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Abstract: This paper employs a logistical regression classifier for combining particle swarm
optimizer and local optimizer to solve dynamic optimization problems. It achieves the ability
of automatic transition from global optimizer to local optimizer according to the state of
solutions. The particle swarm optimizer is used to globally search for a good approximation of
the solution and then SQP is applied as the local optimizer for quickly converging to the optima.
Experimental results on two complex chemical processes demonstrate that the proposed method
can get comparable and even better results than the existed methods in precision and especially
in function evaluations.
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1. INTRODUCTION

Dynamic optimization is a hot topic in the research areas
of chemical engineering. Due to the nonlinear, multimodal,
and constrained nature in processes, it is challenging to
solve dynamic optimization problems. The evolutionary al-
gorithm has been shown to be a simple effective algorithm
for nonlinear optimization. Because of its ability to find
global optima, a large number of researchers have applied
evolutionary algorithm to optimize engineering processes.

Rajesh et al. (2001) applied the ant colony algorith-
m (AC) to the dynamic optimization of chemical processes
combined with control vector parameterization method.
Six classical chemical process problems were successfully
solved and the results were comparable with other tradi-
tional derivative methods. Zhang et al. (2005) proposed
an iterative ant colony algorithm and applied it to the dy-
namic optimization of chemical process. Babu and Angira
(2006) applied the differential evolution algorithm (DE)
to optimal control problems of nonlinear stirred tank re-
actors. Castellani et al. (2012) modified the bee algorithm
and implemented it into dynamic optimization. Shelokar
et al. (2008) combined the power of multicanonical sam-
pling with the beneficial features of simulated annealing
and tabu list to solve complex chemical engineering pro-
cesses. Padhiyar et al. (2006) employed DE into the prob-
lem of optimal grade transition in polymerization reactors.

Evolutionary algorithm is a type of stochastic methods
that can avoid being trapped in local optima to some
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degree. However, the searching speed is relatively slow
and the solution they get in the same problem may be
different from each running. To improve searching efficien-
cy and solution precision, hybrid methods have become
popular in recent years. Chen et al. (2013) combined
particle swarm optimization (PSO) with quasi-Newton
method for four classical dynamic processes and a high
dimensional continuous stirred tank reactor (CSTR) prob-
lem. Egea et al. (2009) employed enhanced scatter search
method combined with local search to the optimal control
of biological reactors. Schlter et al. (2009) proposed a
framework of combining ant colony optimization and local
mixed integral sequential quadratic programming for non-
convex mixed integral nonlinear programming problems.
Most of them adopt a two-step optimization strategy: the
evolutionary algorithm searches the good initial solutions
for local search and then the local optimizer converges to
the local minima. However, the transition timepoint from
evolutionary algorithm to local optimizer is always user
defined and problem dependent. In this paper, a logistic
regression classifier is applied to determine the transition
from PSO to SQP according to the state of solutions. The
logistic regression classifier is trained by the data from
classical dynamic optimization problems. Based on this
adaptive transition model, an improved adaptive particle
swarm optimizer combined with SQP by logistic regression
(APSO-LR) is proposed for dynamic optimization. Two
complex chemical processes are used to test the proposed
method.
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2. PROBLEM STATEMENT

A typical dynamic optimization problem can be described
as follows:

max
u(t)

J = ψ(z(tf )) (1)

dx(t)

dt
= f(z(t), u(t), t) (2)

g(z(t), u(t), t) = 0 (3)

h(z(t), u(t), t) ≤ 0 (4)

Here J is the performance index of the system, z(t) is the
state vector, u(t) is the control vector and tf is the fixed
terminal time. The task of dynamic optimization is to find
the optimal control u∗(t) to minimize (or maximize) the
performance index J that is subject to the dynamic system
(2), equality constraints (3) and inequality constraints (4)
with the initial condition z(t0) = z0, where t0 is the initial
time and z0 is the initial state.

To solve the dynamic optimization problems using evolu-
tionary algorithm, a discretization method is needed. Se-
quential (also known as Control Vector Parameterization,
CVP) and simultaneous methods are two typical strategies
for discretization. More discretization methods and details
can be found in a comprehensive review by Biegler (2007).
As sequential methods only discretize the control variables,
the dimension of the transformed dynamic optimization
problem is relatively small compared with simultaneous
method. Evolutionary algorithms are suitable to be com-
bined with CVP, because higher dimensions will cause the
curse of dimensionality for evolutionary algorithm.

Piecewise-constant control approximation is a simple and
common method in control vector parameterization. It can
be written as follows:

u(t) ≈ up(t|ξ) =

np∑
k=1

ξkδ[τk−1,τk)(t), t ∈ [t0, tf ] (5)

where [τk−1, τk) is the kth control subinterval, ξk is the
control value on the kth subinterval, np is the number
of control subintervals and δ[τk−1,τk) is the characteristic
function defined as

δ[τk−1,τk)(t) =

{
1, t ∈ [τk−1, τk)
0, t /∈ [τk−1, τk)

(6)

In addition, τk, k = 1, 2, ..., np, are knot points satisfying
the following conditions

t0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τnp−1 ≤ τnp = tf (7)

Substitute (5) into (1)-(4) yields

max
ξk,τk,k=1,...,np

J = Jp(ξ, τ) (8)

ż(t) = f(t, z(t), ξk), t ∈ [τk−1, τk) (9)

gp(t, z(t), ξk) = 0, t ∈ [τk−1, τk) (10)

hp(t, z(t), ξk) ≤ 0, t ∈ [τk−1, τk) (11)

The original problem and transformed problem are equiv-
alent in the limit as np approaches infinity, which has been
proved by Lin et al. (2012). After control vector parameter-
ization, the original dynamic optimization has been trans-
formed into a nonlinear programming problems where

optimization parameters are ξk and τk, k = 1, 2, ..., np.
This nonlinear programming problem can be solved by
evolutionary algorithms.

3. ADAPTIVE PARTICLE SWARM OPTIMIZER
WITH LOCAL SEARCH

3.1 Adaptive Particle Swarm Optimizer

Particle swarm optimization (PSO), proposed by Kennedy
and Eberhart (1995), is one kind of swarm intelligence-
based stochastic optimization algorithms. In PSO, a crowd
of particles are considered as potential solutions of the
optimization problem. Each particle i has velocity vi =
[v1i , v

2
i , ..., v

D
i ] and position xi = [x1i , x

2
i , ..., x

D
i ] describing

their states, where D is the dimension of problem. A par-
ticle searches for the solution depending on its historical
personal best position stored by itself and the information
shared among other particles. Each particle i updates its
velocity vi and position xi as follows:

vdi (q + 1) = w · vdi (q) + c1 · r1(xdpbesti(q)− x
d
i (q))

+c2 · r2(xdgbest(q)− xdi (q))
(12)

xdi (q + 1) = xdi (q) + vdi (q + 1) (13)

where xdi (q) and vdi (q) represent the position and velocity
of particle i in the dth dimension respectively; q is the
iteration number of the evolutionary process. xpbesti is the
personal best position found by particle i, and xgbest is
the global best position found by the whole population
so far. In addition, w ∈ (0, 1) is an inertia weight used
to balance the exploitation and exploration ability of
PSO proposed by Shi and Eberhart (1998). c1, c2 are
acceleration constants. r1 and r2 are random numbers
generated according to the uniform distribution in (0, 1).

Based on the standard particle swarm optimizer, adaptive
particle swarm optimizer (APSO) was proposed by Zhan
et al. (2009). It automatically adjusts the parameters
in PSO according to the position distribution of the
swarm. In addition, a novel elite learning strategy was
also proposed in APSO to enhance the swarm diversity in
optimization. Because of its good performance in singular
and multimodal functions, it is applied in our method in
this paper. Due to the space limit, more information about
APSO can be found in the reference of Zhan et al. (2009).

3.2 APSO with Local Optimizer for Dynamic Optimization

In order to solve the dynamic optimization problems by
APSO more effectively at the beginning stage of opti-
mization, constraints are preprocessed. In the discretized
problem described by (7)-(11), there are two types of
constraints. Constraints like (10) and (11) are called path
constraints. Path constraint is the constraint where rele-
vant state variables and control parameters must satisfy
each other from the initial time to the terminal time.
When dealing with these kinds of constraints, a penalty
method is adopted by adding constraints into the objective
functions with some penalty coefficients as described in
Teo et al. (1993). A mapping function is used to change
the solutions generated by APSO into the solutions satisfy
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the constraints in (7). The structure of solutions in APSO
for dynamic optimization are as follows

X = [x1, x2..., xnp , ξ1, ξ2, ..., ξnp ] (14)

where ξk, k = 1, 2, ..., np is the control variable on the
kth subinterval in (5), the time point variable in (7) is
calculated as follows

τk = τnp ·
k∑
i=1

|xi|
np−1∑
j=1

|xj |
+ τ0, k = 1, 2, ..., np − 1 (15)

With this mapping function the solution of the dynamic
optimization problem can be constructed as follows

S = [τ0, τ1, τ2..., τnp−1, τnp
, ξ1, ξ2, ..., ξnp

] (16)

where τ0 = t0, τnp = tf . With the control profile in (5),
initial time τ0 and terminal time τnp the state vector z(t)
can be calculated through solving the differential equation
(9) by solvers such as Runge-Kutta or any other ordinary
differential equation solvers. In addition, the objective
function can be calculated by (1). Therefore, the origi-
nal dynamic optimization problem is changed into a nor-
mal nonlinear optimization problem without constraints,
which can be solved by evolutionary algorithms such as
APSO.

Depend on the solution found by APSO in the first stage,
sequential quadratic programming, SQP (Boggs and Tolle
(1995)) is then used as the local searcher to accelerate the
searching process and improve the solution precision. As
SQP is a gradient based solver, the gradient of objective
with respect to the decision variables can be effectively
calculated through solving a sensitivity differential equa-
tion as shown in Loxton et al. (2008). The convergence
of APSO-LR is determined by the local search SQP, and
other gradient based algorithms can also be applied.

3.3 Transition from APSO to Local Search

In our two stage optimizer, APSO is used to conduct
a preliminary search of the feasible region, which offers
a good initial feasible solution for SQP, and the SQP
finally makes solutions converge to the local minima.
The method for transition from APSO to SQP is very
important. Most of algorithms simply use a threshold in
function evaluations to control the transition from APSO
to local search. In this paper, a logical regression classifier
in John et al. (1996) is used to determine the transition
according to the state of solutions, because it is simple to
implement and high efficiency in training process, which
will not increase too much complexities compared with the
original algorithm. Logical regression is one kind of binary
classifier, the data are labeled with 0/1, where label 0
stands for making transition and label 1 stands for keeping
current state.

Six classical dynamic optimization problems in Rajesh
et al. (2001) are selected to generate the training set
for logistic regression, including an unconstrained math-
ematical program, nonlinear unconstrained mathematical
program, tubular reactor parallel reaction problem, bath
reactor consecutive reaction problem, plug flow reactor
catalyst blend and one reactor problem. They are all

unconstrained, small type dynamic optimization problems
with only one control variable. They are solved by APSO
and 9 features are recorded as training set for logistic re-
gression, among which three features relevant with global
best particle are calculated as follows

fe =
dg − dmin

dmax − dmin
(17)

di =
1

Nsp − 1

Nsp∑
j=1,i6=i

√√√√ D∑
k=1

(xki − xkj )2 (18)

Ss =
1

D

D∑
i=1

(
1

Nsp − 1

√√√√Nsp∑
j=1

(x̂ij − ¯̂x
i
)2) (19)

Oi =
|fg(q)− fg(q − 1))|
|fg(q)|+ ε

· 100% (20)

where q is the number of iterations, Nsp is the number
of swarm in APSO, D is the dimension of transformed
optimization problem, g ∈ {1, 2, ..., Nsp} stands for the
best particle’s index in the current swarm, x̂ij is the
normalized solution of the jth particle in ith dimension,
¯̂x
i

is the average of normalized solutions among the swarm
in the ith dimension and fg(q) is the global best particles
fitness value (objective value) in qth iteration. fe is the
factor which represents the distribution of particles in
relation to the global best particle in the current swarm.
Ss reflects the variance of swarm. Oi is the increase
rate of objective’s global best value in current iteration.
ε = 0.00001 is used to avoid zero division.

Apart from these features another six features are supple-
mented. They are iteration count q, number of function
evaluations fes, mean value of each particle’s normalized
solution value in each dimension Sm, mean distances be-
tween each particle and other particles dm, average of
each particle’s historically accumulative stagnation count
Staym, and the global best particle’s continuous stagna-
tion count Stayg. The stagnation is defined as the state-
ment that one particle’s personal historical best solution
can’t get improved within one iteration. Among them
Sm and dm reflects the distribution of swarm, which are
calculated as follows

Sm =
1

D

D∑
i=1

(
1

Nsp

Nsp∑
j=1

x̂ij) (21)

dm =
1

Nsp

Nsp∑
i=1

di (22)

Therefore, training set for logistic regression is defined as
Xfe,i = [li, fesi, fei, Ssi, Smi, Oii, dmi, Staymi, Staygi, 1]
with label classi , where i is the index of training sample
and the last term 1 in Xfe,i is added to correspond with
the constant term in logistic regression model. Samples
are labeled as follows, if current global best solution is
within the domain of global optimal, it is labeled as class 1,
otherwise it is labeled as class 0. As the optimal solutions
of each classical optimization problem for benchmarks
are known, we can label sample as class 1 if it satisfies
|f(x)−f(xopt)|
|f(xopt)| ≤ υ, otherwise it is labeled as class 0. υ is

0.05 according to experiments.
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3.4 Training for Logistic Regression

All six dynamic optimization problems are solved 5 times
separately and the number of particles and maximal num-
ber of iterations in APSO is set to be 30 and 100 separately.
In addition, the number of subintervals np in (15) is set to
be 5 in each problem. These parameters are set through
experiments to make sure that APSO can find the optimal
regions of all problems. As a result, 1400 feature data are
uniformly selected during optimization, among which 700
are class 1 and 700 are class 0. The logistic model is trained
through quasi-Newton method introduced in Gilbert and
Lemarechal (2006) combined with 20 cross-validations.
The average training error is 0.898. The trained model
is described as follows

Ptran =
1

e−(W ·X
T
fe

) + 1
(23)

y =

{
1, Ptran ≥ η
0, Ptran < η

(24)

where W = [0.1955, 0.0188,−0.8075, 23.4985,−0.8823,
−2.9365,−0.032,−0.8082,−0.1962,−7.337]. Ptran is the
probability for transition. η is usually set to be 0.5, while
in our algorithm η is set to be 0.4 to introduce some bias
into classification. This bias is shown to perform well in
experiments. y is the flag of transition from APSO to
local search. That is when y becomes 1 the search of
APSO is stopped and the local searcher is activated to
converge to local optimal of problem. In terms of machine
learning, the pattern we tried to learn through logistic
regression classifier is current solution’s degree of closeness
to the optima, which is reflected by the features abstract
from solutions. Based on the generation ability of logistic
regression classifier, the similar pattern in other problems
can also be found by this trained classifier to some extent.
However, more researches on the generation ability of
APSO-LR in solving dynamic optimization problems will
be our future work.

4. EXPERIMENTAL STUDIES

APSO is a parameter adaptive particle swarm optimizer.
There are three user defined parameters besides the core
module. They are maximum of iteration number qmax,
maximum of function evaluations FESmax and number
of particle swarms Nsp. In this paper, qmax = 100,
FESmax = 3000, Nsp = 30 in all experiments. The
number of subintervals in dynamic optimization np is set
according to the problem.

Two complex dynamic optimization problems are used
to test our algorithm compared with other algorithms
from the literatures. All these problems are run 10 times
separately solved by APSO-LR. The best, mean and worst
results of objective values and the number of function
evaluations of each problem are shown in Table 1 and
Table 2, respectively.

4.1 Problem 1

The first problem is about the optimal production of se-
creted protein in a fed-batch reactor, which was introduced
by Park and Fred Ramirez (1988). It has been studied

in Luus and Hennessy (1999), Upreti (2004), Chen et al.
(2013), Angira and Santosh (2007). The mathematical
model is as follows

Max J(tf ) = z1(tf )z5(tf )

s.t.



ż1 = g1(z2 − z1)− u

z5
z1

ż2 = g2z3 −
u

z5
z2

ż3 = g3z3 −
u

z5
z3

ż4 = −7.3g3z3 +
u

z5
(20− z4)

ż5 = u

g1 =
4.75g3

0.12 + g3
, g2 =

z4
0.1 + z4

e(−5.0z4)

g3 =
21.87z4

(z4 + 0.4)(z4 + 62.5)
0 ≤ u ≤ 2, tf = 15, z(0) = (0, 0, 1, 5, 1)

(25)

where z1 and z2 are the concentrations of secreted and
total protein, respectively. z3 and z4 are the concentrations
of cell and glucose, respectively, z5 is the volume of reactor.
g1, g2, g3 are kinetic parameters. The control variable u
is the feed rate to the reactor, and the objective is to
maximize the product of concentration of protein z1 and
the volume z5 at final time tf .

Comparison results with other results from literatures
are shown in Table 1, and the optimal control profile of
problem 1 is shown in Fig. 1, which is plotted according
to the best results of APSO-LR among 10 runs. Symbol
′/′ in Table 1 stands for the data that are not mentioned
in the literature.

Table 1. Comparison Results of Problem 1

Reference Algorithm np Nsp Best Mean FES

This work APSO-LR 15 30 32.69296 32.68401 879
Chen et al. (2013) HGPSO 31 62 32.61308 32.60809 30037

45 90 32.68604 32.65554 42594
Luus and Hennessy (1999) Direct Search 31 / 32.61339 / /

45 / 32.68687 / /
Upreti (2004) GA 45 / 32.59277 / /

Angira and Santosh (2007) TDE 45 30 32.68434 / /

From Table 1, APSO-LR performs better than other algo-
rithms on both precision and function evaluations. The
number of function evaluations is largely reduced com-
pared with other algorithms, which is the construction of
gradient calculating method in local search SQP and the
transition model trained by logistic regression. In APSO-
LR, the gradients of objective with respect to control vari-
ables are calculated by solving the sensitivity differential
equation (Loxton et al. (2008)) instead of finite difference
method which needs lots of function evaluations. The
transition model trained by logistic regression determines
the appropriate time at which APSO is switched to SQP,
which reduces lots of unnecessary number of function eval-
uations. In this problem, we set the number of subintervals
to be 15. According to Table 1, small number of subinter-
vals in the proposed algorithm can get the compared or
even better results than big ones in other algorithms.

4.2 Problem 2

The second problem is feeding-rate optimization of foreign
protein production that is studied by Lee and Ramirez
(1994) and Roubos et al. (1999). The model contains
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Fig. 1. Optimal Control u for Problem 1

seven state variables and two control variables, and can
be described as follows

dx1
dt

= u1 + u2
dx2
dt

= µz2 −
u1 + u2
z1

z2

dx3
dt

=
u1
z1
Cnf −

u1 + u2
z1

z3 − Y −1µz2
dx4
dt

= Rfpz2 −
u1 + u2
z1

z4

dx5
dt

=
u2
z1
Cif −

u1 + u2
z1

z5

dx6
dt

= −k1z6
dx7
dt

= k2(1− z7)

µ =
0.407z3

0.108 + z3 +
z23

14814.8

(z6 + z7
0.22

0.22 + z5
), Cif = 4.0

Rfp =
0.095z3

0.108 + z3 +
z23

14814.8

(
0.0005 + z5
0.22 + z5

), Cnf = 100.0

k1 = k2 =
0.09z5

0.034 + z5
, Y = 0.51

(26)

The state variables are reaction volume z1(L), cell density
z2(g/L), nutrient concentration z3(g/L), foreign protein
concentration z4(g/L), inducer concentration z5(g/L), in-
ducer shock factor on the cell growth rate z6 and inducer
recovery factor on the cell growth rate z7. The two control
variables are glucose feed rate u1(L/h) and inducer feed
rate u2(L/h), respectively. Y,Cnf , Cif , µ,Rfp, k1, k2 are
growth yield coefficient, nutrient concentration in inducer
feed, specific growth rate, foreign production rate, shock
and recovery parameters, respectively. The objective is to
find the optimal control profile u1 and u2 to maximize
J(u1, u2), which is given by the following equation

J(u1, u2) = z4(tf )z1(tf )−Q
tf∫
0

u2(t)dt (27)

where Q = 5 is the price ratio of inducer to product.
tf = 10h and the initial conditions for dynamic system
are z(0) = [1, 0.1, 40, 0, 0, 1, 0]T . Boundary constants for
u1 and u2 are within the range of [0, 2]L/h.

Table 2. Comparison Results of Problem 2

Reference Algorithm np Nsp Best Mean FES

This work APSO-LR 5 30 0.8165 0.8146 533
Tholudur and Ramirez (1996) ANN / / 0.8030 / /

Roubos et al. (1999) GA / / 0.8149 / 1000000
Mekarapiruk and Luus (1997) IDP / / 0.8164 / /

Jayaraman et al. (2001) CACO / / 0.8095 / 26763
Sarkar and Modak (2003) ANNSA / / 0.8166 / 1729601

Zhang et al. (2005) SACA / / 0.8158 / 120000

Comparison results with other results from the literature
are shown in Table 2, and the optimal control profile of u2
is shown in Fig. 2. The optimal control of u1 is zero. In
this problem, APSO-LR gets the results comparable with
the best result from Sarkar and Modak (2003). However,
APSO-LR reduces the number of function evaluations
greatly.

Fig. 2. Optimal Control u2 for Problem 2

Summary results of two dynamic optimization problems
are listed in Table 3 where the effect of logistic regression
can be shown. fesAPSO and fesm represent the mean
function evaluations for APSO and the total function eval-
uations in APSO-LR, respectively. fesAPSO is determined
by the logistic regression depending on the state of current
solutions automatically.

Table 3. Summary of Results from APSO-LR

No. best worst mean std fesAPSO fesm
1 32.69296 32.67269 32.68401 8.26E-03 727 879
2 0.81648 0.80725 0.81462 3.88E-03 462 533

5. CONCLUSIONS

This paper combines a powerful adaptive particle swarm
optimizer with SQP as the local search optimizer to solve
the dynamic optimization problem. A logistic regression
model is used to control the transition from APSO to SQP.
As APSO and our transition model are both adaptive, our
method APSO-LR is an adaptive algorithm for dynamic
optimization, which needs no extra parameters besides
the basic parameters for evolutionary algorithm and dy-
namic optimization. Two complex dynamic optimization
problems are used to test APSO-LR and the results are
compared with other algorithms from the literatures. All
results show that APSO-LR performs comparable or even
better than other algorithms while greatly reducing the
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number of function evaluations. In addition, the combina-
tion framework used in APSO-LR can be used in particle
swarm optimizer which combined with other local optimiz-
ers.
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