäläinen, T. and Kuikka, S. (2011).

Model-driven development of industrial process control

applications. In: Journal of Systems and Software,

84(7), pp.1100–1113.

Hsieh, F.-S., (2010). Design of reconfiguration mechanism

for holonic manufacturing systems based on formal

models. In: Engineering Applications of Artificial

Intelligence, vol. 23, pp.1187–1199.

International Electrotechnical Commission (2003). IEC

International Standard IEC 1131-3 Programmable

Controllers, Part 3: Programming Languages

International Electrotechnical Commission (2004). IEC

International Standard IEC 61499 Part 1.

Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow,

G., Ulsoy, G. andVan Brussel, H. (1999).

Reconfigurable Manufacturing Systems. In: CIRP

Annals - Manufacturing Technology, vol. 48, pp.527–

540.

Leitão, P., (2009). Agent-based distributed manufacturing

control: A state-of-the-art survey. In: Engineering

Applications of Artificial Intelligence, vol. 22, pp.979–

991.

Lepuschitz, W., Zoitl, A., Vallée, M. and Merdan, M. (2011).

Toward Self-Reconfiguration of Manufacturing

Systems Using Automation Agents. In: IEEE

Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), vol. 41, pp.52–69

Marcos, M., Estevez, E., Perez, F. and Van Der Wal, E.

(2009). XML exchange of control programs. In: IEEE

Industrial Electronics Magazine, vol. 3, pp.32 –35.

Merz, M., Frank, T. and Vogel-Heuser, B., (2012). Dynamic

redeployment of control software in distributed

industrial automation systems during runtime. In: 2012

IEEE International Conference on Automation Science

and Engineering (CASE), pp. 863–868.

Ouelhadj, D. and Petrovic, S., (2008). A survey of dynamic

scheduling in manufacturing systems. In: Journal of

Scheduling, vol. 12, pp.417–431.

Priego, R., Armentia, A., Orive, D. and Marcos, M. (2013)

Supervision-based Reconfiguration of Industrial

Control Systems. In 18th Conference on Emerging

Technologies Factory Automation (ETFA), 2013 IEEE.

Cagliari, Italy.

Schütz, D., Obermeier, M., and Vogel-Heuser B. (2013)

SysML-Based Approach for Automation Software

Development – Explorative Usability Evaluation of the

Provided Notation, In: Design, User Experience, and

Usability. Web, Mobile, and Product Design (Springer

Berlin Heidelberg), vol. 8015, pp. 568-574.

Selic B. (2003) The pragmatics of model-driven

development, In: IEEE Software, vol. 20, pp. 19 – 25.

Shen, W., Norrie, D.H. and Barthes, J.-P., (2004). Multi-

Agent Systems for Concurrent Intelligent Design and

Manufacturing (C. Press, ed.)

Thramboulidis, K., (2011). Towards a Model-Driven IEC

61131-Based Development Process in Industrial

Automation. In: Journal of Software Engineering and

Applications, vol. 4, pp.217–226.

Thramboulidis, K., Perdikis, D. and Kantas, S. (2006). Model

driven development of distributed control applications.

in: The International Journal of Advanced

Manufacturing Technology, vol. 33, pp.233–242

Vyatkin, V. and Hanisch, H.-M., (2009). Closed-Loop

Modeling in Future Automation System Engineering

and Validation. In: IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and

Reviews), vol. 39, pp.17–28.

Van der Wal, E. (2009). PLCopen. In: IEEE Industrial

Electronics Magazine, vol 3, pp 25.

Weiming Shen, Lihui Wang and Qi Hao, (2006). Agent-

based distributed manufacturing process planning and

scheduling: a state-of-the-art survey. In: IEEE

Transactions on Systems, Man and Cybernetics, Part C

(Applications and Reviews), vol. 36, pp.563–577

Weiß, G., (1999). Multiagent Systems: A Modern Approach

to Distributed Artificial Intelligence, (Mit Press).

Xu, Y, Brennan, R W., Zhang, X. And Norrie, DH. (2002). A

Reconfigurable Concurrent Function Block Model and

its Implementation in Real-Time Java. In: Integrated

Computer-Aided Engineering, vol. 9, pp.263–279.

Zhang, W.J. and Xie, S.Q. (2006). Agent technology for

collaborative process planning: a review. In: The

International Journal of Advanced Manufacturing

Technology, vol. 32, pp.315–325.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3443

