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Abstract: In this paper, we will present LMI-based synthesis conditions for designing dynamic
output-based controllers for networked control systems (NCSs). In particular, the controller
is designed to render a linear time-invariant plant stable given a network that causes the
transmission intervals and delays to be time varying and that precludes that all sensors and
actuators data can be sent simultaneously. The latter fact necessitates the use of a scheduling
protocol and, in this paper, we will focus on a periodic protocol. We will formulate the networked
plant model as a discrete-time switched linear parameter-varying system and we will use convex
overapproximation techniques to arrive at a model that is amenable for controller synthesis.
The controller synthesis result is inspired from controller synthesis results for switched systems
and yields a switched controller that is robust for the aforementioned network phenomena. We
will illustrate the synthesis results on a benchmark example of a batch reactor, which shows
that our novel results can outperform existing results on controller synthesis.

1. INTRODUCTION

Networked control systems (NCSs) are feedback control
systems, in which the control loops are closed over a shared
communication network. Compared to traditional control
systems, in which the sensors, controllers and actuators are
connected through dedicated point-to-point connections,
NCSs offer advantages, such as, e.g., increased flexibility
and maintainability of the system architecture and re-
duced wiring. These advantages explain why NCSs have
received a significant amount of attention in the literature
in the recent years. However, NCSs introduce new chal-
lenges that need to be overcome before the advantages they
offer can be fully exploited. In particular, the communica-
tion network introduces time-varying delays, time-varying
sampling/transmission intervals and packet dropouts in
the control loop. Moreover, as all sensors and actuators
are connected to the controller(s) through the same net-
work, it is no longer possible to transmit all information
simultaneously. Therefore, controller design methods are
needed that explicitly deal with these artifacts.

To study the impact of these networked-induced phenom-
ena, several models have been developed. Roughly speak-
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ing, three different approaches towards modelling and
stability analysis have been considered in the literature,
i.e., an approach based on discrete-time parameter-varying
systems, see, e.g., [Cloosterman et al., 2009, Donkers et al.,
2011, Hetel et al., 2008], a continuous-time approach based
on impulsive or jump-flow systems, see, e.g., [Heemels
et al., 2010a, Nešić and Teel, 2004] and an approach
based on delayed (impulsive) differential equations, see,
e.g., [Gao et al., 2008, Naghshtabrizi et al., 2010, Suplin
et al., 2007]. Unfortunately, most of these results focus
on stability and performance analysis and do not offer
direct network-aware controller synthesis methods. As a
consequence, in the context of controller design, this means
that these methods can only be used in an emulation-based
setting, in which the controller is designed by ignoring
the network artifacts and an a posteriori stability and
performance analysis has to be done to conclude if the
controller still works satisfactorily in the presence of the
communication network.

Although some results exist that allow for direct network-
aware controller synthesis for NCSs, they can only be
applied under certain specific conditions. Namely, it is
either assumed that the full state is available for feedback
[Al-Areqi et al., 2011, Antunes et al., 2012, Cloosterman
et al., 2010, Zhang and Yu, 2008] or that a static-output
feedback controller can be used [Hao and Zhao, 2010], that
all sensors and actuators can transmit data simultaneously
[Hao and Zhao, 2010, Jungers et al., 2013, Zhang and
Yu, 2008], that delays and transmission interval are con-
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Fig. 1. Networked control system schematic.

stant [Antunes et al., 2012, Dačić and Nešić, 2007, Zhang
and Hristu-Varsakelis, 2006], or that an observer/state-
feedback structure can be imposed a priori [Bauer et al.,
2013, Zhang and Hristu-Varsakelis, 2006]. Hence, to the
best of the authors’ knowledge, synthesis of stabilising dy-
namic output-based controllers for NCSs for given schedul-
ing protocols, not imposing an observer-based controller
structure a priori and allowing for time-varying delays and
transmission intervals, is an open problem.

In this paper, we will propose a solution to this open prob-
lem. In particular, we assume that the plant is linear-time
invariant, the scheduling is done by a periodic schedul-
ing protocol (see, e.g., [Donkers et al., 2011, Nešić and
Teel, 2004]), and the sampling intervals and delays are
bounded, but can be time varying. This will allows us
to formulate the plant and communication network as
a discrete-time switched linear parameter-varying system
(see, e.g., [Donkers et al., 2011]). Using this modelling
setup, we propose conditions to synthesise a stabilising
output-based controller, which are based on extensions of
the results in [Bernussou et al., 2005, Deaecto et al., 2011]
towards switched and parameter-varying systems. We will
illustrate the results on a benchmark example of a batch
reactor [Bauer et al., 2013, Dačić and Nešić, 2007, Donkers
et al., 2011, Heemels et al., 2010a, Nešić and Teel, 2004],
showing that our novel results can outperform existing
results on controller synthesis [Bauer et al., 2013, Dačić
and Nešić, 2007].

The remainder of this paper is organised as follows. After
introducing the necessary notational conventions, we in-
troduce the model of the NCS in Section 2 and propose a
method to write it as a discrete-time switched linear un-
certain system. Subsequently, in Section 3, we present the
controller synthesis conditions in terms of LMIs. Finally,
we illustrate the results using a numerical benchmark
example in Section 4 and we draw conclusions in Section 5.

Nomenclature The following notational conventions will
be used. diag(A1, . . . , An) denotes a block-diagonal matrix
with the entries A1, . . . , An on the diagonal and A> ∈
Rm×n denotes the transpose of matrix A ∈ Rn×m. For a
vector x ∈ Rn, we denote by xi the i-th component and,
for brevity, we sometimes write symmetric matrices of the

form
[
A B

>

B C

]
, as

[
A •
B C

]
. Finally, by lims↓t, we denote the

limit as s approaches t from above, and the convex hull a
set A is denoted by coA.

Fig. 2. Illustration of a typical evolution of y and ŷ.

2. THE NETWORKED CONTROL SYSTEM MODEL

In this section, we introduce the networked control system
(NCS) under study, which is schematically shown in Fig. 1.
We will first formulate the NCS and make a discrete-time
model of the plant and the communication network, see
also Fig. 1. Subsequently, we will overapproximate this
model to make it amenable for controller synthesis.

2.1 Description of the Networked Control System

Let us consider the linear time-invariant (LTI) continuous-
time plant given by{ d

dtx
p(t) = Apxp(t) +Bpû(t)

y(t) = Cpxp(t),
(1)

where xp ∈ Rnp denotes the state of the plant, û ∈ Rnu
the most recently received control variable, y ∈ Rny the
(measured) output of the plant and t ∈ R+ the time. Since
the plant and controller are communicating via a network,
the actual input of the plant û ∈ Rnu is not equal to
the output of the controller u and the actual input of the
controller ŷ ∈ Rny is not equal to the output of the plant
y. The situation described above is illustrated in Fig. 1
and Fig. 2 and we call û and ŷ the ‘networked versions’
of u and y, respectively. The control input is implemented
using a zero-order hold

û(t) = û(tk), ∀t ∈ (rk, rk+1] (2)

In this expression, tk, k ∈ N, denote the transmission
instants at which (parts of) the (sampled) outputs of the
plant y(tk) and controller u(tk) have been transmitted over
the network and rk, k ∈ N, denotes the arrival instant, see
also Fig. 2.

To introduce these networked versions û and ŷ properly,
we have to explain the functioning of the network, see
also [Bauer et al., 2013, Dačić and Nešić, 2007, Donkers
et al., 2011, Heemels et al., 2010a, Nešić and Teel, 2004].
The plant is equipped with sensors and actuators that are
grouped into N nodes. At each transmission instant tk, k ∈
N, one node, denoted by σk ∈ {1, 2, . . . , N}, obtains access
to the network and transmits its corresponding values.
These transmitted values are received and implemented
on the controller or the plant at arrival instant rk. As in
[Donkers et al., 2011], a new transmission only occurs after
the previous transmission has arrived, i.e., tk+1 > rk > tk,
for all k ∈ N. In other words, we consider the sampling
interval to be lower bounded and the delays to be smaller
than the transmission interval. After each transmission
and reception, the values in ŷ and û are updated with the
newly received values, while the other values in ŷ and û
remain the same, as no additional information is received.
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By defining yk := y(tk) and ûk := limt↓rk û(t), we can
express this constrained data exchange as{

ŷk = Γyσkyk + (I − Γyσk)ŷk−1

ûk = Γuσkuk + (I − Γuσk)ûk−1,
(3)

for all k ∈ N, where Γσk := diag(Γyσk ,Γ
u
σk

) is a diagonal
matrix, given by

Γi = diag(γi,1, . . . , γi,ny+nu). (4)

when σk = i. In (4), the elements γi,j , with i ∈
{1, 2, . . . , N} and j ∈ {1, 2, . . . , ny}, are equal to one,
if plant output yj is in node i, elements γi,j+ny , with
i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , nu}, are equal to one,
if controller output uj is in node i, and are zero elsewhere.

The value of σk ∈ {1, 2, . . . , N} in (3) indicates which
node is given access to the network at transmission instant
tk, k ∈ N. Indeed, (3) reflects that the values in û
and ŷ corresponding to node σk are updated with the
corresponding transmitted values, while the others remain
the same. A scheduling protocol determines the sequence
(σ0, σ1, . . .) and in this paper, we will assume a periodic
protocol is used (see, e.g., Donkers et al. [2011]), which
for ease of exposition, is restricted to be the well-known
Round-Robin protocol (see, e.g., [Nešić and Teel, 2004])
given by

σk+1 =

{
σk + 1 when σk < N

1 when σk = N
(5)

for all k ∈ N, for some σ0 ∈ {1, 2, . . . , N}, and for a given
number of nodes N ∈ N.

The transmission instants tk, as well as the arrival instants
rk, k ∈ N, are not necessarily distributed equidistantly
in time. In fact, both the transmission intervals hk :=
tk+1 − tk and the transmission delays τk := rk − tk are
varying in time, as is also illustrated in Fig. 2. We assume
that the variations in the transmission interval and delays
are bounded and contained in the sets [h, h] and [τ , τ ],
respectively, with h > h > 0 and τ > τ > 0. Since we
assumed that each transmission delay τk is smaller than
the corresponding transmission interval hk, we have that
(hk, τk) ∈ Θ, for all k ∈ N, where

Θ :=
{

(h, τ) ∈ R2 | h ∈ [h, h], τ ∈ [τ ,min{h, τ})
}
. (6)

2.2 The Discrete-Time Networked Plant Model

To design a discrete-time controller for this plant and
communication network, we discretise (1) with (2) at the
transmission times tk, i.e., xpk := xp(tk), resulting in

xpk+1 = eA
phkxpk +

∫ hk
0

eA
p(hk−s)Bpû(tk + s)ds

= eA
phkxpk +

∫ τk
0
eA

p(hk−s)dsBpûk−1

+
∫ hk
τk

eA
p(hk−s)dsBpûk, (7)

for all k ∈ N. Substituting (3) into (7) yields

xpk+1 = eA
phkxpk +

∫ hk−τk
0

eA
psdsBpΓuσkuk

+ (
∫ hk
0

eA
psdsBp −

∫ hk−τk
0

eA
psdsBpΓuσk)ûk−1. (8)

The combined model of the plant and the network effects
can be obtained by combining (8) and (3) and by defining
x̄k = [(xpk)> ŷ>k−1 û>k−1]>. This results in a discrete-time
model given by


x̄k+1 = Aσk,hk,τk x̄k +Bσk,hk,τkuk[
ŷk
ûk

]
= Cσk x̄k +Dσkuk,

(9)

in which

Aσ,h,τ =

[
eA

ph 0 Eh − Eh−τΓuσ
ΓyσC

p (I − Γyσ) 0
0 0 (I − Γuσ)

]
, Bσ,h,τ =

[
Eh−τΓuσ

0
Γuσ

]
Cσ=

[
ΓyσC

p (I − Γyσ) 0
0 0 (I − Γuσ)

]
, Dσ=

[
0

Γuσ

]
(10)

with Eρ =
∫ ρ
0
eA

psdsBp, ρ ∈ R.

2.3 Convex Overapproximations

The networked plant model in the form of a switched un-
certain discrete-time system (9) with (5) and (hk, τk) ∈ Θ,
as in (6) and k ∈ N, cannot be directly used to develop
controller synthesis techniques, due to the exponential
appearance of hk and τk in the matrices of (9). To make
the system amenable controller synthesis, a procedure pre-
sented in [Donkers et al., 2011] is used to overapproximate
system (9) by a polytopic system with norm-bounded
additive uncertainty of the form

x̄k+1 =

L∑
l=1

αlk
(
(Āσk,l+ F̄∆kḠσk)x̄k+(B̄σk,l+ F̄∆kH̄σk)uk

)
,

(11)
where Āσ,l, B̄σ,l, F̄ , Ḡσ, H̄σ are matrices of appropriate
dimensions, σ ∈ {1, 2, . . . , N} and l ∈ {1, 2, . . . , L}, with
L the number of vertices of the polytope. The vector
αk = [α1

k . . . α
L
k ]> ∈ A, k ∈ N, is time-varying with

A=
{
α ∈ RL

∣∣ L∑
l=1

αl = 1, αl > 0, for l ∈ {1, 2, . . . , L}
}

(12)
and ∆k ∈ ∆, k ∈ N, with the norm-bounded additive
uncertainty set ∆ = {∆ ∈ R2np×2np |‖∆‖ < 1}. The
system (11) is an overapproximation of (9) in the sense
that for all σ ∈ {1, 2, . . . , N}, it holds that{

[Aσ,h,τ Bσ,h,τ ] | (h, τ) ∈ Θ
}

⊆
{ L∑
l=1

αl([Āσ,l B̄σ,l]+F̄∆[Ḡσ H̄σ]) |α ∈ A,∆ ∈∆
}
.

(13)

Due to this inclusion, stabilisation of (11) for all αk ∈ A
and ∆k ∈ ∆, k ∈ N, implies stabilisation of (9) for all
(hk, τk) ∈ Θ, k ∈ N. Although many overapproximation
techniques are available, see, e.g., the survey [Heemels
et al., 2010b], we employ here the gridding-based proce-
dure of [Donkers et al., 2011] to overapproximate system
(9), such that (13) holds. This choice is motivated by the
fact that this gridding-based procedure makes an over-
approximation that is arbitrarily tight in an appropriate
sense and does not introduce conservatism if the number
of grid points is sufficiently large and they are well dis-
tributed, see [Donkers et al., 2011]. Below, we briefly sum-
marise the main ideas and introduce the relevant notation
required later to formulate the main synthesis results.

To construct an overapproximation of (9) in the form
(11) using a gridding-based approach, a set of grid

points {(h̃1, τ̃1), ..., (h̃L, τ̃L)} ∈ Θ is chosen such that
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co(∪Ll=1{h̃1, τ̃1)}) = Θ. The choice of the grid points di-
rectly influences the tightness of the overapproximation. In
[Donkers et al., 2011], a procedure is given to determine the

set of grid points {(h̃1, τ̃1), ..., (h̃L, τ̃L)} ∈ Θ by iteratively
placing each grid point at the location of the worst-case
approximation error, thus, iteratively tightening the over-
approximation. For the sake of brevity we do not provide
the procedure here but instead refer the reader to [Donkers
et al., 2011] for details.

A procedure similar to that of [Donkers et al., 2011]
leads to a new overapproximation (11) of (9) satisfying
(13), with Āσ,l := Aσ,h̃l,τ̃l , B̄σ,l := Bσ,h̃l,τ̃l , for σ ∈
{1, 2, . . . , N}, l ∈ {1, 2, . . . , L}. Moreover, we define

Ḡσ :=

[
T−1Ap 0 T−1Bp

0 0 −T−1BpΓuσ

]
, H̄σ :=

[
0

T−1BpΓuσ

]
, (14)

for σ ∈ {1, 2, . . . , N}, and

F̄ :=

[
T T
0 0
0 0

]
U. (15)

The matrix T stems from the real Jordan form decom-
position of the matrix Ap, see, e.g., [Horn and Johnson,
1985], i.e., Ap := TΛT−1, where T is an invertible ma-
trix and Λ = diag(Λ1, . . . ,ΛQ) with Λq ∈ Rnλq×nλq ,
q ∈ {1, 2, . . . , Q}, the q-th real Jordan block of Ap. Finally,
the matrix U is given by

U := diag(δEh1 I1, . . . , δ
Eh
Q IQ, δ

Eh−τ
1 I1, . . . , δ

Eh−τ
Q IQ),

(16)
where Iq is the nλq × nλq identity matrix and δEhq and

δ
Eh−τ
q are the worst-case approximation errors for each

real Jordan block q ∈ {1, 2, ..., Q}. They can be computed
using [Donkers et al., 2011, Eqn. (35b) and (35c)]. The
reason that we do not need (35a) of [Donkers et al., 2011]

is that we can write eA
ph = I+

∫ h
0
eA

psApds, making (35a)
and (35b) of [Donkers et al., 2011] actually a scaled version
of each other.

3. OUTPUT-BASED CONTROLLER DESIGN

In this section, we will provide controller synthesis condi-
tions for a stabilising dynamic output-feedback controller
for the overapproximated system (11) with[

ŷk
ûk

]
= Cσk x̄k +Dσkuk (17)

and a given protocol (5). The controller is a switched
dynamic output-feedback controller of the formxck+1 = Acσkx

c
k +Bcσk

[
ŷk
ûk

]
uk = Ccσkx

c
k

(18)

which results in the closed-loop system[
x̄k+1

xck+1

]
=
( L∑
l=1

αlkAσk,l + F∆kGσk
) [x̄k
xck

]
(19)

where

Aσ,l=
[

Āσ,l B̄σ,lC
c
σ

BcσCσ Acσ + BcσDσC
c
σ

]
, F=

[
F̄
0

]
, Gσ=[Ḡσ H̄σC

c
σ].

(20)

The objective is to synthesise (18), such that (19) becomes
asymptotically stable for a given switching sequence (5)
and for all αk ∈ A and ∆k ∈∆, k ∈ N.

The results are based on the existence of a Lyapunov func-
tion for the closed-loop system (19). Finding a Lyapunov
function for a given controller (18) can be done using the
following lemma, which is adopted from Theorem IV.5 in
[Donkers et al., 2011].

Lemma 1. Assume there exist symmetric matrices Pi, i ∈
{1, 2, . . . , N}, such that the following inequalities Pi • • •

0 I • •
Pi+1Ai,l Pi+1F Pi+1 •
Gi 0 0 I

 � 0 (21)

are satisfied for all i ∈ {1, 2, . . . , N} and l ∈ {1, 2, . . . , L},
with PN+1 = P1. Then, the closed-loop system (19) with
switching sequence (5) is asymptotically stable for all
αk ∈ A and ∆k ∈∆, k ∈ N.

To solve the controller synthesis problem, we face the
difficulty that conditions of Lemma 1 are nonlinear with
respect to the dynamic output-feedback controller entries
and the matrices of the quadratic Lyapunov function.
Ideas from [Bernussou et al., 2005] are used to overcome
this difficulty. In particular, we will use the following
lemma from [Deaecto et al., 2011] as an intermediate
result.

Lemma 2. Given a nonsingular matrix Vi and symmetric
matrices Yi and Xi, i ∈ {1, 2, . . . , N}, satisfying[

Yi •
I Xi

]
� 0. (22)

Then, there exist nonsingular matrices Ui and symmetric
matrices Ŷi and X̂i, such that

S−1i =

[
Yi •
V >i Ŷi

]
� 0, and Si =

[
Xi •
U>i X̂i

]
� 0 (23)

with Ui = (I − XiYi)V
−>
i , Ŷi = V >i (Yi − X−1i )−1Vi and

X̂i = V −1i (YiXiYi − Yi)V −>i , i ∈ {1, 2, . . . , N}.

The main result of this section is given in the theorem
below.

Theorem 3. If there exist symmetric positive definite ma-
trices Yi, Xi, and matrices Ki, Mi, Wi and Ψi, i ∈
{1, 2, . . . , N}, of appropriate dimensions such that

Yi • • • • • • •
I Xi • • • • • •
0 0 I • • • • •

Yi+1Āi,l+KiCi Mi Yi+1F̄ Yi+1 • • • •
Ai,l Āi,lXi+B̄i,lWi F̄ I Xi+1 • • •
Ḡi ḠiXi+H̄iWi 0 0 0 I • •
0 Ξi,l 0 0 0 0 I •
0 0 0 Yi+1 0 0 0 I


�0

(24)
for all i ∈ {1, 2, . . . , N}, and l ∈ {1, 2, . . . , L}, with
XN+1 = X1, YN+1 = Y1, and Ξi,l = Āi,lXi + B̄i,lWi +
Ψi. Then, the dynamic output-feedback controller given
by (18) with

Aci = V −1i+1(Mi −KiCiXi −KiDiWi + Yi+1Ψi)

× (I − YiXi)
−1Vi (25a)

Bci = V −1i+1Ki (25b)

Cci = Wi(I − YiXi)
−1Vi (25c)

with any nonsingular Vi, i ∈ {1, 2, . . . , N}, renders
the closed-loop system (19) with switching sequence (5)
asymptotically stable for all αk ∈ A and ∆k ∈∆, k ∈ N.
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Remark 4. In this paper, we focus on controller synthesis
for a given periodic protocol, while the results of [Deaecto
et al., 2011] could in principle also be used for simultaneous
synthesis of a controller and a dynamic protocol (such as
the maximum-error first (MEF), or the try-once-discard
(TOD) protocol, see, e.g., [Dačić and Nešić, 2007, Donkers
et al., 2011, Heemels et al., 2010a, Nešić and Teel, 2004]).
However, the extension of the current results towards
dynamic protocols will be useless for any practical NCS.

To explain this, observe that positive definiteness of (24)
can only occur if[

Yi •
Yi+1Ai,l+KiCi Yi+1

]
� 0 and YN+1 = Y1. (26)

Note that this condition is the same as the synthesis condi-
tion of a switched observer gain Y −1i+1Ki for a Luenburger
observer and requires certain observability conditions to
be satisfied. Now when the results of [Deaecto et al., 2011]
are extended towards NCSs, or when the results of this
paper are extended towards synthesis of dynamic protocols
(such as the MEF/TOD protocols), the resulting stability
conditions could only be verified if[

Y •
YAi,l+KiCi Y

]
� 0 (27)

can hold for all i ∈ {1, 2, . . . , N}. Since the matrix Y
cannot depend on the node i, the condition (27) can only
be satisfied if every pair (Ai, Ci) is detectable. Hence,
straightforward extensions to the results of this paper
towards joint synthesis of a controller and a quadratic
protocol using ideas from [Deaecto et al., 2011] can only
result in a stabilising controller if the complete NCS is
detectable from every node. For NCSs that are detectable
from every node, scheduling transmissions of networked
plant outputs is not needed in case only stability has to be
guaranteed. In this case, a trivial solution to the scheduling
problem is to choose always the same sensor node. �

4. NUMERICAL EXAMPLE

In this section, we illustrate the presented theory using a
well-known benchmark example in the NCS literature, see,
e.g., [Bauer et al., 2013, Dačić and Nešić, 2007, Donkers
et al., 2011, Heemels et al., 2010a, Nešić and Teel, 2004],
consisting of a model of a batch reactor. The details of the
linearised model of the batch reactor model used in this
example and the continuous-time controller can be found
in the aforementioned references.

The batch reactor example has been used primarily to
compare conservatism in stability analysis techniques,
where the dynamic output-based stabilising controller is
assumed to be given. Notable exceptions are [Dačić and
Nešić, 2007], in which dynamic output-feedback controllers
were synthesised together with the scheduling protocol for
this example using bilinear matrix inequalities (BMIs), but
with a constant transmission interval, and [Bauer et al.,
2013], in which output-based controllers were synthesised
by imposing an observer-based control structure in the
controller, for a given periodic protocol, but for time-
varying transmission intervals. We will compare our syn-
thesis results with these two results.

For this numerical example, we will synthesise output-
based controllers using Theorem 3. To do so, we will

i
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Fig. 3. Range for with a controller can be synthesised.

use the networked plant model (9), and we consider two
cases. In the first case, we assume that all sensors and
actuators transmit simultaneously, meaning that Γk = I
for all k. In the second case, it is assumed that every
sensor and actuator sends data after each other, which
corresponds to Γ1 = diag(1, 0, 0, 0), Γ2 = diag(0, 1, 0, 0),
Γ3 = diag(0, 0, 1, 0), Γ4 = diag(0, 0, 0, 1) and N = 4. For
both cases, we assume that delays are absent, i.e., τk = 0
for all k ∈ N, and take h ∈ [h?−δ, h?+δ], for some h? and δ
satisfying h? > δ > 0 and take 20 equidistantly distributed
grid points to compute the convex overapproximation. The
parameter h? can be considered a nominal transmission
interval and δ a relative perturbation of this nominal
transmission interval. We can now maximise δ for a given
h? such that a stabilising controller can still be found. The
results are shown in Fig. 3.

To compare our results with [Bauer et al., 2013], we have
also computed the maximal δ for a given h? such that a
stabilising controller can be found using the results from
[Bauer et al., 2013], see also Fig. 3. We can observe that
for both cases, the novel results allow for larger nominal
transmission intervals h?, but that for smaller nominal
transmission intervals h?, the results from [Bauer et al.,
2013] allow for a larger δ. It is difficult to analyse what ex-
actly causes this difference, but as the overapproximation
presented in Section 2.3 does not introduce conservatism,
Theorem 3 sometimes introduces more conservatism than
its counterpart in [Bauer et al., 2013]. In particular, we
believe that conservatism in the results of this paper is
introduced through Ξi,l in (24), which is needed to have
that (25) is independent of l. Based on the observations
on conservatism, it is advisable to use both the method
from this paper and the method from [Bauer et al., 2013]
to synthesise controllers for a specific networked plant and
to choose the most appropriate result.

Let us now also compare our results with [Dačić and Nešić,
2007], in which dynamic output-based controllers were
designed together with a dynamic scheduling protocol,
as well as for a given dynamic scheduling protocol. As
our novel results do not allow for a joint dynamic proto-
col/controller synthesis, we select a periodic protocol and
we compute the maximal constant transmission interval h
for which the conditions of Theorem 3 are feasible. Since
[Dačić and Nešić, 2007] does not consider time-varying
transmission intervals, we do not have to make a convex
overapproximation. For this comparison, we consider, as
was done in [Dačić and Nešić, 2007], the case of three
nodes, in which Γ1 = diag(1, 0, 0, 0), Γ2 = diag(0, 1, 0, 0),
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Γ3 = diag(0, 0, 1, 1) and N = 3, and the case of two
nodes, in which Γ1 = diag(1, 0, 1, 1), Γ2 = diag(0, 1, 1, 1)
and N = 2. Using the results of [Dačić and Nešić, 2007],
the maximal allowable transmission interval of h = 0.067,
is obtained for the case of three nodes and h = 0.81 is
obtained for the case of two nodes 1 . For these cases, our
novel synthesis results yield h = 0.63 and h = 1, respec-
tively, for the given periodic protocol. As the dynamic
protocols that are considered in [Dačić and Nešić, 2007]
typically result in larger maximal allowable transmission
intervals guaranteeing closed-loop stability than periodic
protocols, see, e.g., [Donkers et al., 2011, Nešić and Teel,
2004], we believe that the improvements in maximal al-
lowable transmission intervals are due to the fact that
[Dačić and Nešić, 2007] requires solving linearised bilinear
matrix inequalities, even if the dynamic protocol is given,
which not always gives satisfactory results. Note that, for
our design approach, the maximal allowable transmission
interval for two nodes is equal to the case where all sensors
and actuators send simultaneously (see Fig. 3), which
might be due to the fact that the batch reactor example
is fully detectable from either output.

5. CONCLUSIONS

In this paper, we have presented LMI-based synthesis
conditions for designing stabilising dynamic output-based
controllers for networked control systems (NCSs). In par-
ticular, the controller is designed for a network that causes
the transmission intervals and delays to be time-varying
and precludes all sensors and actuators to send their
information simultaneously. The latter facts necessitates
the use of a scheduling protocol and, in this paper, we
have focussed on a periodic protocol. We formulated the
networked plant model as a discrete-time switched linear
parameter-varying system and used convex overapproxi-
mation techniques to arrive at a model that is amenable
for controller synthesis. The controller synthesis is done
using ideas from controller synthesis for switched systems,
resulting in a switched controller that is robust for the
aforementioned network phenomena. We have illustrated
the synthesis results on a benchmark example of a batch
reactor, which showed that our novel results can outper-
form existing results on controller synthesis.
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1 Note that in [Dačić and Nešić, 2007] the maximal allowable
transmission interval for the three-node case is obtained by jointly
synthesising the controller and the dynamic scheduling protocol,
while for the two-node case a larger maximal allowable transmission
interval was obtained by a priori selecting the dynamic protocol and
synthesising only the controller.

J. Bernussou, J.C. Geromel, and R.H. Korogui. On robust
output feedback control for polytopic systems. In Proc.
Conf. Decision & Control, 2005.

M.B.G. Cloosterman, N. van de Wouw, W.P.M.H.
Heemels, and H. Nijmeijer. Stability of networked con-
trol systems with uncertain time-varying delays. IEEE
Trans. Autom. Control, 2009.

M.B.G. Cloosterman, L. Hetel, N. van de Wouw,
W.P.M.H. Heemels, J. Daafouz, and H. Nijmeijer. Con-
troller synthesis for networked control systems. Auto-
matica, 2010.
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