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Abstract: A simple experimentally validated cardiovascular system model has been shown
to be able to track the evolution of various diseases. The model has previously been made
patient-specific by adjustment of its parameters on the basis of a minimal set of hemodynamic
measurements. However, this model has not yet been shown to be structurally identifiable,
which means that the adjusted model parameters may not be unique. The model equations
were manipulated to show that, from a theoretical point of view, all of their parameters can be
exactly retrieved from a restricted set of model outputs. However, this set of model outputs is
still too large for a clinical application, because it includes left and right ventricular pressures.
Consequently, further hypotheses that determine some model parameter values have to be made
for the model to be clinically applicable.

1. INTRODUCTION

1.1 Background

Mathematical models of the cardiovascular system (CVS)
can be used with clinical data to help monitor a patient’s
cardiac and circulatory state. To be clinically relevant,
these models have to be made patient-specific, which
means that their parameters have to be adjusted so that
model simulations can represent a patient’s individual
state. The main issue is that the data necessary to adjust
the model parameters can be scarce.

There exists two main approaches to model the CVS.
The first approach deals with complex three-dimensional
finite element models, involving millions degrees of free-
dom (Hunter et al. [2003]). These models can be used to
gain understanding on local parts of the CVS. However,
they contain many uncertainties and, consequently, identi-
fied parameters of such models are highly inter-dependent
and lack uniqueness and robustness. Thus, this study fo-
cuses on the second modelling approach, namely lumped-
parameter models. These models represent whole sections
of the CVS as single elements (chambers or resistances, for
example), hence the name lumped. They have significantly
less parameters than finite element models, and thus, these
parameters can be more readily computed from the avail-
able experimental data.

Strictly speaking, a mathematical model comprises two
main elements:

• a set of ordinary differential equations describing the
system behavior, called state equations,
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• a set of outputs, which are algebraic expressions of
the states (variables involved in the state equations).

The key question is: what is the measurements set needed
to identify all model parameters? In more theoretical
terms, this question can be stated as: what is the set of
model outputs one has to include in the model definition
for this model to be structurally globally identifiable? This
notion of structural identifiability is defined in the next
subsection.

1.2 Structural Identifiability

Structural identifiability analysis of a model determines
whether all model parameters can be uniquely retrieved
from noise-free and continuous measurements of all model
outputs. If the answer is yes, then the model is said to be
structurally globally identifiable (Ljung [1987]). Otherwise,
if there exists multiple parameter values for the given
model outputs, the model is structurally locally identifi-
able. Finally, if there is an infinite number of possible
parameter values, the model is termed structurally uniden-
tifiable.

Structural identifiability is called structural because it
only depends on the model equations (its structure). As
a consequence, structural identifiability strongly depends
on the number of model outputs, which is part of the model
structure. If the number of model outputs is too low, the
model is likely to be unidentifiable. The goal of this work
is to determine an output set which is small enough, but
sufficient for the model to be identifiable.

Taking the measurement noise and the limited number of
data into account and investigating if the model param-
eters still can be unequivocally determined relates to a
different topic, called practical identifiability (Pohjanpalo
[1978], Docherty et al. [2011]). Obviously, structural iden-
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Fig. 1. Schematic representation of the six-chamber CVS
model.

tifiability is a necessary condition for practical identifiabil-
ity.

1.3 Methods to Test for Structural Identifiability

Since the problem of structural identifiability has been
posed, various methods to test models for this property
have been proposed (Walter and Pronzato [1997]). For
linear time-invariant models, general conditions on the
model structure exist. However, for non-linear and time-
varying models, which includes realistic models of the
CVS, no general method has been proposed yet, because
there exist many different types of non-linearities.

Consequently, the method to test identifiability of a non-
linear and time-varying model depends on the model itself.
As noted, there are numerous CVS models, each with
different goals and uses. In the next subsection, we briefly
introduce the CVS model of interest and what is the
current knowledge on its identifiability. From here on, the
word ”model” will be used to refer to the state equations
only, which is a usual language abuse. The outputs will
thus be separately referred to.

1.4 Six-Chamber CVS Model

The CVS model used in this work is a simple lumped-
parameter model that describes the whole CVS using
only six chambers and six state equations (cf. Figure 1).
The model itself has been used in several animal studies
to track the evolution of different conditions, such as
pulmonary embolism (Revie et al. [2011]) and sepsis (Revie
et al. [2013]). However, no formal identifiability analysis
has been made to put these results in context.

To our knowledge, the only proof of structural identifi-
ability of this CVS model has been made by Hann et al.
[2006]. These authors developed a specific parameter iden-
tification method for this model. This method consists in
integrating the differential equations defining the model,
which results in a system of algebraic equations. As a
result, this particular parameter identification problem is
made linear and convex, which also proves that the model
is structurally globally identifiable.

The main drawback of this proof is that it requires a
large output set, including simultaneous measurements of
flow at six different points of the CVS (through the four
heart valves and through the systemic and pulmonary
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Fig. 2. Two-chamber CVS models.

circulations). This requirement is unrealistic for two rea-
sons. First, it is currently impossible to simultaneously
record flow through all heart valves. Second, ”systemic
and pulmonary circulations” do not correspond to actual
physical locations in the body, thus making it impossible
to measure flow at these places. Finally, Hann et al. [2006]
did not investigate the identifiability of the total stressed
blood volume. This is an important parameter, as it rep-
resents the total pressure-generating blood volume that is
introduced in the model.

Since then, to our knowledge, no further study has in-
vestigated the identifiability of this CVS model despite
its wider usage. In a previous work, Pironet et al. [2012]
demonstrated the structurally global identifiability of sim-
ple two-chamber CVS models (cf. Figure 2) derived from
the six-chamber CVS model. Identifiability was demon-
strated from a smaller output set than the one used by
Hann et al. [2006]. In this work, this procedure is extended
to the full six-chamber CVS model to show that the model
is structurally globally identifiable from a limited output
set.

In the following sections, the six-chamber CVS model is
first described including the equations it contains in detail.
Its identifiability is then analyzed. The implications of
model identifiability on the practical parameter identifi-
cation procedure are then discussed.

2. CVS MODEL STATE EQUATIONS

The CVS model that is the focus of this work has been
previously presented by Smith et al. [2004] and is shown
in Figure 1. As mentioned before, it has been validated
in several animal experiments (Revie et al. [2011, 2013]).
In this work, ventricular interaction is not considered.
The model then becomes similar to the one presented by
Burkhoff and Tyberg [1993].

The model comprises six elastic chambers linked by re-
sistive vessels. These six chambers represent the aorta,
the vena cava, the pulmonary artery, the pulmonary veins
(i = ao, vc, pa, pu) and the two ventricles (i = lv and
rv). The arterial and venous chambers are passive, which
means that there is a constant linear relationship between
pressure Pi and (stressed) volume Vi:

Pao(t) = Eao · Vao(t) (1)

Pvc(t) = Evc · Vvc(t) (2)

Ppa(t) = Epa · Vpa(t) (3)

Ppu(t) = Epu · Vpu(t). (4)
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In the previous equations, the parameters Ei are called the
elastances of the chambers. Ventricular chambers are ac-
tive. Thus, the relationship between pressure and volume
is time-varying:

Plv(t) = Elv · elv(t) · Vlv(t) (5)

Prv(t) = Erv · erv(t) · Vrv(t). (6)

In Equations (5) and (6), the parameters Elv and Erv

are the end-systolic elastances and the functions elv(t)
and erv(t) are called the driver functions. These driver
functions can take different forms, but for the model to
correctly represent the function of the CVS, they have (at
least) to be periodic and range from 0 (diastole) to 1 (end-
systole). In these equations, for simplicity, we assumed
end-diastolic pressure-volume relationships to be zero.

As mentioned before, the six chambers are linked by
resistive vessels, representing the four heart valves (j =
mt, av, tc and pv) and the systemic and pulmonary
circulations (j = sys and pul). In these last two vessels,
flow Qj is given by Poiseuille’s equation:

Qsys(t) =
Pao(t)− Pvc(t)

Rsys
(7)

Qpul(t) =
Ppa(t)− Ppu(t)

Rpul
, (8)

where Rj denotes the resistance of the vessel. In the case
of the valves, there is flow only if the pressure gradient
through the valve is positive. Hence, one has:

Qmt(t) =
r [Ppu(t)− Plv(t)]

Rmt

(9)

Qav(t) =
r [Plv(t)− Pao(t)]

Rav

(10)

Qtc(t) =
r [Pvc(t)− Prv(t)]

Rtc

(11)

Qpv(t) =
r [Prv(t)− Ppa(t)]

Rpv
(12)

where r(·) denotes the ramp function, defined by:

r(x) =

{
x if x > 0
0 otherwise.

(13)

Finally, volume change in any of the model chambers is
given by the difference between flow going in and coming
out of the chamber:

V̇lv(t) = Qmt(t)−Qav(t) (14)

V̇ao(t) = Qav(t)−Qsys(t) (15)

V̇vc(t) = Qsys(t)−Qtc(t) (16)

V̇rv(t) = Qtc(t)−Qpv(t) (17)

V̇pa(t) = Qpv(t)−Qpul(t) (18)

V̇pv(t) = Qpul(t)−Qmt(t). (19)

Since the model is a closed loop, total (stressed) blood
volume SBV is constant. This point can also be seen by
summing Equations (14) to (19). This assumption that
total stressed blood volume is a constant is true for short
time periods. In reality, total stressed blood volume can

change due to the influence of the nervous system (Guyton
and Hall [2006]). As mentioned before, the value of SBV
is an important model parameter.

The model parameter set p counts a total of 13 elements:

p = {Eao, Evc, Epa, Epu, Elv, Erv,
Rsys, Rpul, Rmt, Rav, Rtc, Rpv, SBV } . (20)

In the following section, all the previously listed model
equations are manipulated to determine whether this six-
chamber CVS model is structurally globally identifiable,
i.e. if all 13 model parameters can be computed from a
limited output set.

3. STRUCTURAL IDENTIFIABILITY ANALYSIS

To perform the structural identifiability analysis of a
model, it is usually assumed that the outputs can be
perfectly and continuously measured (Pohjanpalo [1978]).
Consequently, they can be differentiated as much as nec-
essary. The same hypothesis will hold here. For the rest of
this text, the outputs are chosen to be:

• pressure in the left ventricle Plv(t),
• pressure in the right ventricle Prv(t),
• pressure in the aorta Pao(t),
• pressure in the pulmonary artery Ppa(t) and
• stroke volume SV .

Furthermore, it will also be assumed that the left and right
driver functions elv(t) and erv(t) are known. The practical
validity of these assumptions is discussed in section 4.1.

3.1 During Cardiac Ejection

When the aortic valve opens (tAV O), aortic pressure equals
left ventricular pressure:

Pao(tAV O) = Plv(tAV O) (21)

Using Equation (5) gives:

Pao(tAV O) = Elv · elv(tAV O) · Vlv(tAV O)

⇔ Vlv(tAV O) =
Pao(tAV O)

Elv · elv(tAV O)
(22)

This last quantity is the end-diastolic volume. Similarly,
at the time of aortic valve closing (tAV C), aortic pressure
once again equals left ventricular pressure:

Pao(tAV C) = Plv(tAV C)
= Elv · elv(tAV C) · Vlv(tAV C)

⇔ Vlv(tAV C) =
Pao(tAV C)

Elv · elv(tAV C)

(23)

This is the end-systolic volume. By definition, the stroke
volume SV is equal to the difference between the end-
diastolic and end-systolic volumes:

SV = Vlv(tAV O)− Vlv(tAV C)

=
Pao(tAV O)

Elv · elv(tAV O)
− Pao(tAV C)

Elv · elv(tAV C)

=
1

Elv

(
Pao(tAV O)

elv(tAV O)
− Pao(tAV C)

elv(tAV C)

) (24)

⇔ Elv =
1

SV

(
Pao(tAV O)

elv(tAV O)
− Pao(tAV C)

elv(tAV C)

)
(25)
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Once Elv is known, from Plv(t) and the driver function,
using Equation (5), one can obtain:

Vlv(t) =
Plv(t)

Elv · elv(t)
. (26)

Integrating Equation (10) during ejection (when Plv(t) >
Pao(t), i.e. between t = tAV O and t = tAV C) gives:

tAV C∫
tAV O

Qav(t) dt =

tAV C∫
tAV O

Plv(t)− Pao(t)

Rav
dt. (27)

Since, during ejection, all flow going out of the heart goes
through the aortic valve,

tAV C∫
tAV O

Qav(t) dt = SV. (28)

Consequently, using the previous two equations gives:

⇔ Rav =

∫ tAV C

tAV O
[Plv(t)− Pao(t)] dt

SV
. (29)

The reasoning that has been exposed in this section for
the left side of the circulation can be transposed to the
right side. Consequently, pulmonary valve resistance Rpv

and right ventricular elastance Erv are identifiable, which
allows computation of Vrv(t).

3.2 During Ventricular Filling

Focusing now on (right) ventricular filling (Pvc(t) > Prv(t)
and Prv(t) < Ppa(t)), the combination of Equations (11),
(12) and (17) gives:

V̇rv(t) =
Pvc(t)− Prv(t)

Rtc
. (30)

Differentiating this equation yields:

V̈rv(t) =
Ṗvc(t)− Ṗrv(t)

Rtc
. (31)

Using Equations (2), (7), (11) and (16), Equation (31)
becomes (dependencies with respect to time being omitted
for clarity):

V̈rv =
1

Rtc

(
Evc

(
Pao − Pvc

Rsys
− Pvc − Prv

Rtc

)
− Ṗrv

)
. (32)

If the previous equation is differentiated twice more and
the derivatives of Pvc(t) are eliminated using Equations
(2), (7), (11) and (16), the result is two more equations of
the form:

˙̈V rv(t) = f
(
Rtc, Evc, Rsys, Pao(t), Ṗao(t),

Pvc(t), Prv(t), Ṗrv(t), P̈rv(t)
) (33)

¨̈V rv(t) = g
(
Rtc, Evc, Rsys, Pao(t), Ṗao(t), P̈ao(t),

Pvc(t), Prv(t), Ṗrv(t), P̈rv(t), ˙̈P rv(t)
)
.

(34)

The algebraic system formed by Equations (30), (32),
(33) and (34) counts four equations and four unknowns
Pvc(t), Rsys, Rtc and Evc (since Vrv(t) is known, cf. the

last paragraph of section 3.1). Solving this system with
a symbolic computation software (Mathematica Version
8.0, Wolfram Research, Inc., Champaign, IL) shows that
it has a unique solution at each time step. This, in
turn, guarantees the identifiability of the three parameters
Rsys, Rtc and Evc (Anguelova [2004]). This outcome also
provides the curve of Pvc(t) during filling, which will be
useful further in this demonstration.

During filling, aortic and pulmonary valves are closed.
Hence, the volume comprised in the three chambers be-
tween these two valves is conserved and the sum of the
flows is zero:

V̇ao(t) + V̇vc(t) + V̇rv(t) = 0. (35)

This relationship allows to obtain the time curve of V̇ao(t)
during filling:

V̇ao(t) = −V̇vc(t)− V̇rv(t) = − Ṗvc(t)

Evc
− V̇rv(t) (36)

since Pvc(t) is now available. Thus, using V̇ao(t) and Ṗao(t),
Eao can be computed as:

Eao =
Ṗao(t)

V̇ao(t)
. (37)

As done in the previous section, the approach applied here
can be transposed to the other side of the circulation to
prove the identifiability of the parameters Rpul, Rmt, Epu

and Epa and the availability of the curve Ppu(t) during
filling.

Finally, SBV can be computed from its definition:

SBV = Vlv(t) + Vao(t) + Vvc(t)
+Vrv(t) + Vpa(t) + Vpu(t).

(38)

Using the fact that Eao, Epa, Evc and Epu are known, as
well as Pvc(t) and Ppu(t) (during filling), yields:

SBV = Vlv(t) +
Pao(t)

Eao
+

Pvc(t)

Evc

+ Vrv(t) +
Ppa(t)

Epa
+

Ppu(t)

Epu
.

(39)

4. RESULTS AND DISCUSSION

The demonstration performed in the previous section
shows that all 13 model parameters Rmt, Rav, Rsys,
Rtc, Rpv, Rpul, Elv, Eao, Evc, Erv, Epa, Epu and SBV
can be uniquely retrieved from Plv(t), Prv(t), Pao(t),
Ppa(t) and SV measurements and knowledge of the driver
functions elv(t) and erv(t). This outcome, in turn, proves
that the six-chamber CVS model is structurally globally
identifiable from these output signals. Consequently, given
all required measurements of the outputs, there exists one
and only one possible parameter set corresponding to these
measurements. The parameter identification process thus
theoretically possesses a unique global minimum.

This result can be linked to previous work done on simpli-
fied versions of the six-chamber CVS model. Simple two-
chamber CVS models can be derived from the six-chamber
model of Figure 1. Doing so, the model is split in two equiv-
alent two-chamber models, representing the systemic and
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pulmonary circulations (see Figure 2), previously shown to
be structurally globally identifiable from a specific output
set. In the present work, it was shown that the union of
these two submodels was structurally globally identifiable
from the union of the two output sets needed to identify
the two submodels.

The six-chamber CVS model is thus structurally globally
identifiable from a limited output set containing ventric-
ular and arterial pressures and stroke volume. But this
does not imply that this limited set can not be reduced. It
would be useful to investigate the structural identifiability
of the model from other output sets, either smaller (for ex-
ample, not containing ventricular pressures) or containing
different outputs.

Another way to reduce the size of the output set is to fix
some model parameters to population values. For instance,
valve resistances Rmt, Rav, Rtc and Rpv were observed
not to exert a large influence on the model’s overall
behavior. If these valve resistances are kept constant and
are not identified, it can be shown, using the same kind of
procedure as above, that the remaining parameters can be
identified only from Pao(t), Ppa(t) and SV . In this case,
ventricular pressures Plv(t) and Prv(t) do not have to be
included in the outputs.

4.1 Practical Considerations

In this section, the implications of the results on the
practical parameter identification process are discussed.
In the meantime, the validity of the assumptions made in
section 3 is assessed.

One of these assumptions was that the left and right driver
functions were known. Practical determination of the
driver functions requires simultaneous measurements of
left and right ventricular pressures and volumes at different
loads (Suga et al. [1973]). This is of course impossible in
a clinical setting. However, the driver function has been
found to be relatively similar for any human heart (Senzaki
et al. [1996]). This makes a priori generic driver functions
a sensible assumption for any individual.

Practically speaking, the fact that ventricular pressures
Plv(t) and Prv(t) need to be part of the output set is
quite problematic. Indeed, these values are typically not
recorded in a clinical setting. If further work shows that
these pressures cannot be omitted for the model to remain
identifiable, more assumptions would have to be made
for the model to be clinically applicable. For instance, as
mentioned previously, if valve resistances are assumed to
be constant, the need for ventricular pressures vanishes.
In that case, the remaining parameters are theoretically
identifiable from a clinically available output set.

In the demonstration, the third derivative of ventricular
pressure is used to prove model identifiability (Equation
34). It is of course practically impossible to use such a
signal, because it would be too noisy. Thus, assumption of
perfect and noise-free data does not hold in practice and
the equations developed in section 3 cannot be used to
practically compute the model parameters. Now that the
model is shown to be structurally identifiable, it is also
necessary to determine if specific supplementary data is
needed to practically compute the model parameters.

Another reason causing the equations of section 3 not to
be usable in practice is that the model is not perfectly
valid, because of unmodelled elements. For instance, to
derive Equation (25), it is assumed that the left ventricular
and aortic pressures were equal at the time of aortic
valve closing. This is one of the assumptions underlying
the model, but in a real ventricle the blood has inertia,
causing the aortic valve to close when ventricular pressure
is actually lower than aortic pressure. However, Equation
(25) could still be used to get a reasonable approximation
of left ventricular end-systolic elastance.

5. CONCLUSION

The CVS model of Smith et al. [2004] has been used
to track the evolution of diseases in animal experiments.
However, only one study demonstrated the structural a
priori identifiability of this model, but did so using a large
output set. In this work, a specific output set is chosen
containing only a limited number of measurements. Then,
by manipulating the model equations involving these out-
puts, it is demonstrated that the CVS model is struc-
turally globally identifiable. This means that the model
parameters are unique and can theoretically be identified
from the specified limited output set. However, this limited
output set is still too large from a clinical point of view,
as it requires ventricular pressures, which are typically
not available at a patient’s bedside. Consequently, if the
demonstration presented in this work cannot be improved,
further simplifying assumptions may have to be made for
the clinical use of this CVS model.
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