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Abstract: This paper considers a continuous-discrete (CD) nonlinear filtering problem in the
framework of Gaussian filters. After reviewing the equivalent linearization of static nonlin-
earities, we derive the continuous-discrete exact Gaussian filter (CD-ExGF) and equivalent
linearization Kalman filter (CD-EqKF). It is shown that two CD nonlinear filters have the same
time update differential equations for the conditional mean and covariance matrix, and that a
difference is in the Kalman gain for the measurement update. Numerical methods of integrating
a stochastic differential equation and time update differential equations are developed using
the Heun scheme. Results of two simulation studies are included to show the difference and
similarity of the CD-EqKF, CD-ExGF and CD extended-Kalman filter (CD-EKF).
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1. INTRODUCTION

Since it is quite difficult to obtain the Bayesian optimal
estimate in nonlinear filtering, many approximate non-
linear filtering methods have been developed in the past
[1, 5, 9, 11, 18, 13]. Recent interests in nonlinear filtering
include particle filters (PFs) [6, 16, 24], unscented Kalman
filters (UKFs) [14], ensemble Kalman filters (EnKFs) [7],
Gaussian filters (GF) [12] and quadrature Kalman filters
(QKFs) [2], etc.

Though nonlinear filtering problems are usually formu-
lated in discrete-time, real physical systems are continuous
in time, so that they are described by stochastic differential
equations. In fact, there exist many phenomena that can
be modeled as stochastic systems where the measurement
of a continuous-time signal is naturally made by using
digital devices. Thus, to deal with continuous-discrete
(CD) nonlinear filtering problems, the continuous-discrete
extended Kalman filter (CD-EKF) has been derived in
[13, 9]. Besides, there are many applications of CD nonlin-
ear filtering methods, e.g. GPS/INS [4, 11], target tracking
[24, 5], finance [28], hybrid measurements [32].

Also a CD-UKF algorithm with two differential equations
for time update of the conditional mean and covariance
matrix has been derived from the discrete UKF algorithm
by a limiting procedure [26]. Moreover, the continuous-
discrete cubature Kalman filter (CD-CKF) algorithm has
been developed [3] by using the Ito-Taylor expansion of
higher order and the discrete-time CKF [2]. More recently,
a CD-CKF with two differential equations for the time
update has been developed [27], in which comparison with
the Ito-Taylor expansion approach [3] is made to show
the relative merits of both approaches from computational
point of view. And, by using the divided difference (DD)
method [22], we have derived continuous-discrete divided
difference filters (CD-DDFs) [30].

In this paper, after reviewing the equivalent linearization
method for static nonlinearities [29, 25], we derive the
continuous-discrete exact Gaussian filter (CD-ExGF) and
equivalent linearization Kalman filter (CD-EqKF), where
the latter extends the discrete-time filtering algorithm in
[15]. It is shown that the time update algorithm of CD-
ExGF is the same as that of CD-EqKF. We also develop
a method of implementing the CD nonlinear filters based
on the Huen scheme [17].

The paper is organized as follows. In section 2, the CD non-
linear filtering problem is stated, and a general approach
of designing CD nonlinear filters is presented. In section 3,
we review the method of equivalent linearization of a static
nonlinearity, and the CD-ExGF is outlined together with
CD-EqKF in section 4. In section 5, numerical procedures
for integrating a stochastic differential equation and two
time update equations are developed by using the Heun
scheme. Section 6 shows results of comparative simulation
studies using CD-EKF, CD-EqKF and CD-ExGF. Section
7 concludes the paper.

2. NONLINEAR FILTERING

Consider a nonlinear stochastic system described by

dx(t) = f(x(t), t)dt+ Ldw(t), 0 ≤ t ≤ T (1)

where x(t) ∈ Rn is the state vector, f : Rn × [0, T ] → Rn

is the drift term, dw(t) ∈ Rl is the increment of Brownian
motion with mean zero and covariance matrix Qdt ∈ Rl×l,
and L ∈ Rn×l is the diffusion matrix. We also assume that
the drift term satisfies conditions that ensure the existence
and uniqueness of the process x(t), 0 ≤ t ≤ T [13]. Since
L is constant, the system (1) is called a Langevin-type
stochastic differential equation.

Suppose that the output observations are taken at discrete
times 0 = t0 < t1 < · · · < tN ≤ T . Thus, the observation
equation is given by
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yk = hk(x(tk)) + vk, k = 0, 1, · · · , N (2)

where yk ∈ Rp is the output vector, hk : Rn → Rp is the
output nonlinear function, and vk ∈ Rp is a Gaussian white
noise with mean zero and covariance matrix R ∈ Rp×p. It
is assumed that the observation noise vk, k = 0, 1, · · · , N
is independent of the initial state x(0) and the Brownian
motion w(t), 0 ≤ t ≤ T .

Let Yk = {y0, y1, · · · , yk} be the collection of observations
up to time tk. Then, from the Bayesian point of view,
the relevant information is in the conditional probability
density functions (pdfs) of the state x(t) given Yk, i.e.

p(x(t)|Yk), tk ≤ t ≤ tk+1

where k = 0, 1, · · · , N . We also define the conditional
mean estimate and covariance matrix as

x̂(t|tk) = E{x(t)|Yk}
P (t|tk) = cov(x(t)|Yk), tk ≤ t ≤ tk+1

where k = 0, 1, · · · . We see from [13] that the CD nonlinear
filtering algorithm consists of two algebraic equations
for the measurement update and two forward differential
equations for the time update. Thus, the present problem
can be solved by iterating the following two steps.

Measurement update At t = tk, update x̂(tk|tk−1)
and P (tk|tk−1) based on the observation yk in order
to obtain the filtered estimate x̂(tk|tk) and covariance
matrix P (tk|tk).

Time update For tk ≤ t < tk+1, integrate two forward
differential equations to obtain the predicted estimate
x̂(tk+1|tk) and covariance matrix P (tk+1|tk), where the
initial conditions are the filtered estimate x̂(tk|tk) and
covariance matrix P (tk|tk).

It is well known that the linearization of f and hk at the
filtered and predicted estimates yields the CD-EKF algo-
rithm [13, 9]. The CD-UKF algorithm has been derived
from the discrete-time UKF by a limiting procedure [26],
and the CD-CKF algorithm has been developed [3], [27].
Also, we have derived CD-DDFs [30], extending DD filters
[22]. In this paper, we derive the CD-ExGF by extending
ExGF [21], and then the CD-EqKF by using equivalent
linearization [15, 20]. We also present numerical methods
of simulating the stochastic differential equation and of
solving two differential equations in the time update.

3. EQUIVALENT LINEARIZATION OF A STATIC
NONLINEARITY

We briefly review the equivalent linearization of a static
nonlinearity [25]. Let x ∈ Rn be a random vector with
mean mx and covariance matrix Σxx > 0. Consider a
nonlinear function y = g(x) with g : Rn → Rp. Let
my := E{g(x)} and Σyx := cov(y, x). Then, the linear
unbiased minimum variance estimate of y is given by

ŷ = my + Ĝ(x−mx)

where Ĝ = ΣyxΣ
−1
xx ∈ Rp×n is called the equivalent gain

matrix in the literature. The covariance matrix Σyy of y
is therefore approximated as

Σyy ≃ cov(ŷ) = ĜΣxxĜ
T (3)

Moreover, the actual output covariance matrix is bounded
below, i.e. Σyy ≥ ĜΣxxĜ

T.

Proposition 1. Suppose that x ∈ Rn is a Gaussian random
vector with N(mx, Σxx). Consider a nonlinear function
y = g(x) with g : Rn → Rp differentiable, and assume
that the following conditions are satisfied:

E{|gi(x)|} <∞, E{|∂gi(x)/∂xj |} <∞
where i = 1, · · · , p, j = 1, · · · , n. Then, the equivalent gain
matrix Ĝ ∈ Rp×n of g(x) is expressed as

Ĝ = E

{
∂

∂x
g(x)

}
=

∂

∂mx
E{g(x)} (4)

Proof: See Appendix of [15]. □

The formula (4) implies that the equivalent gain matrix
can be obtained by either the expectation of Jacobian ma-
trix of the nonlinearity or the Jacobian of the expectation
of it. We should note that this is true under the assumption
that x is Gaussian.

We have two linear approximations for y = g(x), i.e. a
local approximation:

g(x) ≃ g(mx) +

[
∂g(x)

∂x

]
x=mx

(x−mx) (5)

and a ”global” approximation:

g(x) ≃ E{g(x)}+ E

{
∂g(x)

∂x

}
(x−mx) (6)

It is well known that the EKF is derived by using a local
approximation of (5), while the EqKF is derived by using
a global approximation of (6).

4. CONTINUOUS-DISCRETE EXACT GAUSSIAN
FILTER AND EQUIVALENT LINEARIZATION

KALMAN FILTER

For simplicity, the Gaussian pdf with N(m,P ) is written
as [1]

γ(x−m,P ) =
1√

(2π)n|P |
e−

1
2 (x−m)TP−1(x−m)

4.1 Measurement update algorithm

The measurement update is performed at t = tk when a
new observation is available. In the following, the a priori
conditional pdf is assumed to be Gaussian, i.e.

p(x(tk)|Yk−1) = γ(x(tk)− x̂(tk|tk−1), P (tk|tk−1)) (7)

To derive the measurement update algorithm, we assume
that the conditional expectations below are computable by
using (7).

Step M1. Compute the one-step prediction

ŷk|k−1 = E{hk(x(tk))|Yk−1} (8)

where the right-hand side of (8) is a function of x̂(tk|tk−1)
and P (tk|tk−1), so that we write it as

ŷk|k−1 = ψk(x̂(tk|tk−1), P (tk|tk−1)) (9)

Step M2. We compute the conditional auto-covariance
matrix of yk and the cross-covariance matrix of x(tk) and
yk, i.e.

Vk/k−1 = cov(hk(x(tk))|Yk−1) +R (10)

and

Uk/k−1 = cov(x(tk), hk(x(tk))|Yk−1) (11)
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Thus, by the linear least-squares regression (i.e. the equiv-
alent linearization), the Kalman gain matrix is given by

Kk = Uk/k−1V
−1
k/k−1 (12)

Step M3. By using (9), (10) and (12), we have the
measurement update equations

x̂(tk|tk) = x̂(tk|tk−1) +Kk[yk − ŷk|k−1]

P (tk|tk) = P (tk|tk−1)−KkVk/k−1K
T
k

We note that the form of this measurement update equa-
tions is the same as that of the discrete-time nonlinear
Kalman filter [1].

To derive the CD-EqKF, we compute the equivalent gain
matrix of hk by

Ĥk =
∂ψk(x̂(tk|tk−1), P (tk|tk−1))

∂x̂(tk|tk−1)
(13)

Then, it follows from (3) that Vk/k−1 of (10) can be
approximated as

V e
k/k−1 = ĤkP (tk|tk−1)Ĥ

T
k +R (14)

But, by the first equality of (4), we have exactly

Uk/k−1 = P (tk|tk−1)Ĥ
T
k (15)

Thus, the measurement update algorithm of CD-EqKF
is obtained by replacing (10) and (11) by (14) and (15),
respectively.

4.2 Time update algorithm

According to [13], the time update equations satisfied
by the conditional mean estimate and the conditional
covariance matrix of the prediction error are respectively
given by
d

dt
x̂(t|tk) = E{f(x(t), t)|Yk} (16)

d

dt
P (t|tk) = cov(x(t), ft|Yk) + cov(ft, x(t)|Yk) + LQLT

(17)

where ft := f(x(t), t). We now compute the conditional
expectations in (16) and (17) with respect to the pdf

p(x(t)|Yk) = γ(x(t)− x̂(t|tk), P (t|tk)) (18)

Step T1. The conditional expectation of the right-hand
side of (16) is a function of x̂(t|tk) and P (t|tk), so that we
write

E{f(x(t), t)|Yk} = φt(x̂(t|tk), P (t|tk)) (19)

Step T2. It follows from (4) that the conditional covariance
matrix is expressed as

cov(ft, x(t)|Yk) = E{f(x(t), t)[x(t)− x̂(t|tk)]T|Yk}
= F̂tP (t|tk) (20)

where the equivalent gain matrix F̂t is given by

F̂t =
∂φt(x̂(t|tk), P (t|tk))

∂x̂(t|tk)
(21)

Step T3. The time update equations are expressed as
d

dt
x̂(t|tk) = φt(x̂(t|tk), P (t|tk)) (22)

d

dt
P (t|tk) = P (t|tk)F̂T

t + F̂tP (t|tk) + LQLT (23)

where tk ≤ t ≤ tk+1.

It follows from (20) that the time update equations of
CD-ExGF are the same as those of CD-EqKF, i.e. (22)
and (23). Thus, the difference between the two filters is in
the evaluation of the conditional auto-covariance matrix
Vk/k−1 = cov(ytk |Yk−1).

4.3 Relation among CD-ExGF, CD-EqKF and CD-EKF

In the derivation of the algorithm of CD-ExGF and CD-
EqKF, it is assumed that the conditional expectations of
(8), (10), (11), (19) and (20) are exactly computable under
the Gaussian assumptions of (7) and (18). It is well known
that these expectations are computable if hk(x) and f(x, t)
are polynomials or monomials and exponential of linear,

quadratic and bilinear functions like eαx+βx2

and exixj . In
fact, in these cases, we can compute ψk, Vk/k−1, Uk/k−1

and φt, cov(x(t), ft|Yk) exactly, so that we have the CD-
ExGF algorithm.

• It follows from (20) that both the CD-ExGF and
CD-EqKF have the same time update differential
equations.

• The difference of the two filters is in the evaluation of
the auto-covariance matrix Vk/k−1 of yk conditioned
on Yk−1 in the measurement update.

• Thus, if the observation equation is linear, then the
algorithm of CD-ExGF coincides with that of CD-
EqKF.

• If we delete P (tk|tk−1) from (9) and (13), and P (t|tk)
from (19) and (21), then the algorithm of CD-EqKF
reduces to that of CD-EKF.

If the conditional expectations are not exactly computable,
some numerical procedures are needed to approximately
evaluate them [12, 31, 2].

5. NUMERICAL PROCEDURE

In this section, we introduce numerical procedures for
simulating the stochastic differential equation (1) and for
solving the time update equations (22) and (23), by using
the Heun scheme [17].

5.1 Solution of stochastic differential equation

Let ∆ be a small interval for integration, and let x̄(t) be
the approximation of x(t). Define

c1 = f(x̄(t), t)

c2 = f(x̄(t) +∆c1 +
√
∆Lw̄(t), t+∆)

Then, the Heun scheme for solving (1) is give by

x̄(t+∆) = x̄(t) +
∆

2
(c1 + c2) +

√
∆Lw̄(t)

where t = j∆, j = 0, 1, · · · , and w̄(t) is the pseudo random
number with N(0, Q). It is shown [17] that the the Heun
scheme has a strong order of convergence 1.0, while the
Euler-Maruyama scheme has a strong order of convergence
0.5. Thus, the Heun scheme with a higher-order accuracy
than the Euler-Maruyama scheme is the most appropriate
simple procedure for solving our Langevin-type stochastic
differential equation of (1).
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5.2 Solution of time update differential equations

We consider the integration of (22) and (23) in the interval
tk ≤ t ≤ tk+1, where the initial conditions are the filtered
estimate x̂(tk|tk) and covariance matrix P (tk|tk). It should
be noted that since, the right-hand sides of (22) and (23)
are functions of both x̂(t|tk) and P (t|tk), they are coupled
equations.

Let m = x̂(t|tk) and P = P (t|tk). Define d1 = φt(m,P ).
Then the Euler approximation of the solution of (22) at
t+∆ is given by

x̂e(t+∆|tk) = m+∆d1
Also, the Euler approximation of the solution of the
covariance equation of (23) at t+∆ is expressed as

P e(t+∆|tk) = P +∆
[
F̂tP + PF̂T

t + LQLT
]

where

F̂t =
∂φt(m,P )

∂m

We write me := x̂e(t+∆|tk), and P e := P e(t+∆|tk). In
terms of me and P e, we define d2 = φt(m

e, P e). Then, the
Heun scheme-based procedure of obtaining the conditional
mean at t+∆ is expressed as

x̂(t+∆|tk) = x̂(t|tk) +
∆

2
(d1 + d2) (24)

By using the Euler approximations me and P e, we define

F̂ e
t =

∂φt(m
e, P e)

∂me

Then, the Heun scheme-based time update procedure of
the covariance matrix becomes

P (t+∆|tk) = P (t|tk) +
∆

2

[
F̂tP + PF̂T

t

+ F̂ e
t P

e + P e(F̂ e
t )

T

]
+∆LQLT (25)

The algorithms of (24) and (25) are used in Step T3 to
compute the predicted estimate x̂(tk+1|tk) and covariance
matrix P (tk+1|tk).

6. NUMERICAL EXAMPLES

We show simulation results for two examples; one is a
scalar nonlinear system with a square observation, and the
other is a parameter estimation problem of a 2nd-order
continuous-time AR model.

Example 6.1: Consider a scalar CD system [12]

dx(t) = ax(1− x2)dt+ dw(t) (26)

yk = (x(tk)− b)2 + vk (27)

where w(t) is a Brownian motion with N(0, qt) and vk is
a white noise with N(0, r), and a > 0.

It follows that the deterministic system ẋ = ax(1−x2) has
three equilibria {−1, 0, 1}, where {−1, 1} are stable and
{0} is unstable. Also, the stationary pdf of x(t) is given
by p(x) = C exp{− a

2q (x
2 − 1)2} (C > 0), implying that

the x(t) process has two operating modes corresponding
to two stable equilibria. Also, the observation function of
(27) is a square shifted by b as shown in Fig. 1, so that the
likelihood function is bimodal. Therefore the present CD
nonlinear filtering is a challenging problem.

-

6

b0 x

h(x)

Fig. 1. Output nonlinearity h(x).

The CD-ExGF (CD-EqKF) algorithm for (26) and (27)
becomes as follows.

Algorithm of CD-ExGF

1) The measurement update

ŷk/k−1 = (x̂(tk|tk−1)− b)2 + P (tk|tk−1)

Ĥk = 2(x̂(tk|tk−1)− b)

Uk/k−1 = ĤkP (tk|tk−1)

V e
k/k−1 = ĤkP (tk|tk−1)Ĥk + r

Vk/k−1 = V e
k/k−1 + 2P 2(tk|tk−1)

Kk = Uk/k−1V
−1
k/k−1

x̂(tk|tk) = x̂(tk|tk−1) +Kk[yk − ŷk|k−1]

P (tk|tk) = P (tk|tk−1)−KkVk/k−1K
T
k

2) The time update

d

dt
x̂(t|tk) = φt(x̂(t|tk), P (t|tk))

d

dt
P (t|tk) = 2F̂tP (t|tk) + q

where

φt = a[x̂(t|tk)− x̂3(t|tk)− 3x̂(t|tk)P (t|tk)]
F̂t = a[1− 3x̂2(t|tk)− 3P (t|tk)]

Note that if we employ V e
k/k−1 for Vk/k−1, then we have

the CD-EqKF algorithm. Moreover, if we delete P (tk|tk−1)

from ŷk/k−1, and P (t|tk) from φt and F̂t, then we have the
CD-EKF algorithm. □
For simulations, let q = 0.25, r = 0.01 and a = 5, and let
τ be the sampling interval, so that we have tk = kτ for
k = 0, 1, · · · , N , where N = T/τ . Also, we assume that
the time interval for simulation is T = 10, and the interval
for integration is ∆ = 0.01.

Figure 2 displays a sample of state and observation pro-
cesses, and state estimates by CD-EKF, CD-EqKF and
CD-ExGF for b = 0.2, τ = 0.1, where x(0) ∼ N(0, 1) and
the initial conditions are set as x̂(0|−1) = 0, P (0|−1) = 1.
In this particular sample, the CD-EKF made a wrong
decision for the operating mode of the state process, while
both CD-EqKF and CD-ExGF made a correct decision.

To compare the performance of nonlinear filters, we define
the root mean square error (RMSE) as

E
(j)
N =

√√√√ 1

N

N∑
k=0

(x(j)(tk)− x̂(j)(tk|tk))2, j = 1, · · · ,M

where M is the number of Monte Carlo runs. Table 1
displays the average RMSE
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Fig. 2. Sample processes of state, observation and state
estimates by CD-EKF, CD-EqKF and CD-ExGF,
where b = 0.2 and τ = 0.1.

Table 1. Performance of CD nonlinear filters.

CD-EKF CD-EqKF CD-ExGF

b = 0.1 − 1.0089 1.0736
− (0.8958) (0.8111)
36 51 43

b = 0.2 0.9441 0.7605 0.8780
(0.7618) (0.8480) (0.7544)

49 62 50

b = 0.3 0.7639 0.5347 0.6445
(0.6822) (0.7349) (0.6619)

53 72 60

b = 0.4 0.5537 0.2884 0.2213
(0.5473) (0.5121) (0.3039)

65 90 98

b = 0.5 0.2449 0.1644 0.1250
(0.2385) (0.3764) (0.0728)

98 98 100

Ē =
1

M

M∑
j=1

E
(j)
N , M = 100, N = 100

where the numbers in parentheses denote the standard

deviation of E
(j)
N , and the numbers in the third row denote

the number of success of tracking the state mode. We see
from Table 1 that as b increases, the performance of filters
and the rate of correct tracking get better in general. Note
that for b = 0, all the filters with these initial conditions
cease to track the state.

Now we consider the case with a poor guess of the initial
state treated in [12], where the initial state is given by
x(0) = −0.2, while the initial conditions for the filters are
x̂(0|−1) = 0.8, P (0|−1) = 2. Table 2 shows the numbers of
success of estimating the mode of operation of three filters
forM = 100 simulation runs. We see that the increase of b
does not help to improve the performance of CD-EKF, and
the CD-EqKF shows the best performance among three
filters for small values of b. But, the CD-ExGF shows the
very good performance for large values of b.

Example 6.2: The CD nonlinear filters are applied to the
parameter estimation of a continuous-time AR model of
the form [19, 10]

Table 2. Number of success in estimating the
operating mode for M = 100.

b CD-EKF CD-EqKF CD-ExGF

0 15 53 13

0.1 15 53 13

0.2 15 49 15

0.3 15 37 15

0.4 15 33 15

0.5 15 88 95

0.6 15 94 99

d2x

dt2
+ a1

dx

dt
+ a2x = w(t)

where a1, a2 are unknown parameters, and w is a white
noise with N(0, q). Let x1 := x, x2 := ẋ, x3 := a1, x4 :=
a2. Then, the augmented state vector is given by x =
[x1 x2 x3 x4]

T, so that the state space model becomes

d

 x1(t)x2(t)
x3(t)
x4(t)

 =

 x2(t)
−x2(t)x3(t)− x1(t)x4(t)

0
0

 dt+
 0
dw(t)
0
0


yk = x1(tk) + vk

where vk is the white noise with N(0, r). Let τ > 0 be the
sampling interval, so that tk = kτ, k = 0, 1, · · · , N .

Since the observation function is linear, the algorithm of
CD-ExGF is the same as that of CD-EqKF. For the CD-
EqKF, the second component of φt is given by

φt(2) = −x̂2(t|tk)x̂3(t|tk)− x̂1(t|tk)x̂4(t|tk)
− P23(t|tk)− P14(t|tk) (28)

Thus, if we delete the cross-covariances P23(t|tk), P14(t|tk)
from the above equation, then we have the CD-EKF algo-
rithm. Hence, in the state and parameter estimation prob-
lem for AR models, the difference between two algorithms
of CD-EKF and CD-EqKF is very small.

We assume that the initial state is x(0) = [ξ 0 a1 a2]
T

with ξ ∼ N(0, 0.52), and q = 1, r = 0.001, so that the
signal to noise ratio of x1(t) process is about 20dB in
magnitude. The initial estimate and covariance matrix are
x̂(0| − 1) = [0 0 0 0]T and P (0| − 1) = ρ I4, respectively.
Also, the time increment for integration is ∆ = 0.01 and
the simulation interval is T = 600 (sec).

Simulation results of the parameter estimation for different
values of the sampling interval τ are shown in Tables 3
and 4, where â1 and â2 respectively denote the averages
of x̂3(tN |tN ) and x̂4(tN |tN ) based on Monte Carlo runs
of M = 100, and where the numbers in parentheses
denote the standard deviation of the estimates. We see
that the performance of CD-EqKF (CD-ExGF) is slightly
better than that of CD-EKF, especially for large τ . Note
that though not shown here, the performance of state
estimation by both algorithms was quite close. Thus, it
seems that the covariances in (28) much contribute to the
parameter estimation than to the state estimation.

It is well known that the performance of nonlinear filters
depends on many factors, e.g. the initial state and its a
priori estimate, noise variances, the sampling interval, so
that stability and convergence of the present parameter
estimation algorithm remain to be analyzed [23, 8].
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Table 3. Performance of parameter estimation
for a1 = 3, a2 = 2 and ρ = 10.

CD-EKF CD-EqKF

τ â1 â2 â1 â2
0.1 2.9871 2.0238 2.9991 2.0261

(0.1321) (0.1427) (0.1325) (0.1428)

0.2 2.9868 2.0197 3.0056 2.0255
(0.1435) (0.1446) (0.1437) (0.1448)

0.5 2.9630 2.0044 3.0042 2.0217
(0.2225) (0.1563) (0.2197) (0.1546)

1.0 2.7651 1.8952 2.9351 1.9960
(0.3935) (0.2145) (0.2159) (0.1635)

Table 4. Performance of parameter estimation
for a1 = 2, a2 = 2 and ρ = 5.

CD-EKF CD-EqKF

τ â1 â2 â1 â2
0.1 1.9900 2.0163 1.9978 2.0183

(0.0992) (0.1193) (0.0994) (0.1194)

0.2 1.9896 2.0128 2.0015 2.0175
(0.1047) (0.1205) (0.1049) (0.1206)

0.5 1.9806 2.0029 2.0027 2.0154
(0.1422) (0.1253) (0.1424) (0.1250)

1.0 1.9401 1.9658 1.9708 2.0014
(0.2296) (0.1673) (0.2010) (0.1478)

7. CONCLUSIONS

In this paper, we have derived the continuous-discrete
exact Gaussian filter (CD-ExGF) and the equivalent lin-
earization Kalman filter (CD-EqKF). It is shown that two
CD nonlinear filters have the same time update differential
equations for the conditional mean and covariance matrix,
and their difference is in the computation of Kalman gain
in the measurement update. Numerical procedures for
solving the stochastic differential equation and two time
update differential equations are obtained by using the
Heun scheme. Simulation results are included to show the
difference and similarity of algorithms of CD-EKF, CD-
EqKF and CD-ExGF.
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[26] S. Särkkä, On unscented Kalman filtering for state estimation
of continuous-time nonlinear systems, IEEE Trans. Automat.
Control, Vol. 52, No. 9, pp. 1631–1641, 2007.
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