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Abstract: The paper deals with state estimation of nonlinear stochastic dynamic systems. Various un-
scented Kalman filter (UKF) algorithms are analyzed with the focus on computation and transformation
of the σ -points for the purpose of update of state estimate moments. An algorithm of the pure propagation
UKF is developed transforming the initial σ -point set forward in time without necessity of its re-
computation as is usual in classical UKF algorithms. Such direct transformation of the σ -points keeps
higher order moments of the σ -point set and leads consequently to an increased accuracy of the state
estimate. The proposed pure propagation unscented Kalman filter is illustrated in a numerical example.
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1. INTRODUCTION

State estimation of stochastic dynamic discrete-time systems is
an essential tool for many traditional areas such as navigation,
tracking, positioning, change detection and optimal control.

The system is characterized by a state, which is an underlying,
usually immeasurable variable describing the system. The state
is observed through a measurement and both exhibit uncertain
behavior. Hence, the description of the system, consisting of a
state dynamics and a measurement-to-state relation, is stochas-
tic. As the state is random, the complete description of its esti-
mate, given the measurements, is represented by a conditional
probability density function (PDF). An estimate of such form is
provided by the Bayesian recursive relations (BRRs).

In many situations, point estimates, such as the conditional
mean of the state, are sufficient. Obtaining the point estimates
by first calculating the PDF is cumbersome as usually the BRRs
are intractable and their approximate solutions are largely com-
putationally expensive (Arulampalam et al., 2002).

Another approach to obtain a point estimate of the state is rep-
resented by an optimization of a suitable criterion, such as the
mean square error (MSE). Rapid development of this approach
is tied with the design of the Kalman filter (KF) (Kalman,
1960) which was proposed as an optimal state estimator for
linear systems minimizing the MSE criterion. Consequently,
many other filtering techniques following the Kalman filtering
framework have been proposed usually with the aim to relax
the linearity assumptions of the KF. With a few exceptions the
techniques provide an approximate solution only.

Some techniques proceed from an approximation of the non-
linear model (e.g., the extended Kalman filter, difference fil-
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ters, stochastic regression filters (Šimandl and Dunı́k, 2009;
Nørgaard et al., 2000; Ito and Xiong, 2000; Sarmavuori and
Sarkka, 2012)), others from approximate computation of the
predictive and filtering state estimates, i.e., the conditional
means and covariance matrices appearing in the Kalman fil-
tering framework (quadrature filter (Jia et al., 2011), cubature
filter (Arasaratnam and Haykin, 2009), unscented Kalman filter
(UKF) (Julier et al., 2000; Dunı́k et al., 2012)).

The latter group of filters approximate the state estimate by a
set of σ -points. The set is usually designed to capture the first
two moments of the state estimate. In spite of capability of the
set of storing information also about higher order moments,
this information is discarded by the filter. The cause is a step
performed once or twice at each time instant, which recomputes
the set to update its moment (Kolås et al., 2009). As a result,
only the first two moments of the state estimate are kept.

The goal of the paper is to develop a new UKF based filter
with a σ -point set keeping higher order moments across time
instants. This behavior will be enabled by replacing the mod-
ifications of moments by direct modifications of the σ -points.
Hence, the filter will consist mainly of the σ -point propagation.

The paper is organized as follows: system specification, state
estimation and the UKF will be introduced in Section 2. A
technique for a direct modification of the σ -points to expand
their covariance matrix will be proposed in Section 3 and
the new filter will be introduced in Section 4. In Section 5
a numerical illustration of the new filter will be given and
concluding remarks are drawn in Section 6.

2. STATE ESTIMATION AND UKF

2.1 System Specification and State Estimation

Consider the discrete-time nonlinear stochastic system
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xk+1 = fk(xk)+ wk, k = 0, 1, 2, . . . , (1)
zk = hk(xk)+ vk, k = 0, 1, 2, . . . , (2)

where the variables xk ∈ Rnx and zk ∈ Rnz represent the state
and the measurement at time instant k, respectively, fk : Rnx →

Rnx and hk : Rnx → Rnz are known nonlinear functions,
and wk , wk ∈ Rnx and vk , vk ∈ Rnz are zero-mean state and
measurement white noises with known covariance matrices6wk
and 6vk , respectively. The noises are assumed to be mutually
independent and independent of the initial state x0 given by its
mean x̄0 and covariance matrix Pxx

0 .

State estimation based on MSE optimization leads to the esti-
mate x̂k|k being the conditional mean

x̂k|k = E[xk |zk
]

which is usually analytically intractable. The symbol zk denotes
a set of all measurements up to the time k, zk

= [z0, z1, . . . zk].

To cope with the intractability, the estimator structure is often
constrained to be a linear function of the measurement. For
linear systems, the MSE optimization with the constraint leads
to the KF. For nonlinear systems a further approximation is
required. Either approximation of the nonlinear functions in
the system description or approximation of the state estimate
description (e.g., by a set of weighted points as in the unscented
transform (UT) (Julier et al., 2000; Dunı́k et al., 2012) or
using integration rules (Ito and Xiong, 2000; Jia et al., 2011;
Arasaratnam and Haykin, 2009)) are convenient.

2.2 Unscented Kalman Filter

The structure of the UKF algorithm for the system described
by (1) and (2) is summarized by Algorithm 1 (Julier et al.,
2000; Šimandl and Dunı́k, 2009). For convenient purposes, the
following notation will be used: Xa:b

= [Xa,Xa+1, . . . ,Xb
],

1a×b and 0a×b represent matrices of ones and zeros, respec-
tively, of indicated dimension and

√
P, denotes a matrix de-

composition of P such that P =
√

P
√

PT
.

Further, suppose two sets of σ -points X0:2nx Y0:2nx are given
together with a set of weights W0:2nx . Then, approximate
calculation of the mean based on the σ -point sets given by

x̂ =
∑2nx

i=0
W iXi (3)

will be further denoted by expression x̂ = σ−MEAN(W ,X).
Approximate calculation of a mutual covariance based on the
σ -point sets given by the relation

Pxy
=

∑2nx

i=0
W i (Xi

− x̂)(Yi
− ŷ)T, (4)

where x̂ = σ−MEAN(W ,X) and ŷ = σ−MEAN(W ,Y), will
be further denoted as P xy

= σ−COV(W ,X,Y).

Algorithm 1: Unscented Kalman Filter

Step 1: (initialization) Set the time instant k = 0.
Step 2: (prediction)

If k = 0, let x̂0|−1 = E[x0] = x̄0, Pxx
0|−1 = cov[x0] = Pxx

0 .
If k > 0, calculate the σ -points

X0:2nx
k−1|k−1 = x̂k−1|k−111×b + c

[
0nx×1,

√
Pxx

k−1|k−1,−
√

Pxx
k−1|k−1

]
(5)

M2SP
(5)

fk−1

(7)
SP2M
(8–9)

update
2nd moment

(9)

combine
moments
(15–16)

M2SP
(10)

hk

(11)

SP2M
(12–14)

update
moments

(13)

x̂k−1|k−1
Pk−1|k−1

zk

x̂k|k
Pk|k

k − 1 k

Fig. 1. Block scheme of the UKF algorithm.

with corresponding weights

W0:2nx =
1

nx+κ
[κ, 1

2 , . . . ,
1
2 ], (6)

where b = 2nx + 1 is the number of σ -points and c =
√

nx + κ with κ being the scaling factor determined by the user.
Propagate each σ -point through the nonlinear function as

X̄i
k|k−1 = fk−1(X

i
k−1|k−1),∀i, (7)

and calculate the state predictive moments as
x̂k|k−1 = σ−MEAN(W , X̄k|k−1) (8)
Pxx

k|k−1 = σ−COV(W , X̄k|k−1, , X̄k|k−1)+6
w
k−1, (9)

Note that addition of 6wk−1 in (9) represents the moment modi-
fication caused by appearance of wk in (1).
Step 3: (filtering) Calculate the σ -points

X0:2nx
k|k−1 = x̂k|k−111×b + c

[
0nx×1,

√
Pxx

k|k−1,−
√

Pxx
k|k−1

]
.

(10)
Propagate each σ -point through the nonlinear function as

Zi
k|k−1 = hk(X

i
k|k−1),∀i (11)

and calculate the measurement predictive moments as
ẑk|k−1 = σ−MEAN(W ,Zk|k−1), (12)
Pzz

k|k−1 = σ−COV(W ,Zk|k−1,Zk|k−1)+6
v
k , (13)

Pxz
k|k−1 = σ−COV(W ,Xk|k−1,Zk|k−1). (14)

Note again that (13) represents computation of the second mo-
ment and its modification by adding 6vk . The filtering estimate
given by the mean and covariance matrix is computed as

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1), (15)

Pxx
k|k = Pxx

k|k−1 −KkPzz
k|k−1KT

k , (16)

where Kk = Pxz
k|k−1(P

zz
k|k−1)

−1.
Let k = k + 1. The algorithm then continues by Step 2.

The algorithm is illustrated in Fig. 1, where M2SP and SP2M
denotes moments to a σ -point set conversion (such as in (10))
and vice-versa (such as in (12–14), respectively. It is evident
that the σ -points are generated at each time instant twice, i.e.,
in (5) and (10). Each generation is preceded by a modification
to the moments that are used to generate the new set of σ -points
(i.e., (9) in the prediction step and (15) and (16) in the filtering
step) to account for uncertainties of the noises.

Recomputing the σ -point set after the modification to the
moments discards any higher order moment from the original
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M2SP fk−1 SP2M combine
moments

hk

SP2M

x̂k−1|k−1
Pk−1|k−1

zk

x̂k|k
Pk|k

k − 1 k

Fig. 2. Block scheme of the FAUKF algorithm.

σ -point set (van der Merwe, 2004). To prevent such disposal of
the third moment information, van der Merwe (2004) proposed
an algorithm of the fully augmented UKF (FAUKF).

2.3 Fully Augmented UKF

The FAUKF is based on augmenting the state with variables
representing the state noise wk and the measurement noise as
AxT

k
4
= [xT

k ,wT
k , vT

k+1]
T. The σ -points defined as (AXi

k|k)
T
=

[(xXi
k|k)

T, (wXi
k|k)

T, (vXi
k|k)

T
]
T are generated according to

the mean Ax̂T
k|k−1 = [x̂

T
k|k−1, 0T

nw×1, 0T
nv×1]

T and covariance

matrix P
Ax Ax
k|k = blkdiag[Pxx

k|k, 6
w
k , 6

v
k+1].

Note that the dimension of the augmented state is na = nx +
nw+nv . The algorithm of the FAUKF will not be described here
for brevity purposes. Its scheme is depicted in Fig. 2. Note that
although the FAUKF requires only a single generation of the σ -
points, at the end of each time step the σ -points are transformed
to filtering moments.

2.4 Fully Augmented UKF with reformulated correction step

The FAUKF algorithm has been modified by Kolås et al. (2009)
to improve numerical behavior and allow flexible constraint
handling. The FAUKF with reformulated correction step is de-
scribed by Algorithm 2 and illustrated in Fig. 3. For simplifica-
tion purposes, the initialization step will be omitted henceforth.

Algorithm 2: Fully Augmented Unscented Kalman Filter with
reformulated correction step

Step 1: (prediction) Calculate the σ -points
AX0:2na

k−1|k−1 =x̂k−1|k−111×b

+ c
[

0na×1,

√
PAx Ax

k−1|k−1,−

√
PAx Ax

k−1|k−1

]
(17)

with corresponding weights

[
AW0, . . . ,A W2na ] =

1
na+κ
[κ, 1

2 , . . . ,
1
2 ], (18)

where b = 2na + 1 and c =
√

na + κ . Propagate each σ -point
through fk−1 as

Xi
k|k−1 = fk−1(

xXi
k−1|k−1)+

w Xi
k−1|k−1,∀i (19)

and calculate the state predictive moments as

x̂k|k−1 = σ−MEAN(AW ,Xk|k−1), (20)

Pxx
k|k−1 = σ−COV(AW ,Xk|k−1,Xk|k−1), (21)

M2SP
(17)

fk−1

(19)

update
σ -points

(26)

SP2M
(20–21)

hk

(22)

SP2M
(23–25)

x̂k−1|k−1
Pk−1|k−1

zk

x̂k|k
Pk|k

k − 1 k

Fig. 3. Block scheme of the FAUKF algorithm with reformu-
lated correction step.

Step 2: (filtering) Propagate each σ -point through hk as

Zi
k|k−1 = hk(X

i
k|k−1)+

v Xi
k−1|k−1,∀i (22)

and calculate the measurement predictive moments as

ẑk|k−1 = σ−MEAN(AW ,Zk|k−1), (23)

Pzz
k|k−1 = σ−COV(AW ,Zk|k−1,Zk|k−1), (24)

Pxz
k|k−1 = σ−COV(AW ,Xk|k−1,Zk|k−1). (25)

The filtering σ -points are computed according to

Xk|k = Xi
k|k−1 +Kk(zk −Zi

k|k−1), (26)

where Kk = Pxz
k|k−1(P

zz
k|k−1)

−1. The filtering mean and covari-
ance matrix are computed by

x̂k|k = σ−MEAN(AW ,Xk|k), (27)

Pxx
k|k = σ−COV(AW ,Xk|k,Xk|k), (28)

As can be seen, transformation of the updated σ -points to the
moments is still inevitable to prevent an increase of the number
of the σ -points (note that there are na σ -points after the filtering
step). Hence the high order moments are again discarded.

Based on the above algorithms, the goal of the paper is to
develop a UKF-based algorithm that allows propagation of the
σ -points while keeping the higher order moment information.
Keeping the higher order moments should lead to more precise
first two moments and thus to increased accuracy.

As the algorithm will not augment the state (to keep the number
of σ -points constant), it is necessary to design a technique that
will modify the σ -point set to increase its covariance given
by the contribution of the state and measurement noises. Such
technique is a cornerstone of the proposed algorithm and will be
adopted in moment update steps in (9) and (16) of Algorithm 1.

3. SIGMA POINTS COVARIANCE INCREASE

The technique to increase covariance of the σ -point set by their
direct modification is based on the following theorem:
Theorem 1. Given a set of σ -points Xi

∈ Rnx , i = 0, . . . 2nx ,
their weights W0:2nx =

1
nx+κ
[κ, 1

2 , . . . ,
1
2 ] for which

σ−MEAN(W ,X) = x̂ (29)
iσ−COV(W ,X,X) = Pxx (30)

holds, let U ∈ Rnx×nx be a solution to the continuous Riccati
equation

2UUT
+ UX̃T

+ X̃UT
= 2(nx + κ)Q, (31)
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where X̃ = X1:nx −Xnx+1:2nx . Then
σ−MEAN(W ,X+U) = x̂ (32)
σ−COV(W ,X+U,X+U) = Pxx

+Q, (33)
holds with

Ui
=


0nx×1 i = 0
Uei i = 1, . . . , nx

−Uei−nx i = nx + 1, . . . , 2nx ,

(34)

where ei is the i-th column of Inx×nx .

The proof can be found in Appendix A.

Based on the theorem, the σ -points can be modified to increase
their covariance matrix by solving the Riccati equation and
modifying each σ -point Xi by adding Ui . Further, this tech-
nique will be referred to as SPCI (σ -point covariance increase).

Note that the increase of covariance of the σ -point set by their
modification is not unique and the SPCI technique is just a
simple and computationally efficient way.

4. PURE PROPAGATION UKF

Now, having the SPCI technique at disposal, it is possible to
replace relations (8–10) of the UKF by a direct modification of
the σ -points. Such procedure will not discard higher order mo-
ments of the original σ -point set 1 . Hence, having the filtering
σ -points Xi

k|k , the predictive σ -points can be obtained by

Xi
k|k−1 = fk(X

i
k−1|k−1)+Ui , (35)

where the corrections Ui are obtained by the SPCI technique
with Q = 6wk .

Further, following the idea of the FAUKF with reformulated
correction step, in the filtering step it is possible to use (15) to
modify the σ -points directly instead modifying the moments by
(15) and (16). So when using the relation

Xi
k|k = Xi

k|k−1 +Kk(zk −Zi
k|k−1), (36)

it holds that the mean of the σ -points is (Kolås et al., 2009)
σ−MEAN(Wk|k,Xk|k) = x̂k|k . (37)

However, the covariance matrix of the σ -points equals to
σ−COV(Wk|k,Xk|k,Xk|k) = Pxx

k|k −Kk6
v
k Kk . (38)

To correct the filtering covariance matrix of the σ -points to
be Pxx

k|k , the SPCI technique must be used again with Q =
KT

k6
v
k Kk .

Now, having all the prerequisites, it is possible to specify the
algorithm of the UKF which preserves the σ -points representa-
tion of the state estimate for all time instants. As the algorithm
is based on σ -point propagation only, it will be referred to as
the pure propagation unscented Kalman filter (PPUKF).

Algorithm 3: Pure Propagation Unscented Kalman Filter

Step 1: (initialization) Set the time instant k = 0.
Step 2: (prediction)

1 Note that the higher order moments might be affected by the way how the
SPCI is implemented as the proposed SPCI is not a unique solution of the σ -
points modification problem

fk−1

(41)

update
σ -points

(42)

update
σ -points
(48,47)

hk

(43)
SP2M

(49)

SP2M
(44–46)

update
moments

(45)

Xk−1|k−1

zk

Xk|k

x̂k|k
Pk|k

k − 1
k

Fig. 4. Block scheme of the PPUKF algorithm.

If k = 0, let x̂0|−1 = E[x0] = x̄0, Pxx
0|−1 = cov[x0] = Pxx

0
and calculate the σ -points

X0:2nx
0|−1 = x̂0|−111×b + c

[
0nx×1,

√
Pxx

0|−1,−
√

Pxx
0|−1

]
(39)

with corresponding weights

W0:2nx =
1

nx+κ
[κ, 1

2 , . . . ,
1
2 ], (40)

where b = 2nx+1 is the number of σ -points and c =
√

nx + κ .
If k > 0, propagate each σ -point through fk−1 as

X̄i
k|k−1 = fk−1(X

i
k−1|k−1)∀i (41)

and calculate the corrections Ui
k|k−1 of the σ -points by the

SPCI technique with Xi
= X̄i

k|k−1 and Q = 6wk . The
predictive σ -points are given as

Xi
k|k−1 = X̄i

k|k−1 +Ui
k|k−1 = fk(X

i
k−1|k−1)+Ui

k|k−1 (42)

Step 3: (filtering) Propagate each σ -point through hk as

Zi
k|k−1 = hk(X

i
k|k−1),∀i (43)

and calculate the measurement predictive moments as
ẑk|k−1 = σ−MEAN(W ,Zk|k−1), (44)
Pzz

k|k−1 = σ−COV(W ,Zk|k−1,Zk|k−1)+6
v
k , (45)

Pxz
k|k−1 = σ−COV(W ,Xk|k−1,Zk|k−1). (46)

Propagate the predictive σ -points through the relation

X̄i
k|k = Xi

k|k−1 +Kk(zk −Zi
k|k−1) (47)

and calculate the corrections Ui
k|k of the σ -points by the SPCI

technique with Xi
= X̄i

k|k and Q = KT
k6

v
k Kk . The filtering

σ -points are given as

Xi
k|k = X̄i

k|k +Ui
k|k (48)

The state estimate x̂k|k can computed as
x̂k|k = σ−MEAN(W ,Xk|k). (49)

Note that if requested, any higher order moment can be calcu-
lated using the σ -points Xi

k|k and weights W i .
Let k = k + 1. The algorithm then continues by Step 2.

As can be seen, the PPUKF propagates the σ -points of the state,
without any re-computation of the σ -points based on moments.
Block scheme of the PPUKF algorithm is depicted in Fig. 4.

5. NUMERICAL ILLUSTRATION

The newly proposed PPUKF will be illustrated in an example
dealing with bearings-only tracking (Ristic et al., 2004). The
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target follows a course of −140◦ starting 12 km away from the
platform at a constant speed of 4 knots. The platform follows
a course of 140◦ at a constant speed of 5 knots and at k = 13
executes a maneuver to reach a new course of 18◦. The initial
positions are [12 km, 2 km] for the target and [0, 0] for the
platform. The model was simulated for 40 minutes and the
geometry of the motion is depicted in Fig. 5. For the estimation

0 2 4 6 8 10 12
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

start

start

 

 

target

platform

Fig. 5. Simulation scenario.

purposes, the object state is given by xk
4
= [xk,yk, ẋk, ẏk]

T

(i.e. it consists of the positions and velocities in the x and y
directions and evolves according to the continuous white noise
acceleration motion model

xk+1 =

 1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 xk − Vk,k+1 +

 0.5T 2 0
0 0.5T 2

T 0
0 T

wk,

where T = 1 min is the sampling interval, Vk,k+1 is a vector
of deterministic inputs accounting for the effect of the platform
acceleration (Ristic et al., 2004), and the covariance matrix of
the state noise is 6w = 1.6× 10−6I2×2km2/s4.

The object is observed from a platform, which provides the
measurement zk at time k given by the angle from the platform
to the object. Suppose that at time k the platform is located at
coordinates [xp

k ,y
p
k ], then the measurement zk is given by

zk = arctan
xk − x

p
k

yk − y
p
k
+ vk,

where the variance of the measurement noise is 6v = (1.5◦)2.

Four filters were tested: UKF, FAUKF, FAUKF with refor-
mulated correction step (FAUKF-RCS), and PPUKF using
N = 103 Monte Carlo (MC) runs. They were initialized ac-
cording to Ristic et al. (2004) with initial range r , p(r) =
N {r;

√
122 + 22, 42

} and speed s, p(s) = N {s; s̄, (2 · 0.03)2},
where s̄ is true speed.

Their performance was compared using the root mean square
error (RMSE) defined as

RMSEx
k =

√
1
N

∑N

i=1
(x̂i

k − xi
k)

2 (50)

for the x position error, where x i
k and x̂ i

k denote true and
estimated target positions at the i-th MC run. The RMSE for
the y direction is calculated analogically to (50). The RMSEs
for both coordinates are depicted in Fig 6. Performance of
the filters was also compared using the average normalized

estimation error squared (ANEES) measure defined as (Li and
Zhao, 2006)

ANEESk =
1

nx N

∑N

i=1

(
(xi

k − x̂i
k)

T(Pi
k|k)
−1(xi

k − x̂i
k)
)
,

where Pi
k|k denotes the filtering covariance matrix provided

by the filters in i-the MC simulation. The ANEES values are
depicted in Fig 7. The results indicate that the PPUKF achieves

0 5 10 15 20 25 30 35 40
0

1

2
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4

k

R
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S
E

x

 

 

UKF

FAUKF

FAUKF−RCS

PPUKF
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R
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S
E
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FAUKF

FAUKF−RCS

PPUKF

Fig. 6. RMSE for position estimates versus time for the UKF,
FAUKF, FAUKF-RCS and PPUKF.
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FAUKF

FAUKF−RCS

PPUKF

Fig. 7. ANEES versus time for the UKF, FAUKF, FAUKF-RCS
and PPUKF.

the lowest RMSE which is caused by propagation of the σ -
points without their re-computation based on moments. This
leads to preservation of higher order moments and consequently
to an increased precision of the mean. This is confirmed by the
ANEES which evaluates not only the error of the state estimate
but also the covariance matrix produced by the filter.

Note that the RMSE increase in k ∈ (0, 13) is given by a low
observability of the state. A change of the object position in this
period is reflected in the measurement negligibly.

To illustrate preservation of the higher-order moments, esti-
mates of the third central moment of the state were computed
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Table 1. Computational costs of a single step of the
filters.

UKF FAUKF FAUKF-RCS PPUKF

Time [msec] 0.26 0.30 0.33 2.00

(further denoted as Mxxx,i
k|k and representing a column of third

moments of individual state variables at the i th MC run) and an
average of their absolute values sum over the MC runs given by

M3,k =
1
N

∑N

i=1
11×nx |M

xxx,i
k|k |,

is depicted in Fig 8. From the figure it follows that the PPUKF
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Fig. 8. Average of sum of third moments of state variables ver-
sus time for the UKF, FAUKF, FAUKF-RCS and PPUKF.

is capable of capturing third order moment of the state better
than the FAUKF-RCS which recomputes the σ -points at each
time instant. The UKF and FAUKF provide only recomputed
filtering σ -points, hence their third moment is zero.

Computational costs of a time step are given in Table 1. The
increased costs of the PPUKF result from the Riccati equation
solved in the SPCI technique.

6. CONCLUDING REMARKS

The paper dealt with state estimation of nonlinear stochastic
systems with the focus on the UKF. A new UKF-based filter
with pure propagation of the σ -points has been proposed. The
proposed algorithm completely eliminates re-computation of
the σ -points executed in classical UKF algorithms for the
purpose of correction of the moments. To this end a new
technique for a direct modification of the σ -points has been
developed. The results of a bearings-only tracking example
indicate increased estimate quality of the proposed PPUKF at
the cost of higher computational costs caused mainly by the
proposed technique for direct modification of the σ -points.
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Appendix A. PROOF OF LEMMA 1

Proof of the first part (32):∑2nx

i=0
W i (Xi

+Ui ) =
∑2nx

i=0
W iXi

+

∑2nx

i=0
W iUi

= x̂+
∑2nx

i=0
W iUi

= x̂+W00nx×1 +
∑2nx

i=1
W iUi

= x̂+
∑nx

i=1
W i Uei +

∑2nx

i=nx+1
W i (−Uei−nx ) = x̂

Proof of the second part (33): For convenient purposes define

X̄i 4
= Xi

− x̂ and α = 2(nx + κ). Then∑2nx

i=0
W i (X̄i

+Ui )(X̄i
+Ui )T =

∑2nx

i=0
W iX̄i (X̄i )T

+

∑2nx

i=0
W i (X̄i (Ui )T +Ui (X̄i )T +Ui (Ui )T)

= Pxx
+W0(X̄0(U0)T +U0(X̄0)T +U0(U0)T)

+
1
α

∑2nx

i=1
(X̄i (Ui )T +Ui (X̄i )T +Ui (Ui )T)

= Pxx
+

1
α

∑2nx

i=1
(X̄i (Uei )

T
+ Uei (X̄

i )T + Uei (Uei )
T)

= Pxx
+

1
α

∑nx

i=1
((X̄i

− X̄i+nx )(Uei )
T
+ Uei (X̄

i
− X̄i+nx )T

+ 2Uei (Uei )
T) = Pxx

+
1
α

(
(X1:nx −Xnx+1:2nx )(U)T

+ U(X1:nx −Xnx+1:2nx )T + 2UUT)
=

Pxx
+

1
α

(
UX̃T
+ X̃UT

+ 2UUT)
= Pxx

+
1
α
αQ = Pxx

+Q
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