
Sigma-Point Set Rotation in Unscented Kalman
Filter: Analysis and Adaptation ?
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Abstract: The paper deals with analysis and illustration of the impact of the σ-point set rotation on the
approximation quality of the unscented transformation and the estimation performance of the unscented
Kalman filter. It is shown that the covariance matrix factor, used in σ-point computation, can be
multiplied by an arbitrary rotation matrix which moves the σ-points along the surface of a hyper-ellipsoid
related to the covariance matrix. The rotation matrix can be thus considered as another user-defined
parameter (in addition to the scaling parameter) and the unscented Kalman filter with adaptive selection
of both user-defined parameters is proposed. The impact of fixed or adaptively selected parameters on
the performance of the unscented Kalman filter is illustrated by a numerical study.

1. INTRODUCTION

State estimation of nonlinear discrete-time stochastic systems
plays an important role in many fields such as target tracking,
satellite navigation, signal processing, fault detection and adap-
tive and optimal control problems.

General solution to the recursive state estimation problem is
given by the Bayesian recursive relations (BRRs). The BRRs
provide probability density functions (PDFs) of the state con-
ditioned by the measurements representing a full description of
the state, which itself cannot be measured. A closed-form solu-
tion to the BRRs is available only for a few special cases such
as a linear Gaussian system [Anderson and Moore, 1979] for
which the resulting algorithm corresponds to the well-known
Kalman filter (KF). In other cases, approximate methods, either
global or local, must be used.

The global methods are based on a certain type of BRRs
solution approximation and thus, they generate the conditional
PDF of the state. As an example of these methods the particle
filter [Doucet et al., 2001], point-mass method [Simandl et al.,
2006], and the Gaussian sum method [Anderson and Moore,
1979] can be mentioned. The local methods often approximate
the system description so that the KF design technique can be
used even for nonlinear systems. In consequence, such methods
provide state estimate in the form of the conditional mean and
covariance matrix with local validity.

Local 1 methods can be divided into derivative and derivative-
free local methods. Derivative methods approximate nonlinear
functions in a system description by derivative-based expan-
sions. As an example the Taylor or Fourier-Hermite series can
be mentioned which lead to e.g., the extended Kalman filter,

? This work was supported by the Czech Science Foundation, project no.
GACR P103-13-07058J, and by the project EXLIZ CZ.1.07/2.3.00/30.0013,
which is co-financed by the European Social Fund and the state budget of the
Czech Republic.
1 In literature instead of the term ’local methods’, terms like ’Gaussian filters’
or ’Kalman filters’ can be found.

second order filter, or Fourier-Hermite Kalman filter [Anderson
and Moore, 1979, Sarmavuori and Sarkka, 2012].

Derivative-free methods to the local filter design are based
on differential-based polynomial interpolations, the unscented
transformation, or various numerical integration rules. These
methods are represented by the divided difference filters
(DDFs) based on the Stirling polynomial interpolation [Nor-
gaard et al., 2000], unscented Kalman filter (UKF) based on
the unscented transformation (UT) [Julier and Uhlmann, 2004],
or the quadrature, cubature, and stochastic integration filters
utilizing deterministic and stochastic integration rules [Ito and
Xiong, 2000, Arasaratnam and Haykin, 2009, Dunı́k et al.,
2013]. It is worth to note that although the approximations
used in derivative-free methods come from quite different basic
ideas, the resulting filter algorithms are in many cases identi-
cal. Among others, similarity analyses of the DDFs and UKF
[Simandl and Dunik, 2009], cubature and quadrature filters and
UKF [Jia et al., 2011], cubature and stochastic integration filters
[Dunı́k et al., 2013] can be pointed out.

Derivative-free methods, contrary to the derivative ones, evalu-
ate the nonlinear functions in the system description in multiple
points (often called σ-points). Placement of the σ-points in
the state-space is determined by i) the actual estimated mean
and covariance matrix (i.e., the linearisation point) and ii) σ-
point set design parameters. The parameters are user-defined
and affect the quality of the approximation and subsequently
the filter estimation performance. The parameters might include
selection of the covariance matrix decomposition technique and
specification of the scaling parameter(s) (if applicable).

In the literature, vast majority of the research interest related to
the user-defined parameters specification has been devoted to
the scaling parameter specification in the context of the UKF.
A fundamental recommendation on how to select the scaling
parameter was provided in [Julier and Uhlmann, 2004]. The
recommendation stems form a term-by-term comparison of the
Taylor series expansion of the true mean and covariance matrix
of a random variable transformed through a nonlinear func-
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tion with the Taylor series expansion of the UT-approximated
statistics. In this case, the scaling parameter is a function of
the state-space dimension only. In [Sakai and Kuroda, 2010],
a technique for the off-line scaling parameter selection using
a training procedure was proposed. Contrary to the previous
procedure, adaptive techniques for the parameter selection has
been of interest in past few years [Dunı́k et al., 2010, Turner
and Rasmussen, 2012, Dunı́k et al., 2012]. Such techniques
take an advantage of possibly different parameter value at each
time instant resulting in significant increase of the estimation
performance. Regarding the covariance matrix decomposition
in the scope of the local filters, several decompositions were
studied in [Rhudy et al., 2012] and thoroughly analysed and
simulated in [Straka et al., 2013].

The goal of the paper is to analyse the impact of the σ-point
set rotation on the performance of the UT or UKF 2 . It is
shown that different covariance matrix decompositions provide
the same σ-point set except of its rotation. Then, relations for
an arbitrarily rotated set are proposed and an algorithm of the
UKF with adaptive σ-point set rotation selection is studied.

The rest of the paper is organised as follows. In Section II the
system is defined and in Section III the state estimation by the
UKF is summarized. Then, the rotation of the σ-point set in
the UT is analysed and novel UKF with adaptive selection of
the user-defined parameters is proposed in Sections IV and V,
respectively. Finally, a numerical study is the content of Section
VI and the conclusion is given in Section VII.

2. SYSTEM DEFINITION

Let the discrete-time nonlinear stochastic system be considered
xk+1 = fk(xk) + wk, k = 0, 1, 2, . . . , (1)

zk = hk(xk) + vk, k = 0, 1, 2, . . . , (2)
where the vectors xk ∈ Rnx and zk ∈ Rnz represent the
immeasurable state of the system and measurement at time
instant k, respectively, fk : Rnx → Rnx and hk : Rnx → Rnz

are known vector functions, and wk ∈ Rnx and vk ∈ Rnz

are the state and measurement white noises. The PDFs of the
noises are supposed to be Gaussian with zero means and known
covariance matrices Σw,k and Σv,k, i.e., pwk

(wk) = N{wk :
0,Σw,k} and pvk

(vk) = N{vk : 0,Σv,k}, respectively. The
PDF of the initial state is Gaussian and known as well, i.e.,
px0(x0) = N{x0 : x̄0,P0}, and independent of the noises.

3. STATE ESTIMATION BY UKF

The aim of the local state estimation methods is to compute
the first two moments of the state conditioned by the mea-
surements, namely, the conditional mean x̂k|k = E[xk|zk]

and covariance matrix Pk|k = cov[xk|zk] in which zk =
[z0, z1, . . . , zk]. The moments can be understood as a Gaus-
sian approximation of the conditional PDF, i.e., p(xk|zk) ≈
N{xk : x̂k|k,Pk|k} [Arasaratnam and Haykin, 2009, Dunı́k
et al., 2013], depending on the type of used approximation.

All the local filter algorithms follow the structure of the generic
local filter algorithm which can be summarised as [Simandl and
Dunik, 2009, Arasaratnam and Haykin, 2009]:

Algorithm 1: Generic Local Filter

2 Note that although the paper is focused on the UKF, the results can be directly
applied to other derivative-free filters as well.

Step 1: Set the time instant k = 0 and define a priori initial
condition by the predictive mean x̂0|−1 = E[x0] = x̄0 and the
predictive covariance matrix P0|−1 = cov[x0] = P0.
Step 2: The state predictive estimate is updated with respect to
the last measurement zk according to

x̂k|k = x̂k|k−1 + Kk|k(zk − ẑk|k−1), (3)

Pk|k = Pk|k−1 −Kk|kPz,k|k−1K
T
k|k, (4)

where Kk|k = Pxz,k|k−1(Pz,k|k−1)−1 is the filter gain and

ẑk|k−1 = E[zk|zk−1] = E[hk(xk)|zk−1], (5)

Pz,k|k−1 = E[(zk − ẑk|k−1)(zk − ẑk|k−1)T |zk−1] =

= E[(hk(xk)− ẑk|k−1)×
× (hk(xk)− ẑk|k−1)T |zk−1] + Σv,k, (6)

Pxz,k|k−1 = E[(xk − x̂k|k−1)(zk − ẑk|k−1)T |zk−1]. (7)
Step 3: The predictive statistics are given by the relations

x̂k+1|k = E[xk+1|zk] = E[fk(xk)|zk], (8)

Pk+1|k = E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T |zk] =

= E[(fk(xk)− x̂k|k)(fk(xk)− x̂k|k)T |zk] + Σw,k. (9)
Let k = k + 1 and algorithm continues by Step 2.

Applying the UT for the approximate solution to the measure-
ment and state predictive statistics (5)–(7) and (8)–(9) leads to
the UKF [Julier and Uhlmann, 2004]. For the sake of simplicity
and completeness, the basic version 3 of the UT is introduced
below.

The UT can be viewed as a tool for approximate computation
of the mean, covariance and cross-covariance matrices of a
transformed random variable y = g(x) under the assumption
of the known function g(·) and the known mean x̂ = E[x]
and covariance matrix Px = cov[x] of x. The UT is based on
computation of the set of deterministic σ-points {Xi}2nx

i=0 with
appropriate weights {Wi}2nx

i=0 according to

X0 = x̂, W0 =
κ

nx + κ
, (10)

Xj = x̂ +
√

(nx + κ)Sj ,Wj =
1

2(nx + κ)
, (11)

Xnx+j = x̂−
√

(nx + κ)Sj ,Wnx+j =Wj , (12)
where j = 1, . . . , nx, term Sj is the j-th column of the matrix
Sx which is a factor of the covariance matrix Px so that
Sx(Sx)T = Px, and variable κ is the scaling parameter. To
get approximate characteristic of y, each point is transformed
via the nonlinear function

Yi = g(Xi),∀i. (13)
Resulting UT-based characteristics 4 are given by

ŷUT =

2nx∑
i=0

WiYi, (14)

PUT
y =

2nx∑
i=0

Wi(Yi − ŷUT)(Yi − ŷUT)T , (15)

3 Quite a few other advanced UT versions have been proposed, e.g., higher
order, simplified, scaled, orthogonally transformed, or the smart sampling,
differing in the σ-point set computation [Julier and Uhlmann, 2004, Steinbring
and Hanebeck, 2013, Chang et al., 2013].
4 The characteristics are generally approximate. Exact values are obtained for
a few special functions g(·) only, e.g., for a linear one.
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PUT
xy =

2nx∑
i=0

Wi(Xi − x̂)(Yi − ŷUT)T . (16)

4. ROTATION IN SIGMA-POINT SET COMPUTATION

The ultimate property of any σ-point set is the equality of its
first (at least) two moments with the moments of the original
random variable, i.e.,

x̂UT =

2nx∑
i=0

WiXi = x̂, (17)

PUT
x =

2nx∑
i=0

Wi(Xi − x̂UT)(Xi − x̂UT)T = SxS
T
x = Px,

(18)
regardless of the choice of the scaling parameter and covariance
matrix decomposition.

4.1 Sigma-Point set with arbitrary rotation

Let a specific decomposition of the covariance matrix Px

be considered, the covariance matrix factor Sx be computed,
and nx-dimensional rotation matrix C be specified. Then, the
rotated σ-point set (with preserved weights) is

X r0 = x̂, (19)

X rj = x̂ +
√

(nx + κ)Srj , (20)

X rnx+j = x̂−
√

(nx + κ)Srj , (21)
where Srj is the j-th column of the matrix

Srx = SxC. (22)
Because of the orthogonal property of the rotation matrix,
the rotated covariance matrix decomposition forms also the
covariance matrix Px, i.e.,

Px = Srx(Srx)T = SxCCTSTx = SxIS
T
x , (23)

where I is the identity matrix of appropriate dimension.

As the rotated σ-point set (19)–(21) is still symmetric and rela-
tion (23) is valid, the rotated set preserve the mean and covari-
ance matrix of the original variable x similarly to ’unrotated’
set, see (17), (18).

For illustration, three σ-point sets are shown in Figure 1; unro-
tated (standard) set, rotated set through θ = 30 degrees, and
rotated set through θ = 60 degrees. It can be seen that the
points belong to the ellipsoid (in Rnx to hyper-ellipsoid) with
the principal axes given by the orthogonal matrix U and diago-
nal matrix D computed by the singular value decomposition 5

(SVD) of the scaled covariance matrix (nx + κ)Px as

(nx + κ)Px = (nx + κ)UDUT . (24)

Note 1: Two-dimensional (counter-clockwise) rotation matrix
is of the form

C2 =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (25)

Rotation matrix computation of arbitrary dimension is dis-
cussed e.g., in [Meyer, 2000]. Generally, a rotation matrix of
dimension nx, Cnx

, requires specification of nx(nx − 1)/2
rotation angles, i.e., θ = [θ1, . . . , θnx(nx−1)/2]T .
5 For symmetric positive definite matrix SVD reduces to the spectral decom-
position.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1
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2
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x 2
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θ=60
countour of (n

x
+κ)P

x

Fig. 1. Illustration of σ-point set rotation.

Note 2: Note also that with respect to the form of (23), any
orthogonal 6 matrix can be used as C.

4.2 Matrix decomposition: A specific σ-point set transformation

Based on the analysis in [Straka et al., 2013], it can be shown
that various covariance matrix decompositions are the same
except of the matrix C.

As an example, comparison of the SVD and Cholesky decom-
position of Px is introduced. Singular value decomposition of
Px (24) results in the covariance matrix factor

Sx = SSVD
x = U

√
D. (26)

Let the orthogonal-triangular QR decomposition of the matrix(
U
√

D
)T

, i.e.,

[Q,R] = qr

((
U
√

D
)T)

, (27)

be supposed, where Q and R is the orthogonal and (upper-
)triangular matrix, respectively. Hence, QR = (U

√
D)T .

Then, selecting
C = Q, (28)

it holds that

Px = SSVD
x C(SSVD

x C)T = U
√

DQ
(
U
√

DQ
)T

=

= RTR = LLT , (29)
as

R = QT (U
√

D)T = (U
√

DQ)T =
(
(QR)TQ

)T
. (30)

The lower triangular matrix L in (29) then corresponds to

L = U
√

DQ = SChol
x (31)

which is the Cholesky decomposition based covariance matrix
factor Sx. The notation

√
D stands for the square-root of all

diagonal elements of the matrix D.

Therefore, the SVD- and Cholesky-based covariance matrix
factors SSVD

x (26) and SChol
x (31) are uniquely related through

the orthogonal matrix Q. Note that the factors are the same if
Px is diagonal; in this case matrix Q is the identity matrix.

4.3 Numerical illustration

Selection of the scaling parameter is often considered as a ma-
jor user-defined parameter affecting the approximation quality
6 Orthogonal matrix is a unitary matrix which preserves inner products of two
vectors. Orthogonal matrices can be further divided into rotations (having de-
terminant equal to 1) and reflections or their combinations (having determinant
equal to -1) [Meyer, 2000]. Both operations belong into the set of isometric
transformations. Within this paper the special focus is laid on the rotations.
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characteristics (14)–(16) and subsequently, impacting the filter
performance. However, as it shown in this illustration, selection
of the σ-point set rotation is another factor heavily impacting
the approximation quality.

This fact is illustrated using a nonlinear random variable trans-
formation example (as defined in Section 3) where

x̂ =

[
x̂1
x̂2

]
=

[
10
2

]
,Px =

[
6 4
4 30

]
(32)

and

y =

[
y1
y2

]
= g(x) =

[ √
x21 + x22

atan(x2/x1)

]
. (33)

This example represents transformation of Cartesian to polar
coordinate system 7 .

In Figure 2, the impact of the σ-point set rotation through the
angle θ ∈ 〈0, 90〉 [deg] and σ-point set scaling through the pa-
rameter κ ∈ 〈0, 10〉 on the resulting approximate characteristics
of y is shown. Namely, the mean value ŷUT = [ŷUT

1 , ŷUT
2 ]T

(14) and the determinant of the covariance matrix PUT
y (15)

are studied. Except those characteristics, the true ones and ones
approximated using the UT with fixed parameters 8 θ = 0[deg]
and κ = 1 are plotted in Figure 2. Here it should be noted, that
the true and fixed UT characteristics are not functions of the
parameters θ or κ, they are plotted for the whole range of the
parameters just for ease of comparison.

From the figure, it can be seen that the rotation of the σ-point
set (i.e., the UT parameter θ) heavily impacts both the mean
value and covariance matrix. In the case of the mean value, it
is possible to get the true value of ŷUT

1 by proper selection of
the rotation (θ ≈ 11, 64[deg]) and of ŷUT

2 by θ ≈ 41, 83[deg],
whereas by any setting of κ it is not possible to get the true
mean. On the other hand, the true determinant can be reached
by proper selection either of θ ≈ 52, 82[deg] or κ ≈ 3.5. It is
also worth mentioning, that the ’optimum’ parameters (in terms
of their closeness to the true values) differ for the particular
characteristics.

It can be seen that the performance of the UT (and as will be
shown, the performance of the UKF) is affected not only by
the selection of the scaling parameter but also by the rotation
of the σ-points. Thus, the rotation can be viewed as another
user-defined parameter (extending the possibilities imposed by
selection of the covariance matrix decomposition method).

5. UKF WITH ADAPTIVE SELECTION OF SCALING
PARAMETER AND SIGMA-POINT SET ROTATION

In [Dunı́k et al., 2012], the UKF with adaptive setting of the
scaling parameter (UKF-A(κ)) was proposed. Its algorithm fol-
lows the generic local filter algorithm with only one exception
which is the computation of κ prior to the filtering step. The
scaling parameter can be computed according to the several
criteria, e.g., maximizing the likelihood function [Dunı́k et al.,
2012, Chang et al., 2013] or posterior probability [Straka et al.,
2012]. As an example, computation of κ according to the latter
is recapitulated below;

κ∗k = arg max
κ

p(x̂k|k(κ)|zk;κ), (34)

7 Four-quadrant inverse tangent function (atan2) is considered.
8 Fixed parameters were set on the basis of recommendation given in [Julier
and Uhlmann, 2004].

where p(xk|zk;κ) = p(zk|xk)p(xk|zk−1)
(
p(zk|zk−1;κ)

)−1
,

p(xk|zk−1) ≈ N{xk : x̂k|k−1,Pk|k−1} is the predictive esti-
mate PDF, p(zk|zk−1;κ) ≈ N{zk : ẑk|k−1(κ),Pz,k|k−1(κ)}
is the likelihood function emphasizing its dependence on κ at
given time k, and p(zk|xk) is the measurement PDF obtained
from (1). Relation (34) leads, after a few rearrangements, to the
following minimization

κ∗k = arg min
κ

{
z̃k(κ)T [Lk|k−1(κ)−Pz,k|k−1(κ)]z̃k(κ)

+ [zk − hk(x̂k|k(κ))]TΣv,k[zk − hk(x̂k|k(κ))]

− 1
2 log |Pz,k|k−1(κ)|

}
(35)

where z̃k(κ) = zk − ẑk|k−1(κ) and

Lk|k−1 = P−1z,k|k−1P
T
xz,k|k−1Pk|k−1Pxz,k|k−1P

−1
z,k|k−1.

In [Dunı́k et al., 2012], several optimisation schemes were
discussed. Within this paper, the grid method is selected for its
simplicity. The method covers a feasible domain 〈κmin, κmax〉
within κ is sought by an equally spaced grid of points in which
the function (35) is evaluated.

Considering the rotation matrix (more specifically the respec-
tive rotation angles θ) as a free parameter, the optimal rotation
angles θ∗ can be computed analogously to κ∗ (35) at every
time instant k. Then, the resulting algorithm of the UKF with
adaptive setting of θ and κ (UKF-A(θ, κ)) is as follows.

Algorithm 2: UKF with adaptive setting of parameters

Step 1: Initialisation is the same as in Algorithm 1.
Step 2: Parameters θ∗k and κ∗k are computed according to

[θ∗k, κ
∗
k] = arg max

κ,θ
p(x̂k|k(θ, κ)|zk;θ, κ). (36)

Step 3: Filtering step is the same as in Algorithm 1 but the
measurement predictive statistics are computed on the basis of
σ-point set with θ∗k and κ∗k.
Step 4: Prediction step is the same as in Algorithm 1 where the
σ-point set uses either θ∗k and κ∗k or other values stemming for
example from recommendation in [Julier and Uhlmann, 2004].

Let k = k + 1 and algorithm continues by Step 2.

Note 3: The algorithm is conditioned by θ- and κ-dependent
optimisation function (36). This is not fulfilled for e.g., linear
function in measurement equation (2) for which the filtering
estimate is the same for any θ and κ.

Note 4: Clear limitation of this adaptive algorithm is the com-
putational complexity increasing with the state dimension. If κ
is optimized only, it is one dimensional optimisation problem
for ∀nx. However, if θ is optimized as well, the searched space
is of dimension nx(nx+1)

2 +1. Therefore, selection of the proper
optimisation method is crucial decision. Another possibility is
to perform sets of off-line simulations for considered scenarios
and then, to select the suitable parameters accordingly.

6. NUMERICAL EXAMPLE

The impact of the user-defined parameters values on the UKF
performance is evaluated in this section together with the
performance of the proposed UKF-A(θ, κ). The evaluation is
based on the bearings only tracking [Dunı́k et al., 2012] de-
scribed by the following mathematical model
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Fig. 2. Dependence of the UT-based approximate characteristics on the rotation θ of σ-point sample set and the scaling parameter
κ (together with the true and fixed UT characteristics).

xk+1 =

[
0.9 0
0 1

]
xk + wk, (37)

zk = atan

(
x2,k − sin(k)

x1,k − cos(k)

)
+ vk, (38)

where k = 0, 1, . . . , N , N = 51, p(x0) = N{x0 :

[20, 5]T , 0.1I2}, Σw,k =
[

0.1 0.01
0.01 0.1

]
, Σv,k = 0.025, ∀k.

The UKF (with various but fixed values of θ and κ) and UKF-A
(with different settings) are studied using a set of M = 1000
Monte Carlo (MC) simulations and three performance metrics;

• Root Mean Square Error (RMSE) defined as

RMSE =

√√√√ 1
MNnx

M∑
i=1

N∑
k=1

(x̂i1,k − xi1,k)2 + (x̂i2,k − xi2,k)2,

where (xi1,k, x
i
2,k) and (x̂i1,k, x̂

i
2,k) denote true and esti-

mated state components at the i-th MC run,
• Averaged Normalized Estimation Error Squared (ANEES)

Blasch et al. [2006] defined as

ANEES =

∑M
i=1

∑N
k=1

(
(xik − x̂ik)T(Pi

k|k)−1(xik − x̂ik)
)

nxMN
,

where Pi
k|k is the covariance matrix of the estimate pro-

vided by the filter at the i-th MC run,
• Time indicating an average time per one MC simulation.

The RMSE metric provides an evaluation of the estimate error
expressed as the Euclidean distance between the true state and
its estimate. The value of the RMSE provides an absolute
evaluation of the estimate error; the closer RMSE to zero,
the better. The ANEES metric, on the other hand, provides
evaluation of a relative estimation error (self-assessment of a
filter); the closer ANEES to one, the better.
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Fig. 3. RMSE and ANEES of UKF with different values of θ
and κ.

In Figure 3, the estimation performance of the UKF with the
fixed parameters is shown for different values of θ and κ. It
can be seen that the RMSE varies between 1.1560 and 1.2104
(approx. 5% change) and ANEES between 1.0782 and 1.3322
(approx. 20% change). From the perspective of the RMSE
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Table 1. RMSE, ANEES, and average time for
various UKF and UKF-A algorithms.

fixed par. RMSE ANEES Time [msec]

UKF-A(θ,κ) - 1.1484 1.0175 81.1

UKF-A(κ) θ = 0[deg] 1.1602 1.1041

15.3
UKF-A(κ) θ = 30[deg] 1.1587 1.0852
UKF-A(κ) θ = 50[deg] 1.1496 1.0387
UKF-A(κ) θ = 75[deg] 1.1598 1.0610

UKF-A(θ) κ = 0 1.1719 1.1614

12.7
UKF-A(θ) κ = 1 1.550 1.0598
UKF-A(θ) κ = 2 1.1519 1.0345
UKF-A(θ) κ = 3 1.1521 1.0306
UKF κ = 1, θ = 0 1.1791 1.2050

2.4
UKF κ = 2, θ = 70 1.1569 1.0782

the optimum fixed UKF parameters are θ∗fix = 65[deg] and
κ∗fix = 3 and for ANEES are θ∗fix = 70[deg] and κ∗fix = 2.
Note that based on the analysis in [Julier and Uhlmann, 2004],
the scaling parameter should be κ = 3 − nx = 1 without any
explicit consideration of σ-point set rotation.

Simulation results of the UKF-A are summarized in Table 1.
Namely, the following UKF-As are considered:

• UKF-A with adaptation of both parameters, UKF-A(θ,κ),
• UKF-A with adaptation of κ and fixed θ, UKF-A(κ),
• UKF-A with adaptation of θ and fixed κ, UKF-A(θ).

Adaptation of the parameter(s) (equivalently, selection of such
parameter(s) minimizing (36)) is performed using a grid
method with the grid points {0, 15, 30, . . . , 75}[deg] for θ and
{0, 1, . . . , 8} for κ. For completeness, performance of the UKF
with recommended and optimum fixed parameters is given as
well.

The simulation results illustrates the estimation quality im-
provement of the UKF-As over fixed parameters based UKFs.
The best performance is reached by the UKF-A(θ,κ) in both
considered criteria. Regarding single parameter UKF-A, the
UKF-A(κ) provides lower RMSE, but the UKF-A(θ) lower
ANEES. Considering the time complexity, the UKF-A is nat-
urally more computationally demanding because of the em-
ployed optimisation technique for (36). To reduce the complex-
ity, an alternative optimisation technique should be used. This
topic is, however, out of the scope of this study.

7. CONCLUDING REMARKS

The paper dealt with analysis of the σ-point set rotation within
the UT and UKF. It was proven that the covariance matrix
factor, used in σ-point computation, can be multiplied by an
arbitrary rotation matrix. Selected rotation matrix subsequently
(and significantly) affects performance of the UT and UKF and
it can be viewed as a user-defined parameter similarly to the
scaling parameter. Therefore, the UKF with adaptive setting of
the scaling parameter was reviewed and modified to adapt not
only the scaling performance but also σ-point set rotation. The
superior performance of the UKF with adaptation of the scaling
parameter and set rotation was illustrated using a numerical
study.

Note that the algorithm of the UKF-A is a part of the Nonlinear
Estimation Framework available at http://nft.kky.zcu.cz/.
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J. Dunı́k, O. Straka, and M. Šimandl. Stochastic integration
filter. IEEE Trans. on AC, 58(6):1561–1566, 2013.

K. Ito and K. Xiong. Gaussian filters for nonlinear filtering
problems. IEEE Trans. on AC, 45(5):910–927, 2000.

B. Jia, M. Xin, and Y. Cheng. Sparse Gauss–Hermite quadra-
ture filter with application to spacecraft attitude estimation.
Journal of Guidance, Control, and Dynamics, 34(2), 2011.

S. J. Julier and J. K. Uhlmann. Unscented filtering and nonlin-
ear estimation. IEEE Review, 92(3):401–421, 2004.

C. D. Meyer. Matrix Analysis and Applied Linear Algebra.
SIAM, 2000.

M. Norgaard, N. K. Poulsen, and O. Ravn. New developments
in state estimation for nonlinear systems. Automatica, 36
(11):1627–1638, 2000.

M. Rhudy, Y. Gu, J. Gross, and M. R. Napolitano. Evaluation
of matrix square root operations for UKF within a UAV
GPS/INS sensor fusion application. International Journal
of Navigation and Observation, 2012.

A. Sakai and Y. Kuroda. Discriminatively trained unscented
Kalman filter for mobile robot localization. J. of Adv. Res. in
Mech. Eng., 1(3):153–161, 2010.

J. Sarmavuori and S. Sarkka. Fourier-Hermite Kalman filter.
IEEE Trans. on AC, 57(6):1511–1515, 2012.

M. Simandl and J. Dunik. Derivative-free estimation methods:
New results and performance analysis. Automatica, 45(7):
1749–1757, 2009.

M. Simandl, J. Kralovec, and T. Soderstrom. Advanced point –
mass method for nonlinear state estimation. Automatica, 42
(7):1133–1145, 2006.

J. Steinbring and U. Hanebeck. S2KF: The smart sampling
Kalman filter. In Proceedings of the 16th International
Conference on Inference Fusion, Istanbul, Turkey, July 2013.

O. Straka, J. Dunı́k, and M. Šimandl. Scaling parameter in
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