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Altuğ İftar

Department of Electrical and Electronics Engineering, Anadolu
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1. INTRODUCTION

Many physical systems, especially large-scale systems,
usually involve time-delays. When the amount of the time-
delay is small, it may either be ignored or approximated
by finite-dimensional dynamics (Brezinski (1996)). When
the amount of the time-delay is large, however, it must be
explicitly considered (Loiseau et al. (2009)). The controller
design problem for a time-delay system is more difficult
than for a finite-dimensional system, since a time-delay
system is infinite-dimensional (Niculescu (2001)). When
the time-delay is distributed, this problem becomes even
more challenging (e.g., see Santos et al. (2006)).

When designing controllers for large-scale systems, decom-
position techniques are usually needed. Many large-scale
systems, however, involve subsystems which are loosely
interconnected among themselves, but strongly intercon-
nected through certain dynamics (e.g., see Šiljak (1991)).
To obtain meaningful decompositions for such systems,
the approach of overlapping decompositions has first been
introduced by Ikeda and Šiljak (1980). This approach
have since been used to design controllers for large-scale
systems (e.g., Ikeda et al. (1981); İftar and Özgüner (1987,

1990, 1998); İftar (2004)). The theoretical framework of
the overlapping decompositions is the inclusion principle
(Ikeda et al. (1984)). Although the inclusion principle
and overlapping decompositions have been recently con-
sidered for time-delay systems with discrete time-delays
(e.g., Bakule et al. (2005a,b); Bakule and Rossell (2008);

İftar (2008)), to the author’s best knowledge, systems
with distributed time-delay have not yet been considered
within this framework. Therefore, in this work, we first
formally define the inclusion principle for distributed-time-
delay systems in Section 2. The properties of input-output
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map equivalence and preservation of stability between two
systems, one of which includes the other, are presented
in Section 3. Controller and observer design, using the
inclusion principle, are discussed in Sections 4 and 5 re-
spectively. Finally, overlapping decompositions and the use
of overlapping decompositions in controller and observer
design are presented in Section 6.

Throughout the paper, R and R+ denote the sets of,
respectively, real numbers and non-negative real numbers.
For positive integers k and l, Rk and Rk×l denote the
spaces of, respectively, k-dimensional real vectors and k×l-
dimensional real matrices. Ik denotes the k×k-dimensional
identity matrix. 0 may denote either the scalar zero, a
zero vector, a zero matrix, or a matrix function which
is identically zero. For a vector function x(·), ẋ(t) is the
derivative of x(t) with respect to t.

2. INCLUSION PRINCIPLE

In this section, we extend the inclusion principle to
distributed-time-delay systems. Consider linear time-in-
variant (LTI) retarded distributed-time-delay systems, Σ:

ẋ(t) =

0
∫

−τ

(A(θ)x(t + θ) + B(θ)u(t + θ)) dθ (1)

y(t) =

0
∫

−τ

C(θ)x(t + θ)dθ (2)

and Σ̂:

˙̂x(t) =

0
∫

−τ

(

Â(θ)x̂(t + θ) + B̂(θ)û(t + θ)
)

dθ (3)

ŷ(t) =

0
∫

−τ

Ĉ(θ)x̂(t + θ)dθ (4)
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where the initial conditions for Σ and Σ̂ are respectively
given as:

x(θ) = φ(θ) and x̂(θ) = φ̂(θ) , θ ∈ [−τ, 0] (5)

for some functions φ : [−τ, 0] → Rn and φ̂ : [−τ, 0] → Rn̂.
In (1)–(4), x ∈ Rn, u ∈ Rp, and y ∈ Rq are, respectively,
the state, the input, and the output vectors of Σ, and
x̂ ∈ Rn̂, û ∈ Rp, and ŷ ∈ Rq are, respectively, the state,

the input, and the output vectors of Σ̂. It is assumed that
the dimensions of the input and output vectors of Σ and Σ̂
are the same, but Σ̂ has a larger dimensional state vector
than that of Σ; i.e., n̂ > n. In (1)–(4), A(·) : [−τ, 0] →
Rn×n, B(·) : [−τ, 0] → Rn×p, C(·) : [−τ, 0] → Rq×n,

Â(·) : [−τ, 0] → Rn̂×n̂, B̂(·) : [−τ, 0] → Rn̂×p, and

Ĉ(·) : [−τ, 0] → Rq×n̂ are bounded matrix functions,
except that they may involve Dirac delta terms. By this
assumption, Σ and Σ̂ are allowed to have discrete time-
delays besides distributed time-delays. Finally, t denotes
the time variable and τ is the maximum time-delay in Σ
and Σ̂.

Definition 1: Σ̂ includes Σ and Σ is included by Σ̂ if there
exist a full row-rank matrix U ∈ Rn×n̂ and a full column-
rank matrix V ∈ Rn̂×n with UV = In, such that for all
φ(·) and for all u(·), the choice

φ̂(θ) = V φ(θ) , θ ∈ [−τ, 0] (6)

and

û(t) = u(t) , t ≥ −τ (7)

implies

x(t) = Ux̂(t) , t ≥ −τ (8)

and

y(t) = ŷ(t) , t ≥ 0 . (9)

Two important special cases of inclusion are restriction
and aggregation. As we shall see, restriction is useful in
controller design and aggregation is useful in observer
design.

Definition 2: Σ is said to be a restriction of Σ̂ if there
exists a full column-rank matrix V ∈ Rn̂×n such that for
all φ(·) and for all u(·), the choice (6) and (7) implies

x̂(t) = V x(t) , t ≥ −τ (10)

and (9).

Definition 3: Σ is said to be an aggregation of Σ̂ if there
exists a full row-rank matrix U ∈ Rn×n̂ such that for all
φ̂(·) and for all û(·), the choice

φ(θ) = Uφ̂(θ) , θ ∈ [−τ, 0] (11)

and (7) implies (8) and (9).

The following theorem formally establishes that both
restriction and aggregation are special cases of inclusion.

Theorem 1: If Σ is a restriction or an aggregation of Σ̂,
then Σ̂ includes Σ.

Proof: If Σ is a restriction of Σ̂, then, since V is of
full column-rank, there exists a full row-rank matrix U ∈

Rn×n̂ with UV = In. Then (10) implies (8). Thus, Σ̂
includes Σ.

If Σ is an aggregation of Σ̂, then, since U is of full row-
rank, there exists a full column-rank matrix V ∈ Rn̂×n

with UV = In. Then, since (8) and (9) are satisfied for

any φ̂(·), they are satisfied for any φ̂(·) in the range of V .

Thus, Σ̂ includes Σ. 2

Now, without loss of any generality, let us relate the matrix
functions of Σ and Σ̂ as follows:

Â(θ) = V A(θ)U + M(θ) (12)

B̂(θ) = V B(θ) + N(θ) (13)

Ĉ(θ) = C(θ)U + L(θ) (14)

for θ ∈ [−τ, 0], where U and V are as in Definitions 1–
3 and M(·) : [−τ, 0] → Rn̂×n̂, N(·) : [−τ, 0] → Rn̂×p,
and L(·) : [−τ, 0] → Rq×n̂ are bounded matrix functions,
except that they may involve Dirac delta terms. Then we
have the following results:

Theorem 2: Σ is a restriction of Σ̂ if and only if

M(θ)V = 0 , N(θ) = 0 , and L(θ)V = 0 (15)

for θ ∈ [−τ, 0].

Proof: First note that (10) for t ∈ [−τ, 0] follows from
(6). Next, multiply both sides of (1) by V and use (12) and
(13). Also use (14) in (2). Compare the resulting equations
with (3)–(4) to show that conditions (15) are sufficient for
(10) and (9). The necessity of condition N(θ) = 0 follows
from the same comparison, since u(·) is arbitrary. To show
the necessity of the other two conditions in (15), consider
the obtained equations at t = 0, in which case x(t + θ)
is replaced by φ(θ). The necessity of M(θ)V = 0 and
L(θ)V = 0 now follows since φ(·) is arbitrary. 2

Theorem 3: Σ is an aggregation of Σ̂ if and only if

UM(θ) = 0 , UN(θ) = 0 , and L(θ) = 0 (16)

for θ ∈ [−τ, 0].

Proof: First note that (8) for t ∈ [−τ, 0] follows from (11).
Next, multiply both sides of (3) by U and use (12) and
(13). Also use (14) in (4). Compare the resulting equations
with (1)–(2) to show that conditions (16) are sufficient
for (8) and (9). The necessity of condition UN(θ) = 0
follows from the same comparison, since û(·) is arbitrary.
To show the necessity of the other two conditions in (16),
consider the obtained equations at t = 0, in which case

x̂(t + θ) is replaced by φ̂(θ). The necessity of UM(θ) = 0

and L(θ) = 0 now follows since φ̂(·) is arbitrary. 2

3. INPUT-OUTPUT MAPS AND STABILITY

When Σ̂ includes Σ, some important properties are pre-
served between the two systems. Here we will consider
two such properties: input-output map and stability. Let
us first formally define these properties.

Definition 4: Two systems with the same number of
inputs and outputs, such as Σ and Σ̂, are said to have
the same input-output map if, for any input, they produce
the same output in response to the same input when their
initial conditions are zero.
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Definition 5: A system, such as Σ or Σ̂, is said to
be bounded-input bounded-output (BIBO) stable if, in re-
sponse to any bounded input, it produces a bounded
output when its initial condition is zero.

Definition 6: A system, such as Σ or Σ̂, is said to
be (asymptotically) stable if, for any bounded initial
condition, its state remains bounded (and asymptotically
goes to zero as time goes to infinity) when its input is zero.

Now we can prove the following.

Theorem 4: If Σ̂ includes Σ, then Σ and Σ̂ have the same
input-output map.

Proof: When both Σ and Σ̂ have zero intial conditions,
then (6) is satisfied. Then, when the two systems have the
same input, i.e., when (7) is satisfied, by (9), they produce
the same output. 2

Remark 1: Note that, Theorem 4 implies that when Σ̂
includes Σ, then the two systems have the same transfer
function matrix, i.e.,

¯̂
C(s)

(

sIn̂ −
¯̂
A(s)

)

−1 ¯̂
B(s) = C̄(s)

(

sIn − Ā(s)
)

−1
B̄(s)

where R̄(s) :=
∫ 0

−τ
R(θ)esθdθ, where R stands for either

A, B, C, Â, B̂, or Ĉ.

Theorem 5: If Σ̂ includes Σ, then Σ is BIBO stable if and
only if Σ̂ is BIBO stable.

Proof: Follows from Theorem 4. 2

Theorem 6: If Σ̂ includes Σ, then (asymptotic) stability

of Σ̂ implies (asymptotic) stability of Σ.

Proof: When both Σ and Σ̂ have zero inputs, (7) holds.

Furthermore, for any bounded φ(·), φ̂(·) given by (6) is

also bounded. Then, if Σ̂ is (asymptotically) stable, x̂(t)
is bounded for all t ≥ 0 (and asymptotically goes to zero
as t goes to infinity). Then, by (8), x(t) is also bounded
for all t ≥ 0 (and asymptotically goes to zero as t goes to
infinity). Thus, Σ is also (asymptotically) stable. 2

Remark 2: Since, by Theorem 1, restriction and aggrega-
tion are two special cases of inclusion, Theorems 4–6 also
hold when Σ is either a restriction or an aggregation of Σ̂.

4. CONTROLLER DESIGN

Here we will consider only state feedback controllers. The
present analysis can also be extended to output feedback
controllers, which we intend to do in a future work.
Another alternative, when the whole state is not available
for feedback, is to use an observer to observe the state,
and, by using the separation principle (Fattouh et al.
(2000)), use this observation instead of the actual state
vector. We will discuss observer design in the next section.
Consider the following state feedback controllers for Σ and
Σ̂ respectively:

v(t) =

0
∫

−σ

K(θ)x(t + θ)dθ (17)

and

v̂(t) =

0
∫

−σ

K̂(θ)x̂(t + θ)dθ (18)

where v ∈ Rp and v̂ ∈ Rp are the outputs of the controllers
(17) and (18) respectively (which are to be applied to the

inputs of, respectively, Σ and Σ̂), σ is the maximum time-
delay in the controllers, and K(·) : [−σ, 0] → Rp×n and

K̂(·) : [−σ, 0] → Rp×n̂ are bounded matrix functions,
except that they may involve Dirac delta terms. Here,
it is assumed that σ ≤ τ . This assumption is justified
since, in general, one does not need to employ any time-
delays in a controller which are longer than the time-
delays of the system to be controlled. Note that, above
formulation allows representation of controllers which may
have distributed and/or discrete time-delays, as well as
delay-free static controllers. A delay-free static controller
of the form v(t) = K0x(t), where K0 ∈ Rp×n can be
represented as in (17) by letting σ = 0+ and K(θ) =
K0δ(θ), where δ(·) is the Dirac delta function.

Since the outputs, v and v̂, of (17) and (18) are respectively

to be applied to the inputs of Σ and Σ̂, in order to satisfy
condition (7) after the application of these controllers, we
must have the following property:

Definition 7: The controller (18) for Σ̂ is said to be
contractible to the controller (17) for Σ if there exists a
full column-rank matrix V ∈ Rn̂×n such that for all φ(·)
and for all u(·), the choice (6) and (7) implies

v(t) = v̂(t) , t ≥ 0 (19)

Theorem 7: Suppose that Σ̂ includes Σ. Then, the
controller (18) for Σ̂ is contractible to the controller (17)
for Σ if

K(θ)U = K̂(θ) , θ ∈ [−σ, 0] , (20)

where U is as in Definition 1.

Proof: Since Σ̂ includes Σ, when (6) and (7) are satisfied,
(8) is satisfied. Substitute (8) into (17) and compare with
(18). Then, since σ ≤ τ , (20) implies (19). 2

Since, for most applications (see Section 6), the controller

is to be designed for the larger dimensional system Σ̂ and
then to be contracted for application to Σ, it is important
that any controller designed for Σ̂ to be contractible to a
controller for Σ. However, in order to obtain a K(·) which

satisfies (20), for any θ ∈ [−σ, 0], any row of K̂(θ) must be
spaned by the rows of U . Since rank(U) = n < n̂, however,
this means that not every controller of the form (18) is
contractible to a controller of the form (17) in general.

However, if Σ is a restriction of Σ̂, then any controller of
the form (18) is contractible to a controller of the form
(17), as shown by the following result.

Theorem 8: If Σ is a restriction of Σ̂, then any controller
of the form (18) for Σ̂ is contractible to a controller of the
form (17) for Σ with

K(θ) = K̂(θ)V , θ ∈ [−σ, 0] , (21)

where V is as in Definition 2.
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Proof: Since Σ is a restriction of Σ̂, (6) and (7) implies
(10). Substitute (10) into (18) and compare with (17).
Then, since σ ≤ τ , (21) implies (19). 2

Now, let us apply the outputs of the controllers (17) and

(18) to the inputs of, respectively, Σ and Σ̂ as follows:

u(t) = v(t) + w(t) , t ≥ 0 (22)

and

û(t) = v̂(t) + ŵ(t) , t ≥ 0 (23)

where w ∈ Rp and ŵ ∈ Rp are the external inputs of the
respective closed-loop systems. Let us denote these closed-
loop systems by Σc and Σ̂c respectively. Then, we have the
following result.

Theorem 9: Let Σ be a restriction of Σ̂ and controller (18)
be contractible to controller (17). Also suppose that (6) is
satisfied not only for θ ∈ [−τ, 0], but for θ ∈ [−τ − σ, 0].

Then Σc is a restriction of Σ̂c.

Proof: The condition (10) for t ∈ [−τ − σ, 0] follows from
(6). To establish the same condition for t ≥ 0, write the
equation describing the dynamics of Σc by substituting
(17) into (22) and this into (1). Similarly, write the equa-

tion describing the dynamics of Σ̂c by substituting (18)
into (23) and this into (3). Then, multiply both sides of
the equation describing the dynamics of Σc by V and also
use (12), (13), (15), (21), and ŵ(t) = w(t), for t ≥ −τ (the
equivalent of (7) for the closed-loop systems). Compare
the resulting equation with the equation describing the
dynamics of Σ̂c to establish (10) for t ≥ 0. Once (10) is
established, (9) can be established by using (14), the last
condition in (15), and UV = In in (4). 2

The above theorem, together with the results in Section 3,
leads to the following result.

Corollary 1: Let Σ be a restriction of Σ̂ and controller
(18) be contractible to controller (17). Also suppose that
(6) is satisfied not only for θ ∈ [−τ, 0], but for θ ∈ [−τ −
σ, 0]. Then

(i) Σc and Σ̂c have the same input-output map (respec-
tively from w to y and from ŵ to ŷ).

(ii) Σc is BIBO stable if and only if Σ̂c is BIBO stable.

(iii) If Σ̂c is (asymptotically) stable then Σc is (asymptot-
ically) stable.

The above results allow one to design a controller for the
larger dimensional system Σ̂ to satisfy certain properties,
such as stability and input-output response, and then
contract it (using (21)) to apply on the system Σ, whenever

Σ is a restriction of Σ̂.

5. OBSERVER DESIGN

Consider the observer Ω, described by

ż(t) =

0
∫

−σ

(F (θ)z(t + θ) + G(θ)y(t + θ) + E(θ)u(t + θ)) dθ

(24)

v(t) =

0
∫

−σ

(H(θ)z(t + θ) + K(θ)y(t + θ)) dθ (25)

for Σ and the observer Ω̂, described by

˙̂z(t) =

0
∫

−σ

(

F̂ (θ)ẑ(t + θ) + Ĝ(θ)ŷ(t + θ) + Ê(θ)û(t + θ)
)

dθ

(26)

v̂(t) =

0
∫

−σ

(

Ĥ(θ)ẑ(t + θ) + K̂(θ)ŷ(t + θ)
)

dθ (27)

for Σ̂. The initial conditions for Ω and Ω̂ are respectively
given as:

z(θ) = ζ(θ) and ẑ(θ) = ζ̂(θ) , θ ∈ [−σ, 0] (28)

for some functions ζ : [−σ, 0] → Rm and ζ̂ : [−σ, 0] → Rm̂.
In (24)–(27), F (·) : [−σ, 0] → Rm×m, G(·) : [−σ, 0] →
Rm×q, E(·) : [−σ, 0] → Rm×p, H(·) : [−σ, 0] → Rn×m,

K(·) : [−σ, 0] → Rn×q, F̂ (·) : [−σ, 0] → Rm̂×m̂, Ĝ(·) :

[−σ, 0] → Rm̂×q, Ê(·) : [−σ, 0] → Rm̂×p, Ĥ(·) : [−σ, 0] →

Rn̂×m̂, and K̂(·) : [−σ, 0] → Rn̂×q are bounded matrix
functions, except that they may involve Dirac delta terms,
σ is the maximum time-delay in Ω and Ω̂, and z ∈ Rm

and ẑ ∈ Rm̂ are the state vectors of Ω and Ω̂ respectively.
Finally, v ∈ Rn and v̂ ∈ Rn̂ are the outputs of Ω and
Ω̂ respectively, which are assumed to be observations of
x ∈ Rn and x̂ ∈ Rn̂ respectively. It is assumed that m̂ ≥ m
and σ ≤ τ . The first of these assumptions is justified since
the dynamics of Σ consists of a part of the dynamics of
Σ̂ and hence Σ should not require an observer with a
higher dimension than that of Σ̂. The second assumption
is justified since to observe the state of a system with
maximum time-delay τ , one does not need to employ an
observer with a longer time-delay.

As in the case of controller design, the usual application is
to design an observer Ω̂ for the larger dimensional system
Σ̂ and then obtain an observer Ω for Σ by contracting Ω̂.
For this, however, the following must hold.

Definition 8: The observer Ω̂ for Σ̂ is said to be con-
tractible to the observer Ω for Σ if there exist a full row-
rank matrix U ∈ Rn×n̂, a full row-rank matrix P ∈
Rm×m̂, and a full column-rank matrix Q ∈ Rm̂×m with

PQ = Im, such that for all ζ(·), for all φ̂(·), and for all
û(·), when (11) and (7) are satisfied, the choice

ζ̂(θ) = Qζ(θ) , θ ∈ [−σ, 0] , (29)

implies

z(t) = P ẑ(t) , t ≥ −σ (30)

and

v(t) = Uv̂(t) , t ≥ 0 (31)

Since Ω̂, designed for Σ̂, is to be contracted to Ω to observe
the state of Σ, it is important that any observer designed
for Σ̂ to be contractible to an observer for Σ. The following
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theorem shows that this is the case if Σ is an aggregation
of Σ̂.

Theorem 10: If Σ is an aggregation of Σ̂, then any
observer of the form Ω̂ for Σ̂ is contractible to an observer
of the form Ω for Σ with

F (θ) = F̂ (θ) , G(θ) = Ĝ(θ) , E(θ) = Ê(θ) , (32)

H(θ) = UĤ(θ) , and K(θ) = UK̂(θ) , (33)

for θ ∈ [−σ, 0], where U is as in Definition 3.

Proof: Let m = m̂ and P = Q = Im. Note that, (30) for
t ∈ [−σ, 0] follows from (29). To establish (30) and (31)

for t ≥ 0, note that, since Σ is an aggregation of Σ̂, (11)
and (7) implies (8) and (9). Use (11), (7)–(9), (29), (32),
and (33) in (24)–(25) and compare with (26)–(27) to show
(30) and (31). 2

Now, suppose that an observer of the form Ω̂, which
achieves desired observation, is designed for Σ̂ and con-
tracted to an observer of the form Ω for Σ. The observer
Ω must then achieve desired observation for Σ. First, let
us formally define what we mean by desired observation.

Definition 9: An observer, such as Ω, designed for a
system, such as Σ, is said to achieve desired observation
with respect to a given norm ‖ · ‖ on Rn and a bound
function g(·) : [0,∞) → R+ (which may depend on initial
conditions and typically limt→∞ g(t) = 0), if for any φ(·),
for any u(·) and for any ζ(·), ‖x(t) − v(t)‖ ≤ g(t), for all
t ≥ 0.

Now we have the following result.

Theorem 11: Let ‖·‖n and ‖·‖n̂ be norms defined on Rn

and Rn̂ respectively. Let ‖ · ‖n,n̂ denote the matrix norm
induced by ‖ · ‖n and ‖ · ‖n̂. Also let Σ be an aggregation

of Σ̂ and Ω̂ be contractible to Ω, where (11), (7), and (29)

are satisfied. Suppose that Ω̂ achieves desired observation
with respect to ‖ · ‖n̂ and a given ĝ(·) : [0,∞) → R+.
Then Ω achieves desired observation with respect to ‖ · ‖n

and g(·) := γĝ(·), where γ := ‖U‖n,n̂, where U is as in
Definition 3.

Proof: Since (11), (7), and (29) are satisfied, (8)
and (31) are also satisfied. Thus, ‖x(t) − v(t)‖n =
‖U (x̂(t) − v̂(t)) ‖n ≤ γ‖x̂(t) − v̂(t)‖n̂. Then, ‖x̂(t) −
v̂(t)‖n̂ ≤ ĝ(t), for t ≥ 0, implies ‖x(t) − v(t)‖n ≤ g(t),
for t ≥ 0. 2

The above results imply that one can design an observer
for the larger dimensional system Σ̂ to achieve desired
observation and then contract it (using (32)–(33)) to an
observer for the system Σ, whenever Σ is an aggregation
of Σ̂.

6. OVERLAPPING DECOMPOSITIONS

In practice large-scale systems may have subsystems whose
dynamics may overlap in many different ways (see İftar
(1993)). The simplest case, which has also been the most
investigated case in the literature, is two subsystems which
are overlapped through certain dynamics. The state, the
input, and the output vectors of the system in this case
can be decomposed as follows:

x =

[

x1

xc

x2

]

, u =

[

u1

u2

]

, y =

[

y1

y2

]

, (34)

where xi ∈ Rni , ui ∈ Rpi , and yi ∈ Rqi are, respectively,
the state, the input, and the output vectors of the ith

subsystem, for i = 1, 2, and xc ∈ Rnc is the state vector of
the overlapping part. Such a system can then be expanded
by using either

V =







In1
0 0

0 Inc
0

0 Inc
0

0 0 In2






and U =

[

In1
0 0 0

0 αInc
βInc

0
0 0 0 In2

]

(35)

or

V =







In1
0 0

0 αInc
0

0 βInc
0

0 0 In2






and U =

[

In1
0 0 0

0 Inc
Inc

0
0 0 0 In2

]

, (36)

where α + β = 1 (typically, α = β = 1

2
). We note that

the first choice is more convenient in the case of controller
design and the second choice is more convenient in the case
of observer design.

Now, consider a system Σ, described as in (1)–(2) and
decomposed as in (34). Let the matrix functions in (1)–(2)
be partitioned compatible with (34) as follows:

A(·) =

[

A11(·) A1c(·) A12(·)
Ac1(·) Acc(·) Ac2(·)
A21(·) A2c(·) A22(·)

]

, B(·) =

[

B11(·) B12(·)
Bc1(·) Bc2(·)
B21(·) B22(·)

]

,

and

C(·) =

[

C11(·) C1c(·) C12(·)
C21(·) C2c(·) C22(·)

]

.

If the purpose is to design a controller, then an expansion
Σ̂, described as in (3)–(4), of Σ, such that Σ is a restriction

of Σ̂, can be obtained by choosing V and U as in (35) with
α = β = 1

2
and the matrix functions as in (12)–(14), where

M(·) =









0 1

2
A1c(·) − 1

2
A1c(·) 0

0 1

2
Acc(·) − 1

2
Acc(·) 0

0 − 1

2
Acc(·)

1

2
Acc(·) 0

0 − 1

2
A2c(·)

1

2
A2c(·) 0









, N(·) = 0

and

L(·) =

[

0 1

2
C1c(·) − 1

2
C1c(·) 0

0 − 1

2
C2c(·)

1

2
C2c(·) 0

]

.

Note that these choices satisfy the conditions (15); hence,

Σ is a restriction of Σ̂. The state, x̂ ∈ Rn̂, of the expanded
system Σ̂ can now be decomposed as

x̂ =

[

x̂1

x̂2

]

, x̂i ∈ Rn̂i , n̂i := ni + nc , i = 1, 2 . (37)

Thus, the expanded system Σ̂ is composed of two disjoint
subsystems, Σ̂1 and Σ̂2, which are weakly interconnected
(assuming that the only strong interconnections between
the original subsystems are through the overlapping part -
see Ikeda and Šiljak (1980) for the finite-dimensional case).

The state, the input, and the output vectors of Σ̂i, for
i = 1, 2, are, respectively, x̂i, ui and yi. Now, suppose that
a local controller of the form

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5800



v̂i(t) =

0
∫

−σ

K̂i(θ)x̂i(t + θ)dθ (38)

is designed for Σ̂i, for i = 1, 2. A decentralized controller
for Σ̂ can then be described as in (18), where

K̂(θ) =

[

K̂1(θ) 0

0 K̂2(θ)

]

, θ ∈ [−σ, 0] .

This controller can then be contracted to a controller of
the form (17), where K(·) is given by (21). Note that this
controller has an overlapping decentralized structure, where
u1 gets feedback from x1 and xc and u2 gets feedback from
xc and x2. Assuming that the controller (18) stabilizes

the system Σ̂, by Corollary 1, the contracted controller
(17) stabilizes the original system Σ. Furthermore, the two
closed-loop systems have the same input-output map.

Now, let us consider observer design for the system Σ,
whose state, input, and output vectors are decomposed as
in (34). Then, an expansion Σ̂ of Σ, such that Σ is an

aggregation of Σ̂, can be obtained by choosing V and U
as in (36) with α = β = 1

2
and the matrix functions as in

(12)–(14), where

M(·) =







0 0 0 0
1

2
Ac1(·)

1

2
Acc(·) − 1

2
Acc(·) − 1

2
Ac2(·)

− 1

2
Ac1(·) − 1

2
Acc(·)

1

2
Acc(·)

1

2
Ac2(·)

0 0 0 0






,

N(·) =







0 0
1

2
Bc1(·) − 1

2
Bc2(·)

− 1

2
Bc1(·)

1

2
Bc2(·)

0 0






, and L(·) = 0 .

These choices satisfy the conditions (16); hence, Σ is an

aggregation of Σ̂. The state, x̂ ∈ Rn̂, of the expanded
system Σ̂ can then be decomposed as in (37). Then, as

in the case of controller design, the expanded system Σ̂ is
composed of two disjoint subsystems, Σ̂1 and Σ̂2, which are
weakly interconnected. Next, suppose that a local observer
Ω̂i is designed for Σ̂i, for i = 1, 2. An observer Ω̂ can
then be obtained for the expanded system Σ̂ by combining
these two local observers. This overall observer can then
be contracted to an observer Ω for the original system Σ
as described in Theorem 10. Assuming that the observer
Ω̂ achieves desired observation for Σ̂, by Theorem 11, the
contracted observer Ω achieves desired observation for the
original system Σ.

7. CONCLUSION

Inclusion principle and overlapping decompositions has
been discussed for LTI retarded distributed-time-delay
systems. It has been shown that many concepts which are
valid for finite-dimensional systems and for discrete-time-
delay systems have extensions in this case. Extensions of
the present results to neutral time-delay systems (both in
the discrete and distributed time-delay cases) and to non-
linear and/or time-varying time-delay systems are subjects
of future research. Another possible direction for future
research is to consider overlapping decompositions of input
and output spaces besides the state-space.

REFERENCES

Bakule, L., Rodellar, J., and Rossell, J.M. (2005a).
Overlapping guaranteed cost control for uncertain
continuous-time delayed systems. In Proceedings of the
16th IFAC World Congress. Prague, Czech Republic.

Bakule, L., Rodellar, J., and Rossell, J.M. (2005b). Over-
lapping resilient H∞ control for uncertain time-delayed
systems. In Proceedings of the IEEE Conference on
Decision and Control, 2290–2295. Seville, Spain.

Bakule, L. and Rossell, J.M. (2008). Overlapping con-
trollers for uncertain delay continuous-time systems.
Kybernetika, 44, 17–34.

Brezinski, C. (1996). Extrapolation algorithms and Padé
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Ikeda, M., Šiljak, D.D., and White, D.E. (1981). Decen-
tralized control with overlapping information sets. J.
Optimization Theory and Applications, 34, 279–310.
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