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Abstract: In industry, system identification is a time-consuming exercise that impacts the profitability and safety of 
the plant. One way to avoid this problem is to use stored historical process data in estimating the required process 
models. Given the large amount of data available, which is often corrupted due to process disruptions, loss of 
information, and poor data quality, automated segmentation of the data set would be an invaluable asset. Recently, 
two different methods have been proposed to accomplish this task: one based on Laguerre models and one based on 
autoregressive with exogenous input (ARX) models. In this paper, the Laguerre approach will be analysed and it will 
be shown that the results are dependent on selecting appropriate Laguerre model parameters and input signals, while 
relatively insensitive to the variance thresholds. Furthermore, this approach has a tendency to overpartition the data 
set based on the smallest changes in the process. Therefore, in order to decrease the number of models identified it is 
proposed to couple this method with an entropy-based metric for determining similar models. Based on simulations 
that include this entropy metric, it is shown that a reduction in model partitions is obtained. 
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1. INTRODUCTION 

 In many chemical engineering plants, when implementing 
process control, system models need to be found. Although 
system identification experiments are often necessary, from 
the perspective of the plant engineers, they can lead to 
undesirable deviations from normal operation that have 
economic and safety consequences. Furthermore, given the 
relatively wide availability of historical data, it can also be 
unnecessary. Therefore, determining the usefulness of the 
stored data is an important consideration for industrial 
applications. It is generally known that an entire time series 
may include periods of abnormal activity or process or sensor 
malfunction. Determining the windows of informative or 
useful data is known as data segmentation. Segmentation 
methods also depend on the end use of the data, for example, 
in this study we are concerned with estimation of Laguerre 
models from the segmented data. 

 Initial approaches to resolving this problem considered 
detecting transients (Horch, 2000), analysing the impact of 
selected data regions (Carrette, et al., 1996), or determining 
segments suitable for the design of inferential controllers 
(Amirthalingam, et al., 2000). More recently, two new 
approaches have been proposed for determining the 
suitability of a given data segment for control purposes, 
especially identification. The first method developed by 
Peretzki et al. (2011) uses Laguerre models as the model 
basis for extracting the desired model conditions. The data 
quality is assessed based on the validity of the process model 
and the significance of the model parameters. The key 
advantage of this approach is that the process time delay is 
not required. Unfortunately, this method only works with 
data obtained under open-loop or closed-loop conditions 
where the reference signal changes. The second approach 
developed by Shardt and Huang (2013) uses a condition 

number based on fitting an autoregressive model with 
exogenous input (ARX) to the data to determine the quality. 
The key advantage of this approach is that it can be applied to 
any operating conditions, including closed-loop without any 
excitations in the reference signal, but excitations in the 
disturbance signal, that is, it can use routine operating data. 
Such data sets are plentiful in many industrial applications. 
On the other hand, it does require knowledge of both the 
process orders and time delay in order to estimate the 
condition number of the data matrix. 

Since processes exhibit different characteristics 
depending on operating conditions and therefore require 
different models for each regimen, one recurring problem in 
many data segmentation methods is determining the 
appropriate number of models in a given data set. Three 
different situations can be identified: oversegmentation, 
undersegmentation, and exact. In oversegmentation, too 
many models are identified compared to the true number, 
while in undersegmentation too few models are identified. 
Finally, in the exact case, the true number of models is 
determined. Not only must the true number of models be 
correct, but the points at which the models change should 
also be correctly identified. Such a point will be called a 
segmentation point. If a method can correctly determine the 
segmentation points, but overpartitions the data set, then 
model reduction can achieve the desired model segmentation. 

 Therefore, this paper proposes to analyse the Laguerre-
based approach in order to understand the key parameters 
affecting the data segmentation methods. This analysis will 
show that one of the main issues is oversegmentation. In 
order to resolve this problem, an entropy-based measure of 
the data set is proposed to reduce the model partitions. 
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2. LAGUERRE MODEL-BASED DATA 
SEGMENTATION 

2.1 Background Information 

 The Laguerre model-based data segmentation method 
uses, as its name suggests, Laguerre models. Such models 
have the advantage that they can implicitly incorporate the 
time delay into the form of the Laguerre order selected. As 
well, a Laguerre model basis set is orthogonal to each other, 
which implies that the required models can be easily removed 
from the analysis without affecting the rest of the model 
parameters. The ith order Laguerre model can be written as 
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where Li is the ith order Laguerre basis function, α is a time 
constant, and z−1 is the backshift operator. The model 
identified in this approach can then be written as 

 ( ) ( ) ( ) ( )1

1
,

gN

i i
i

y t L z u t e tθ α−

=

= +∑  (2) 

where y(t) is the output signal, u(t) is the input signal, e(t) is 
the error, θi is the to-be-determined coefficient, and Ng is the 
Laguerre order of the process. The model given by Equation 
(2) can be solved using standard least-squares analysis. 

 The Laguerre-based procedure can be summarised as the 
following series of steps (Peretzki, et al., 2011): 

1) Load, scale, and centre the data. 
2) Determine any changes in operating points. 
3) For each operating point, perform the following steps: 

a. If the process is an integrator, integrate the input. 
Compute the Laguerre basis functions, variances, and 
regressor matrix. 

b. Initialise the region counter to the current data point, 
kinit = k. 

c. Compare the variances, the condition number of the 
regressor matrix, and the significance of the 
parameters against the thresholds. If any of the 
thresholds fail to be met go to the next data point, that 
is, k = k + 1, and go to Step 3.b. Otherwise, set k = k  + 
1, and go to Step 3.c. The “good” data region is then 
[kinit, k]. 

d. The procedure should be stopped once k equals N, the 
number of data points in the given operating region.  

 The required variances are obtained using the following 
update rule: 
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It can be seen from Equation (3) that for each variance update 
rule, there are two tunable forgetting parameters: 

ymλ and 

yσλ . Furthermore, it can be seen from Equation (3) that there 
are 3 threshold parameters that check the value of the 
variance. Since the behaviour of these 3 parameters is 
predictable, namely, increasing the threshold will decrease 
the number of quality regions and increase the number of 
rejected regions, they will be excluded from the analysis. It 
should be noted that setting these parameters can be quite 
difficult as the variability of the signals, even after 
normalisation can vary drastically. Therefore, for the 
purposes of this paper, the following parameters are of 
interest: 

1) Laguerre Model Parameters, of which there are 2: α and 
Ng. For the cases considered, α will be taken from the 
interval [0.30, 0.95] and Ng from [1, 10]. 

2) Forgetting Parameters, of which there are 6, two each for 
the 3 variances, u, y, and R. Each forgetting parameter 
will be taken from the interval [0.85, 0.99]. 

To illustrate the usefulness of this method, first-order, 
second-order, including inverse response and underdamped, 
zero-order, and a nonlinear tank system simulation will be 
considered. The tank system simulation is based on the 
results presented in (Shardt, 2012). For each case, a range of 
different parameters and input signals was considered. For 
the input signal, white Gaussian noise, step changes, and 
pseudorandom binary signals (PRBS) were used. Both open-
loop and closed-loop cases with excitation in the reference 
signal were considered. Given the large number of different 
combinations, all of the simulations were performed 
automatically in MATLAB and appropriate summary figures 
produced. Summary graphs are given in this paper to 
illustrate the results obtained. 

2.2 Selecting the Laguerre-Model Parameters 

Since the Laguerre model is important for performing the 
data partitions, selecting appropriate parameter values is 
crucial. There are two parameters to consider: the time 
constant α and the order of the system, Ng. According to 
(Peretzki, 2010) 
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where θ is the continuous time delay and τs is the sampling 
time. For the example, consider 4 different first-order 
systems as shown in Table 1, whose generic transfer function 
can be written as 

1
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θ
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Each model was simulated for 300 seconds and then 
concatenated to form a single large data set containing 1200 
samples. The expected partitions should occur at sample 
instants 300, 600, and 900 s. 

 These simulations were all performed in open-loop 
conditions using three different input signals: white Gaussian 
noise, step, and pseudorandom binary signal (PRBS). The 
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parameters vary as previously described. From Equation (4), 
this implies that the required order should lie between 3 and 
22. Since the values stop at 10, it is expected that at low 
values of α, segmentation will be poor. 

Table 1: First-Order Model Parameters 

Model Process 
Gain, K 

Time 
Constant, τ 

Deadtime, θ 

I 1.54 60 5 
II 1.54 20 40 
III 1.54 60 40 
IV 1.10 60 40 

For both the Gaussian noise and step test results (not 
shown), an incorrect number of models is identified. In the 
Gaussian case, too many models are found, while in the step 
test case, too few are found. On the other hand, for the 
pseudorandom binary signal, the results are shown in Figure 
1. The figures show model partition number as a function of 
both α and Ng. The model partition number assigns a number 
to each data point at each time stamp. If two adjacent points 
have the same model partition number (y-axis), then the 
method considered the given region to be from the same 
underlying model. It can be seen that the partition points are 
at the correct values (to within the time delay) at 300, 600, 
and 900 s. Furthermore, it would seem that irrespective of Ng, 
the results are similar. On the other hand, there seem to be a 
few lines that veer away from the main blocks. Secondly, it 
would seem that for the region between 300 and 600 s, the 
method cannot partition the data accurately. It is interesting 
to note that in this case, both the time constant and time delay 
changed abruptly. This suggests that potentially the method is 
unable to deal with multiple simultaneous changes. Figure 2 
shows the number of models identified for a given Ng and α. 
A model was defined as a region of at least 100 samples 
whose model partition number were all the same. From this 
figure, it can be seen that for α close to 1, the results are 
better given the constraints on Ng. This shows that in open 
loop Inequality (4) holds. Selecting a sufficiently large α 
implies that the effect of time delay can be minimised and a 
relatively small order used. 

Second-order systems behave similarly to the first-order 
systems shown in Figure 1 and Figure 2, even in the presence 
of an inverse response. The main difference is that the effect 
of α on the system is much more pronounced, so that at low 
values, the mismatch is large and over 100 partitions can be 
determined. Both inverse response and oscillatory response 
do not tremendously impact the ability of the system to 
partition the set.  

For integrating processes, before the method can be used, 
the input signal must be integrated. Figure 3 shows the total 
number of partitions with size greater than 100 for the 
integrating case. This figure shows that the behaviour is quite 
different. Firstly, none of the combinations come even close 
to giving the correct number. It can be noted that those 
regions at zero represent cases where for the whole length 

there was no partition with size greater than 100. Secondly, 
the optimal values that produce the lowest number of 
partitions occur around α = 0.55, which is a small value. 
Given that the model had a time delay of either 5 s (for the 
first partition) or 40 s (for the other two), Inequality (4) is not 
satisfied. As well, if integrating processes are present, for 
example, a level loop, then the identification algorithm needs 
to use different calibration values. 

Finally, consider a heated tank as described in (Shardt, 
2012), where it is desired to develop models between the 
temperature and steam flow rate, with the level being a 
disturbance. It should be noted that although the overall 
system is nonlinear, at any given operating point, its 
behaviour is very well modelled by a first-order plus 
deadtime model. Furthermore, process changes are 
introduced by changing the height in the tank, which in turn 
causes changes in both the gain and time constant. As was 
previously noted with simultaneous changes in the first-order 
system and the lack of segmentation, we see a similar, but 
less pronounced, situation. Instead of having no partitions 
identified, about 10 different partitions are determined. 

 
Figure 1: Effect of α and Ng for first-order processes excited 
by a PRBS signal. Only some of the results are shown due to 
space constraints (dashed, blue is α = 0.3, thick pink α = 0.5, 
and thin, red α = 0.95). Adjacent points with the same model 

partition number were assigned to the same model 

 Finally, under closed-loop conditions with external 
excitation, the results are similar to those previously 
obtained, except that more partitions are determined. The 
correct change time (to within time delay) is also found. 

2.3 Tuning the Forgetting Parameters 

The final set of tunable parameters is the forgetting 
factors, which by definition vary between 0 and 1. Taking the 
best results for the Laguerre parameter values of α = 0.9 and 
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Ng = 10, each of the two tunable parameters will be swept 
from 0.85 to 0.99 in increments of 0.01 to determine if these 
parameters have any effect on the segmentation obtained. In 
general, in open-loop, these parameters do not have any 
effect on the segmentation obtained. In the worst case, at the 
extremes of the selected regions, there may be a slight spike 
to either a larger or smaller number. The largest changes are 
seen in the computing the variance for the input signal, while 
the smallest changes are seen with computing the variance of 
the output signal. In the closed-loop case with excitation of 
the reference signal, the results are the same as for the open-
loop case. 

 
Figure 2: The number of models identified as a function of α 

and Ng for first-order models and a PRBS input. 

 
Figure 3: The number of models identified as a function of α 

and Ng for integrating models and a PRBS input 

2.4 Tuning the Thresholds 

The selection of appropriate thresholds can have an 
impact on the quality of the segmentation results, even after 
normalising the signals. The reason for this impact is that 
normalising assumes that the underlying signal is at least 
seminormally distributed. However, in practice, such signals 
could have regions of abnormal operations that could 
negatively impact the results. If there are a significant 
number of extreme values, these can skew the mean and 
variance, which could give very small values for the main 
component of the process. These thresholds need to be set 
based on the process values and conditions that are actually 
present in the system. Step tests, as will be shown in the 
experimental section, need much lower variances and higher 
condition number thresholds than for other methods. 

3. IMPROVED METHOD 

Based on the above analysis of the system, it can be seen 
that one of the issue is with the number of segments obtained. 
Since it has been shown that the method can accurately 
determine when the model truly changed, it remains to 
somehow determine a method that can reduce the number of 
segments between the transitions. One potentially interesting 
approach is to use an entropy-based metric. Recently, Shardt 
and Huang (2013) showed that the signal entropy value of the 
difference between the input and output signals can be used 
to monitor a process and determine if it changes. The entropy 
of a signal, which measures the amount of information in a 
signal, is given as 

1
1log
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k k
k

x x
H
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where H is the entropy, N is the signal length, and x is the 
signal of interest. The difference in entropy would then be 
calculated as 

y uH H H∆ = −  (7) 

where Hy is the entropy of the output signal and Hu the 
entropy of the input signal. Assuming that the input signal is 
always a pseudorandom signal or a white, Gaussian noise 
signal, then the difference between the input signal entropy 
and output signal entropy will be constant and equal to the 
model entropy. Therefore, it is suggested that instead of 
simply segmenting based on the above results, an extra step 
be added at the end of the procedure, so that the entropy of 
each segment is computed and compared against adjacent 
values. If the entropy is similar, then the models can be 
combined, and if they are different then it can be considered 
that the partitions indeed do represent regions with different 
underlying dynamics. The modification to the general 
segmentation procedure involves adding the following step: 

4) After all the regions have been determined, compute the 
entropy for each region. If the entropy of two adjacent 
regions is within a threshold, treat the two regions as one. 

4. EXPERIMENTAL COMPARISON 

The newly proposed modifications to the method will be 
tested using a temperature-steam control loop in both open 
and closed-loop. The data used in this experiment were 
extracted from the DeltaV historian without taking into 
consideration any preconceived time frames, that is, the data 
was extracted for some amount of time irrespective of 
whether or not the process was working or even in a given 
mode. Two different cases will be considered: open-loop and 
closed-loop experiments. A schematic of the process is 
shown in Figure 4. 

4.1  Open-Loop Results 

 For the open-loop experiment, 3 hours of data were 
extracted from the data historian from a region in which it 
was known that step tests were being made. Both the original 
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and refined methods were tested on this data set. The values 
of the Laguerre model parameters were varied to verify 
whether or not the same results hold. Manual analysis of the 
data shows that a single operating point had been selected on 
which multiple step tests were performed. Therefore, it is 
expected that a single region should be identified, as all the 
data could be used for identification. The thresholds were 
modified appropriately given the initial data set. The results 
are presented in Figure 5 for the original method and in 
Figure 6 for the proposed refined method. It can be noted that 
the previously observed conditions hold for this process. As 
well, the proposed method is able to reduce greatly the 
number of identified models even for improperly selected 
Laguerre model parameters. Using α = 0.85 and Ng = 10 and 
comparing the proposed partition with the actual temperature 
values, which is shown in Figure 7, demonstrates that the 
method after refinement is able to correctly assign most of 
the data range. The change centred on 3,000 s is the transient 
behaviour caused by system start up. Therefore, no model 
should be identifiable from this particular region. 

 
Figure 4: Process schematic 

4.2 Closed-Loop Results 

Once again, a 3-hour data period was extracted in which it 
was known that closed-loop tests were being performed. In 
this particular data set, manual analysis showed that there are 
2 regions (at the start before 1834 s and the end after 5934 s) 
of manual operation and the remainder was a series of closed-
loop step changes in the reference signal at different process 
conditions. Both the original and proposed refined method 
were run on the same set of underlying parameter conditions. 
The results are shown in Figure 8 for the original method and 
Figure 9 for the refined method. Figure 10 shows a 
comparison between the actual data and the partitions. Both 
figures show that the previously obtained result hold and that 
the refined method can reduce the number of partitions. 

5. CONCLUSIONS 

 In this paper, an investigation of a recently proposed 
method for data segmentation for system identification was 
made to determine the effect the different parameters have on 
the segmentation results. It was determined that there are 4 
key sets of variables to consider: (1) Laguerre model 
parameters, (2) forgetting factor values, (3) thresholds, and 
(4) excitation component of the input signal. Based on both 

simulation and experimental testing, it was determined that 
Laguerre model parameters and thresholds are the two most 
important variables to consider. The forgetting factors do not 
have much of an influence on the parameter values, while the 
input signal’s influence was only to cause a change in the 
various thresholds. However, irrespective of the fine tuning 
done, the number of segments determined was almost always 
much greater than the true number of segments present. 
Therefore, in order to correct this problem, a segment 
reduction procedure was introduced based on the entropy 
values for adjacent segments. If the two values lay within a 
certain tolerance, then it was concluded that the two segments 
should be merged. Implementing an entropy-based step 
improved the performance markedly. 

 
Figure 5: The number of models identified as a function of α 
and Ng for a pilot scale process using the original method. 

 
Figure 6: The number of models identified as a function of α 
and Ng for a pilot scale industrial process using the proposed 

refined method. 

 
Figure 7: Comparison between the automatic partitions and 

the actual, open-loop data 
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Figure 8: The number of models identified as a function of α 
and Ng for a pilot scale industrial process using the original 

method for closed-loop data 

 
Figure 9: The number of models identified as a function of α 
and Ng for a pilot scale industrial process using the refined 

method for closed-loop data. 

In the open-loop case, it was determined that the 
following tuning rules are recommended: 

1) For most processes, set α between 0.8 and 0.95. For 
integrating processes, set α to be smaller than about 0.6. 

2) Based on the selected α and the maximal time delay, 
determine an appropriate number of Laguerre models. It 
does not hurt to overestimate the number, as this is an 
orthogonal basis and the additional models will not affect 
the segmentation. 

3) Set the forgetting factors to any value greater than about 
0.95. The exact value is immaterial. 

4) The thresholds need to be carefully set based on the input 
signal expected. This can involve some trial and error 
depending on the data available. For step tests, setting 
small thresholds for the variance of the input signal is 
very important. Values as small as 10-12 can be required.  

5) The entropy threshold can be set to between 0.1 and 0.25 
to provide the best results. 

In the closed-loop case, in general, the results are the 
same as for the open-loop case, except that some of the 
thresholds may need to be set even smaller, especially with 
step changes in the setpoint. As well, the entropy threshold, 
depending on the disturbances present, may need to be set 

much lower than previously (around 0.005) in order to deal 
with “good” controllers. 

 
Figure 10: Comparison between the automatic partitions and 

the actual data for the closed-loop data 
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